
Voyager: Tracking Via a Click

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Student Name:
Samuel Decanio

Advisor:
Dr. Soltys

October 2020

c 2020
Samuel Decanio
ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Michael Soltys Date

Name Date

Name Date

APPROVED FOR THE UNIVERSITY

Name Date

Voyager: Tracking Via a Click

Samuel Decanio

November 4, 2020

Abstract

Attribution, the ability to match events on the Internet to actors
who caused them, is a di�cult problem in Cybersecurity and Digital
Forensics. The Internet was not designed to track behavior of users
[8]. In fact, being an easy to access and open platform, it is often
thought of as synonymous with anonymity. When actors attempt to
take advantage of this anonymity to break the law, it is up to law
enforcement to track them down, in a way that can potentially hold
up in a court of law. This is no easy feat though, and the odds are
stacked against them. In this paper a tool is presented, called Voyager,
based on the idea of atracking pixel, meant to help investigators with
problem attribution.

Contents

1 Introduction 3

2 Background 7

2.1 AWS . 7

2.1.1 S3 . 7

2.1.2 EC2 . 9

2.1.3 EBS . 10

2.2 The OSI Model . 10

2.3 The TCP/IP Model . 11

2.4 HTTP . 13

2.4.1 User Agent Strings . 14

2.4.2 HTTP Methods . 16

2.5 The Southern California High Technology Task Force 18

2.6 Combating Child Pornography 19

2.7 Mortgage Scams . 20

2.8 Ransomware Attacks . 21

3 Design and Implementation 25

3.1 Hosting Server . 26

3.2 Provisioning . 30

i

3.3 Web Interface . 39

3.3.1 Front End . 40

3.3.1.1 Home Screen 40

3.3.1.2 Photo Log . 41

3.3.1.3 Photo Details 42

3.3.1.4 Event Log . 44

3.3.1.5 Event Details 45

3.3.2 Back End and Server Side 47

3.4 Data Storage . 49

3.5 Capturing Network Tra�c . 52

3.6 Analyzing The Tra�c . 55

4 Observations and Results 58

4.1 Real World Usage and Results 58

4.1.1 Case 1 . 58

4.1.2 Case 2 . 60

4.2 Exploratory Results . 62

4.3 Observations . 70

5 Conclusion and Future Work 74

5.1 Future Work . 74

5.1.1 Pcap Files . 74

ii

5.1.2 Authentication . 76

5.1.3 Leverage Additional AWS Resources 76

5.1.4 Addressing VPNs, Proxies, and TOR 77

5.1.5 User Agent String Analysis 78

5.1.6 Addressing HTTPS . 79

5.2 Conclusion . 80

References 85

iii

List of Figures

1 The seven layers of the OSI Model. [1] 11

2 The four layers of the TCP/IP Model. [1] 11

3 The Internet Protocol (IP) header structure. [17] 13

4 User Agent strings showing the device type. 15

5 Example tags applied to Elastic Cloud Compute (EC2) in-
stances. [3] . 29

6 Diagram of the installation script process. 31

7 The Voyager directory structure. 34

8 The cron command to run the parser.py script. 35

9 Voyager's logging structure. 37

10 The command to con�gure the iptables port routing. 38

11 Voyager's home screen. 41

12 Voyager's photo log page. 42

13 Voyager's photo details page. 43

14 Voyager's event log page. 44

15 Voyager's event details page. 46

16 Voyager's event details page displaying geolocation data. . . . 47

17 The Voyager work ow for �le uploads. 49

18 Voyager's database schema. 50

19 The tcpdump command used to capture network tra�c. . . . 52

iv

20 Breakdown of an example URL. 57

21 Example ransomware message, courtesy of the SCHTTF. . . . 61

22 Example email containing a Voyager link disguised as a thumb-
nail, courtesy of the SCHTTF. 62

23 Using Google Chrome on a macbook pro connected to a home
WiFi network. (Scenario 1) 64

24 Using the Safari browser on an iPhone 11 connected to a home
WiFi network. (Scenario 2) 65

25 Using the Safari browser on an iPhone 11 with 4g cellular data.
(Scenario 3) . 67

26 Using Google Chrome to view a Gmail image attachment on
a macbook pro connected to home WiFi. (Scenario 4) 68

27 Using Safari browser on an iPhone 11 from public WiFi. (Sce-
nario 7) . 70

v

Glossary

AMI Amazon Machine Image. 9, 27

API Application Programming Interface. 17, 32, 36, 37, 51, 52

AWS Amazon Web Services. 7{10, 26{28, 30, 72, 73, 75

CP Child Pornography. 5

EBS Elastic Block Store. 10, 28, 73

EC2 Elastic Cloud Compute. iv, 9, 10, 26{30, 36, 37, 39, 55, 72, 75

HTTP HyperText Transfer Protocol. 13{17, 29, 38, 51, 54, 56

HTTPS HyperText Transfer Protocol Secure. 14, 29, 54, 56

IP Internet Protocol. iv, 12, 13, 26{29, 45, 59, 61{66, 68, 69, 71, 78, 80

NVM Node Version Manager. 35

OSI Open Systems Interconnection Model. 10, 11

PM2 A daemon process manager used to run NodeJS applications. 32, 33,

38, 39

S3 Simple Storage Service. 7, 8, 32, 33, 38, 55, 73, 75

1

SCHTTF Southern California High Technology Task Force. 5, 18{21, 24,

25, 58, 59, 80, 81

TCP Transport Control Protocol. 12, 13, 29, 56

TOR The Onion Router. 77, 78

UAS User Agent String. 14

VPN Virual Private Network. 59, 63, 70

2

1 Introduction

With the creation and subsequent adoption of the internet the world be-

came more connected than it has ever been. Accompanying this came mas-

sive changes to our everyday lives. The way people communicate, conduct

business, and learn are just a few examples of areas that have been forever

changed by the Internet. But, with these advances came a pitfall as well.

Just as in every other facet of the world there are those who wish to take

advantage, the internet is no di�erent. In fact, the internet has proven to be

a proverbial playground for these individuals due to the somewhat anony-

mous nature as well as the Internet's inherent ability to blur lines between

countries, continents, and all else. In addition to these factors, the world

has steadily moved to making more available via the internet, ranging from

personal and private information to services such as banking and other im-

portant infrastructure. For all theses reasons many individuals looking to

conduct nefarious activities have moved online too. These actors, along with

any others using the internet with the intent of breaking the law, are to be

referred to as cybercriminals in this thesis.

Just as in the regular world there are those working to bring criminals to

justice, there are those working to stop cybercriminals as well. Sadly, these

law enforcement investigators are often �ghting an uphill battle. The sheer

number of crimes committed online is enough to overwhelm law enforcement.

3

In 2019, the IC3 or Internet Crime Complaint Center, a division of the FBI

received 467,361 complaints [10]. That is a 32.79% increase from 2018, and a

62.27% increase from 2015 [10]. It is clear that the frequency of cybercrimes

committed is increasing, and shows no signs of slowing.

While defenders must discover every hole, bug, and aw in their systems

to keep attackers out, the criminals only need to �nd one to get in. Cy-

bercriminals have a plethora of tools at their disposal to both help discover

these security holes as well as cover their tracks and keep them from being

discovered. Add to this that investigations often do not take place in real

time but long after an incident has occurred, when much of the digital ev-

idence is potentially gone, and you begin to paint a bleak picture for these

investigators. It was with these facts in mind that it became clear law en-

forcement investigators need to look at adopting new approaches to combat

cybercriminals.

In this thesis we propose a solution and tool to help combat the afore-

mentioned problems, named Voyager. Voyager is loosely based on the idea of

a tracking pixel, capable of automatically loading when a URL containing it

is requested. The goal being that the requester of the page is none the wiser

as this tracking pixel has no e�ect on the rendering of the page. Through this

tracking pixel, information is then logged about the requested page as well

as whoever requested it. This approach is often used in online marketing.

4

Through a similar approach used by companies in online marketing, Voy-

ager was developed to be able to log a plethora of information about a sus-

pect who accesses a specially crafted link that is created and served by law

enforcement investigators. In a sense Voyager is capable of conducting a re-

verse phishing scheme on cybercriminals allowing law enforcement to identify,

track, and apprehend these malicious actors.

Voyager was developed in direct support of the Southern California High

Technology Task Force (SCHTTF). More speci�cally, Voyager began as an

application to be used in combating online Child Pornography (CP). The

premise behind the idea being that investigators would be able to upload

�les ranging from images to PDFs to Voyager. Then, Voyager would serve

them at a specially crafted URL which investigators would then provide to

suspects. Once the suspect opens the link, Voyager will record information

about that request that law enforcement could then use in their investigation.

However, due to the broad nature of Voyager's implementation its quickly

expanded beyond simply combating CP. Investigators have also leveraged

Voyager in the same previously mentioned manner to entice suspects of other

cybercrime such as mortgage scams and ransomware attacks, both of which

are discussed in Section 2. It is worth noting that another California State

University, Channel Islands student, Dhruv Pandya, worked on a solution to

the same problem for his master's thesis [15].

This project was �rst developed as an undergraduate capstone between

5

Vlad Synnes and myself. While the result of that capstone was a working

application, Voyager 1.0, it was in a primitive stage. It was capable of cap-

turing network tra�c and displaying a limited amount of information. This

thesis served to build o� that foundation to develop a more comprehensive

and eshed out version of Voyager. This includes �xing bugs, adding ad-

ditional functionality and features, adopting a microservice oriented project

structure, as well as completely rewriting the project from the ground up

using a more industry standard development stack.

As a last note, a shortened version of this thesis paper was presented at

the KES 2020 International conference and subsequently published in volume

176 of the Procedia Computer Science journal [4].

6

2 Background

2.1 AWS

Amazon Web Services (AWS) is a cloud computing platform with a large

number of services. Cloud computing is the on-demand availability of com-

puting resources over the internet. These range from on demand virtual

computing instances, long term data storage, and databases to some bleeding

edge technologies such as quantum computing, machine learning capabilities,

and virtual reality. It is leveraged by millions of companies and consumers;

from startups to large enterprise corporations such as Netix and Capital

One, and even government agencies. AWS is the largest Cloud provider in

the world.

2.1.1 S3

Simple Storage Service (S3) is a functionality o�ered by AWS that provides

storage of objects while o�ering availability, security and performance. S3

has a plethora of use cases ranging from big data analytics to disaster recov-

ery and data archival. S3 serves as a �nancially feasible method of storing

large amounts of data for extended periods of time while still o�ering many

useful security features. For instance, S3's standard storage costs $0.023 per

7

gigabyte per month for the �rst 50 terabytes of storage [2]. It is worth not-

ing these prices vary slightly depending on the AWS region selected. For the

purposes of Voyager, S3 has two speci�c use cases.

The �rst use case is to store data required for the provisioning of Voyager,

discussed in Section 3.2. This data is stored in an S3 bucket, which can be

thought of as similar to a �le folder. Buckets hold objects, which are de�ned

as data and that data's associated metadata. Voyager then retrieves the

necessary data from the S3 bucket during the provisioning process.

The second use case is for the storage of all network tra�c that Voyager

records. Network tra�c captures can quickly grow to become an overwhelm-

ing amount of data, yet maintaining it is vital for the investigations Voyager

aides in. S3 allows for this large amount of data to be moved o� the Voyager

instance to a more long term and cost e�ective storage medium.

Should any data need to be archived for an even longer period of time,

in the event of a court case down the road, S3 o�ers Glacier storage as an

additional option. Glacier is speci�cally for long term backups and archives

and as such provides extremely inexpensive storage options, with the catch

being the time required to access the data. Should you need to access data

stored using Glacier, it can take anywhere from 1 minute to 12 hours to

retrieve it. Pricing for Glacier storage is roughly $0.004 per gigabyte per

month [2]. Similarly to the standard S3 prices, these vary slightly based

8

upon the AWS region selected.

2.1.2 EC2

Elastic Cloud Compute (EC2) instances, are on demand computing instances

that can be spun up and spun down at a moments notice, all hosted on Ama-

zon's infrastructure and managed through AWS's command line interface,

software development kit, API, or web interface. They are a secure, resiz-

able, and highly con�gurable compute capacity in the cloud. The beauty of

these EC2 instances is that they can be created and destroyed at anytime,

from anywhere. Not only can they be created at a moment's notice but they

are cost e�ective to use when compared to an in house hosting solution.

Their creation is simpli�ed by the ability to select a pre-con�gured im-

age, referred to as an Amazon Machine Image (AMI). These AMIs come in

many di�erent avors. The main di�erences between them is their operat-

ing systems as well as the packages and services that come already installed.

Leveraging AMIs allows for a much easier provisioning process than building

the server from the ground up.

9

2.1.3 EBS

Elastic Block Store, commonly refered to as EBS, is storage that can be

attached to AWS EC2 instances. EBS o�ers persistent storage for EC2 in-

stances when otherwise all data on the instance would be lost at shutdown.

They also provide an easy means of encrypting whatever data is stored on the

instance, providing another layer of security. Upon creating an EC2 instance

using the standard options, an EBS will also be created for that instance.

Further con�guration can be done to increase capacity however the standard

con�guration has proven more than enough for all uses of Voyager thus far.

2.2 The OSI Model

The OSI or Open Systems Interconnection Model is a conceptual model that

serves to de�ne and standardize communication functions of computer sys-

tems. It does so with no thought to the underlying structure a computer

system uses to implement these functions. This communication model is

necessary to de�ne a set of common ground rules that ensures all computers

can communicate with each other.

The OSI model consists seven distinct layers, shown in Figure 1.

10

Figure 1: The seven layers of the OSI Model. [1]

2.3 The TCP/IP Model

Equally important as the OSI model is the TCP/IP model. This model con-

sists of only four layers, as opposed to the seven of the OSI model. While the

OSI model is responsible for de�ning and standardizing communcation func-

tions of a computer system, the TCP/IP model is a more protocol oriented

standard. The four layers of the TCP/IP model are shown in Figure 2.

Figure 2: The four layers of the TCP/IP Model. [1]

11

There are two main protocols used on the modern Internet to transmit

data, both of which operate on the Transport layer of the TCP/IP model.

The �rst of which is TCP or Transmission Control Protocol. The second,

which we are not concerned with for the context of this paper, is UDP or

User Datagram Protocol. TCP, which was developed by ARPA (otherwise

known as DARPA) [1], was designed to be a \highly reliable host-to-host

protocol"[18]. This reliability was accomplished via the implementation of

sequence numbers and acknowledgements. This means each packet of data

that is transmitted between two hosts is assigned a sequence number and

each host must acknowledge the receipt of any data. TCP is also responsible

for handling the continuous ow of data between two sources and resolving

any associated problems such as congestion.

In order to work over a network, such as the internet, TCP works in as-

sociation with IP or the Internet Protocol. IP, which operates at the Intern-

erwork layer of the TCP/IP model [1], de�nes how computers send packets

of data to each other, essentially the routing between two destinations. This

is accomplished by attaching a header that contains metadata such as ad-

dressing and control information. Shown in Figure 3 is the structure of the

header that gets attached to data as part of the IP. This header contains

information that is very useful to Voyager such as the source and destination

addresses. These denote where the data originated and where it is being sent

to.

12

Figure 3: The IP header structure. [17]

TCP/IP is relevant to Voyager because all the network tra�c the server

captures and parses is TCP tra�c transmitted over the Internet using the

Internet Protocol. In order to parse the tra�c received it is important to

understand the structure of the TCP/IP model, and the protocols associated

with it.

2.4 HTTP

HTTP or HyperText Transfer Protocol is a protocol whose primary pur-

pose is serving hypermedia documents such as HTML or Hypertext Markup

Language. While HTTP can be leveraged over any reliable transport layer

protocol, though most commonly TCP, HTTP itself operates at the Appli-

cation Layer [1]. The protocol implements communication between client

13

and server computers via the transmission of HTTP requests and HTTP

responses. In any instance where the URL of a website is prepended with

HTTP or even HTTPS then that website is utilizing the HyperText Transfer

Protocol. HTTP serves a crucial role in Voyager as it is both the protocol

that investigators use to interact with the web application as well as how a

suspect will access a �le from a Voyager link. When this happens, HTTP

contains much of the useful information Voyager extracts and logs from these

requests.

2.4.1 User Agent Strings

The User Agent string (UAS), is a �eld included in all HTTP requests. It

is a string used to \convey client system con�guration details to ensure that

content returned by a server is appropriate for the requesting host" [12].

The purpose of a UAS is \to provide su�cient detail about a client system

to enable a server to transmit content in the appropriate format and for

debugging interoperability problems" [12].

Websites will use the User Agent string to determine the format of the

content to return to the user [13]. You can see an example of this yourself

when you visit websites from your mobile device. Often times you will be

automatically redirected to a mobile friendly version of that website. These

mobile friendly versions are built to be viewed and used on the smaller screens

14

of devices like cell phones and tablets. Programmers can determine which

version of the website to serve a user by examining the User Agent string. If

the string contains information stating that the device that sent the HTTP

request is a mobile device, then the user is redirected. This can be observed

in Figure 4. Displayed in the �gure are two di�erent User Agent strings.

The �rst was from a HTTP request sent from a desktop computer, while

the second was from a HTTP request via a mobile device. The highlighted

portions show the parts of the User Agent strings that can be examined to

determine the device types.

((a)) An example desktop computer user agent string.

((b)) An example mobile device user agent string.

Figure 4: User Agent strings showing the device type.

In the case of Voyager, these User Agent strings can be extracted and used

to �nd out additional information about whomever made the request. These

strings can contain details such as the computer's operating system and the

browser used to make the request even down to speci�c version numbers. An

important note is that User Agent strings are public information sent in all

HTTP tra�c, and thus do not require a search warrant to collect or inspect.

15

This makes them an excellent means of open source intelligence gathering

for law enforcement.

2.4.2 HTTP Methods

Within HTTP there are a total of 8 di�erent methods that can be leveraged

in HTTP 1.1, the most popular version of the protocol currently in use on the

internet. These methods de�ne speci�c actions to be performed by a resource.

The eight methods are: OPTIONS, GET, HEAD, POST, PUT, DELETE,

TRACE, and CONNECT [7]. When it comes to tra�c capture, Voyager is

mainly concerned with the GET method implemented in HTTP. However,

the portion of Voyager that investigators use leverages GET, POST, PUT,

PATCH, and DELETE.

When an HTTP message is sent that uses the GET method, it is often

referred to as a GET request. This is because the GET method is only used

in HTTP requests and not in HTTP responses.

GET requests serve as a means to \retrieve whatever information is iden-

ti�ed by the Request-URI"[7]. Whenever a client is requesting a resource

from a web server, a GET request is sent to the server. This prompts the

server to respond with the speci�c resource that was requested. These GET

requests to the server are the tra�c that Voyager captures. Voyager is then

able to extract meta-data from these requests, as discussed in detail later.

16

The POST method is used in HTTP for the purpose of telling the server

to accept the enclosed entity in the request as a new instance of whatever

resource is denoted by the request-URI. This simply means POST requests

are sent from the client to the server to create a new instance of some resource

on the server. Many web applications, including Voyager, leverage POST

requests to allow for the creation of new records via an API. In Voyager's

case, POST requests are leveraged to both create new records within the

database as well as to upload �les to the server.

PUT is often used in a similar manner to the POST method. The main

di�erence is that PUT is used to update a speci�ed resource denoted by the

request-URI if it already exists, instead of creating it. This allows for the

updating of records that already exist on the server. This di�ers from a

simple POST request, which is merely responsible for creating new records.

However, if a PUT request is sent and the resource does not already exist on

the server then it will be created. This behavior mimics how a POST request

works. Within Voyager, PUT requests are used to update an existing record

on the server, such as a database record or an uploaded �le.

The PATCH method loosely resembles the PUT method. It is also used

update or modify resources that already exist on the server. The di�erence

between PATCH and PUT is that when using the PATCH method you need

only include the parts of the resource that you wish to be updated, as opposed

to the entire new version of the resource. This is especially useful when

17

updating a single �eld in a large record, as you only need to include the

single �eld instead of the entire record in the request.

2.5 The Southern California High Technology Task Force

The Southern California High Technology Task Force or SCHTTF is one of

�ve task forces regional to California that was developed as part of the High

Technology Theft Apprehension and Prosecution Program (HTTAP). The

HTTAP was established in 1998 as a result of Senate Bill 1734 in order to

\help combat computer-related crimes such as network intrusions, computer

hacking, counterfeiting and piracy, theft of trade secrets, theft of high tech

related equipment, and telecommunications fraud"[19]. According to a Ven-

tura County Sheri�'s O�ce funding document, the SCHTTF's jurisdiction

spans the counties of Los Angeles, Orange, and Ventura.

Part of the work that the SCHTTF does is partnering with other entities

to help prevent, detect, and respond to computer-related crimes. This allows

them to leverage these partnerships to better respond to the growing amount

of cybercrime taking place. One such partnership is with Califoria State

University, Channel Islands (CSUCI). This partnership a�ords students the

opportunity to do meaningful work as well as gain experience through real

world applications of their knowledge, while keeping the task force abreast

of the latest in cybersecurity related academic developments. Voyager's in-

18

ception and implementation is one such result of this partnership.

2.6 Combating Child Pornography

Criminals looking to exploit people for �nancial gain were not the only ones

to transition to using the internet for their nefarious actions. Unfortunately

many other types of crime and criminals have developed a presence on the

internet, but perhaps none more despicable than pedophiles. Similarly to

criminals using the internet to anonymously steal data and money, pedophiles

have begun to leverage that same anonymity to protect themselves as well.

This proves to be a di�cult problem for law enforcement to address when

attempting to bring these criminals to justice.

The initial inception of Voyager was originally oriented towards �ght-

ing online child pornography. Unfortunately, the SCHTTF had seen many

cases of it and hoped to develop some way of helping to put a stop to it by

identifying these individuals. Thus, the idea of Voyager was conceived, an

application that would allow them to upload fake images of children as bait

for these predators. While Voyager served this purpose it became apparent

that it could be used in other scenarios as well. The SCHTTF then began

using it in other types of investigations which has helped to steer its further

re�nement and feature development.

19

2.7 Mortgage Scams

One of the prevalent types of online crime that the SCHTTF deals with is

mortgage scams. In this relatively simple scam, a criminal typically sends the

victim, who is in the process of purchasing a home, instructions containing

details on where to wire the down payment for their new home. The problem

is that the account they are told to wire the money to is not the bank's but

instead controlled by the criminal, typically through many proxies or mules.

Mules are, knowing or unknowing, participants in the scam. Their bank

accounts are used to store the stolen money, before it is transferred to the real

criminals account. By using many mules and transfers the criminal is able

to obscure the true path of the money, making it harder to law enforcement

to �nd.

These emails are typically sent from one of two types of email addresses.

The �rst, is from an email address that is made to look legitimate, but is

not. This is commonly achieved by using similar spelling to the name of

the bank but replacing, adding, or removing letter that may be harder to

notice. The problem with this method is that an attentive victim may notice

these inconsistencies and realize it is a scam. The second and ideal (in the

mind of the criminal) way, is to hack the email account of a bank employee

and then use that account to send these fraudulent emails. These emails

can easily fool even security oriented individuals since they are coming from

20

a legitimate email address at the bank that the victim is more likely to

recognize and trust.

In either scenario the recommended action is to directly contact the bank

via a di�erent communication medium, such as in person or over the phone,

to con�rm any such emails. An important note is to independently look up

the phone number for the bank, rather than using the one included in the

email. Often times these criminals will include a fake phone number that

people will call and be reassured of the legitimacy of the email.

Worse yet, it is not an easy feat the recover the money that is lost due to

this scam. Often times it is long gone, lost in a series of transfers between

banks around the world, never to be recovered. While these mortgage scams

are relatively simple and do not necessary require advanced technical knowl-

edge, they are e�ective. Sadly, many people in the SCHTTF's jurisdiction

alone have fallen prey to this scam.

2.8 Ransomware Attacks

In today's technology driven world, people live online. This has caused an ex-

odus of personal information and data onto devices such as our smartphones,

personal computers and even our televisions. On these devices people store

photos, business correspondence, �nancial information, conversations with

loved ones, and all other forms of sensitive data. But, what happens when

21

the access to that data, which we all take for granted, is threatened or even

taken away? Ransomware is a family of malware that exploits this fear. It

\locks the victims' computers until they make a payment to re-gain access

to their data"[11]. This type of malware is especially scary for those who

do not have backups of their data or facilities, such as hospitals and power

plants, that cannot a�ord to lose their access to it for any period of time.

There are many di�erent subcategories of ransomware but some of the

most prevalent ones are scareware, screen lockers, and encrypting ransomware.

� Scareware is perhaps the most benign type of ransomware. Typically,

scareware involves receiving many intruding pop-ups or noti�cations

on your screen alerting you to the fact there is some sort of malware

present on your system that can only be removed by paying. More often

than not there is no actual malware, other than the scareware itself, on

the system. Additionally, scareware does not typically destroy, modify,

or block �les on the system, meaning it is essentially safe; albeit rather

annoying until removed.

� Screen Lockers do exactly what the name describes: they lock your

screen. This prevents you from being able to use the system at all.

This is achieved by overlaying the screen with a full size window that

cannot be closed and contains some sort of message stating you must

pay to have it removed. Often times the window will be made to look

22

o�cial and claim it was put in place by the FBI, Police, Department

of Justice, or some other law enforcement entity that detected illegal

activity on the system. While screen lockers are often more tricky to

get rid of than scareware, they also usually do not modify the actual

�les on the system. This makes them more annoying than dangerous

as your data is relatively safe.

� Encrypting Ransomware is the most infamous and dangerous cate-

gory of ransomware. This ransomware infects a computer and proceeds

to encrypt all the �les on it, preventing the user from being able to ac-

cess them. This form of malware is especially nasty because the only

way to decrypt the �les is using the key, which the hacker possesses.

More often than not, the hacker demands a payment in some form of

hard to trace currency, such as bitcoin, to be made in order to decrypt

the victim's �les. Unfortunately, even after paying the ransom, there

is no guarantee that the hacker will decrypt the �les. Often times the

hacker will simply disappear and leave the victim high and dry, no

money and no decrypted �les. If the prospect of potentially paying the

hacker and having them disappear with your money and leaving the

�les lock was not scary enough; there are instances such as the Ryuk

ransomware. Due to a bug in the malware's code, even when victims

paid the ransom any �les larger than 54.4MB [6] could not be decrypted

successfully.

23

Unfortunately, instances of ransomware infecting unsuspecting victims

occur frequently. In the case that the victim is a nearby business or other

local entity that is speci�cally targeted and is being blackmailed for a ran-

som, the SCHTTF gets involved. In these cases it is important to consider

that a hacker capable of this sort of attack has advanced technological knowl-

edge and capability, often implementing many steps and protections to stay

anonymous. The SCHTTF has deployed the �rst iteration of Voyager during

some of these investigations in an attempt to reveal more information about

the hacker that could potentially aid in their apprehension or recovery of the

encrypted data.

24

3 Design and Implementation

Voyager's inception stems from the SCHTTF's need for additional tools to

e�ectively combat the cybercrime they face on a day to day basis. Thus, it

was developed based on feedback from their team as well as from Professor

Soltys. Voyager consists of multiple distinct parts that come together to

grant the aforementioned functionality. These distinct parts are as follows:

� Hosting Server

� Provisioning Script

� Web Interface

{ Front End

{ Back end

� Database Storage

� Network Tra�c Capture

� Network Tra�c Parser

25

3.1 Hosting Server

Hosting Voyager on a virtual machine in the cloud provides many advantages

such as a degree of anonymity as well as ease of use. More speci�cally,

Voyager is hosted on AWS using EC2 instances.

The functionality discussed in Section 2.1.2 along with ease of use and

availability inuenced the decision of how to host Voyager. The use of cloud

computing, and more speci�cally AWS, lends Voyager the ability to be run-

ning independently on many instances at once. In particular, this allows

Voyager to be used for multiple separate investigations without risk of data

spillage between them because all the instances are siloed from one another.

Additionally, the lack of overhead required to use EC2 instances, or AWS

as a whole, means that law enforcement does not have to invest thousands

into servers and all their associated infrastructure. Throughout development

and testing, I have had multiple instances of Voyager continuously running.

While these versions of Voyager are running on micro instances, without

much computing power, it has cost no more than $10 per month. Even scal-

ing the instances up for real world use to handle more tra�c and have better

performance, the savings would still be drastic. Furthermore, if law enforce-

ment were to use its own servers, those IP addresses would quickly become

known, and that would render Voyager useless. But on AWS, investigators

are able to open and close instances programmatically with new \unburned"

26

IP addresses.

Using the AWS website to create a new EC2 instance for Voyager is very

straightforward. The process is as follows:

1. Choosing an AMI. Leveraging these pre-con�gured images allows the

user to absolve themselves of the responsibility of need to completely

build the server from the ground up. Additionally, it insures that Voy-

ager is running on a server that is properly con�gured, using an image

that has been thoroughly tested. This serves to reduce the likelihood of

encountering any such errors related to the server's creation or setup.

Voyager was created to run on the \Amazon Linux AMI 2018.03.0

(HVM), SSD Volume Type". The main reason why Voyager had to be

created for a speci�c AMI is due to the di�erence in package managers

across di�erent AMIs. While it is likely that everything would work

on another AMI that also uses the \yum" package manager, this was

outside of the project's scope and has not been thoroughly tested.

2. Choosing an instance type. Once the AMI has been chosen, the

next step is to select an instance type. The di�erent instance types

dictate the hardware that the EC2 instance will run on and thus its

performance. The user has control over this by selecting an instance

with the appropriate amount of CPUs, memory, and level of network

performance desired. Voyager is capable of running on any general pur-

27

pose instance type and the decision of which to use should be inuenced

by the amount of expected tra�c to the instance.

3. Setting con�guration details. This step has a plethora of options,

which may be leveraged or ignored at the discretion of the user. In this

section the user can con�gure many details of the instance being cre-

ated, such as the IP address, IAM (Identity and Access Management)

roles for the instance, as well as shutdown behavior. The most im-

portant option in this step is the \User Data" section under advanced

details. This is where the provisioning script, which is responsible

for setting up Voyager on the new instance, is included. This can be

achieved by either copy and pasting the script's text or uploading the

�le directly.

4. Con�guring storage and tags. This step can be skipped, in which

case AWS will create a default EBS setup for us and attach it to our

instance. However, if the user wishes to modify the storage used on the

EC2 instance then this is the step in which they have the option to do

so. Additionally, the user can add any desired tags to the EC2 instance

at this point. Tags are used to help categorize your AWS resources and

consist of a key and an optional value as shown in Figure 5.

28

Figure 5: Example tags applied to EC2 instances. [3]

5. Choosing security groups. This step is required in order to allow

network tra�c to reach your EC2 instance. Each security group is

essentially a set of �rewall rules that controlinbound tra�c for your

instance. It is important to remember that these rules only apply to

inbound tra�c and have no bearing on any tra�c coming out of the

instance. In the case of Voyager the default security group is left and

two additional groups are added. One of the two additional groups

allows HTTP and HTTPS tra�c on ports 80 and 443 respectively. The

other group allows any TCP tra�c on port 9000 to reach the Voyager

front end interface. The applied inbound network tra�c rules are shown

in Table 1. Note the last rule, which allows TCP tra�c on port 9000,

should have the source IP address restricted to only allow tra�c from

the investigator's network. Since port 9000 is where the front end

29

web application lives, it should only be accessible by investigators and

nobody else.

Type Protocol Port Range Source Description

SSH TCP 22 0.0.0.0/0
Allows user to SSH
in to instance.

HTTP TCP 80 0.0.0.0/0
Allows tra�c to the
uploaded artifacts.

HTTPS TCP 443 0.0.0.0/0
Allows tra�c to the
uploaded artifacts.

Custom TCP Rule TCP 9000
Investigators'

Network
Allows user to access
the Voyager front end.

Table 1: Inbound tra�c rules.

3.2 Provisioning

In order for each EC2 instance to be quickly provisioned with Voyager, an

installation script was created. It began as a simple bash script that was

manually run by the user, via SSHing into the instance, but has since evolved

to be more complex in e�orts to make set up easier when spinning up new

instances of Voyager. The current implementation of the installation script

was created with the purpose of being run as a User Data script during the

creation of an EC2 instance from the AWS console. The user simply includes

it during the third step of the instance creation process by either uploading

the �le or copying the text and then completing the launch of a new EC2

instance, allowing AWS to take care of running the script.

30

Figure 6: Diagram of the installation script process.

31

This provisioning script consists of multiple components, each responsible

for setting up and provisioning a di�erent part of the Voyager project. These

steps, illustrated in Figure 6, are as follows:

1. Installation of required packages via the yum package manager.

These packages include Python 3, MySQL server, the tcpdump utility,

and Git.

2. Downloading resources from S3 that are required during the pro-

visioning process. There are four �les that are downloaded from a

remote S3 bucket, the address of which can be easily changed inside

the provisioning script.

(a) voyager.sql : This SQL �les contains the database schema de�-

nition. It also creates two MySQL users, one for the API and one

for the python parsing script. The creation of these two users is

done in an e�ort to increase the security of Voyager in the event

of an attack such as SQL Injection. By using distinct users for

each part of the application this supports the implementation of

the principle of least privilege as well as increases audibility for

forensics should an attack occur.

(b) ecosystem.con�g.js : This JavaScript �le is the con�guration �le

used by PM21, a Node.JS process manager used to keep Voyager's

1https://pm2.keymetrics.io/

32

front end and server running. Within it is de�ned how PM2 is

supposed to run the web applications as well as specify options

such as the location of error and output logging �les. Lastly,

also included are environment variables which will be used by the

applications upon launch. These variables are used to instruct the

application which environment type to run in, be it production or

development, as well as which database and database user to use.

(c) parser.py : This python �le is responsible for parsing the network

tra�c, indentifying events, and subsequently creating entries in

the database. It is copied onto the system for later use. This

script is discussed in detail in section 3.6.

(d) pip packages.txt : This text �le is used for installing all the

python libraries and dependencies that are required for theparser.py

script to run.

3. Creation of the Voyager database using thevoyager.sql �le pre-

viously downloaded from a S3 bucket.

4. Set up of the project directory structure is required in order

for Voyager to operate correctly. An outline of the required directory

structure is pictured in Figure 7.

33

Figure 7: The Voyager directory structure.

5. Installation of python libraries and dependencies in order to

allow the parser.py script to run. Speci�cally, the Python 3.6 devel-

opment tools as well as the mysql development tools are installed using

the yum package manager. Then, thepip_packages.txt �le is used

with pip, the standard Python package manager, to install all other

34

dependencies. The critical packages listed inpip_packages.txt and

subsequently installed with pip are depicted in Table 2.

Package Name Version Purpose

mysql-connector-python 8.0.19
Used to connect to the Voyager MySQL
database.

mysqlclient 1.4.6 Used to easily create MySQL queries.
requests 2.23.0 Used to query the IP Geolocation API.

scapy 2.4.3
Used to dissect and analyze pcap �les
containing network tra�c.

Table 2: Relevant pippackages.txt packages.

6. Setting up the cron job of the parser script . This is to ensure that

the parser script runs on a regular time interval to clear the network

tra�c capture �les. The time between runs can be modi�ed based on

the amount of expected tra�c however it is given a default of every 2

minutes. This can be adjusted to a longer time between runs if you

expect less tra�c, or more often if large amounts of tra�c are expected.

The command used to set up the cronjob is displayed in Figure 8.

(crontab -l 2>/dev/null; echo ''*/2 * * * * /usr/bin/python3
/home/ec2-user/voyager/parser.py'') | sort - | uniq - | crontab -

Figure 8: The cron command to run the parser.py script.

7. Installing NVM (Node Version Manager) and NodeJS . NVM

is a version manager for the NodeJS programming language that works

in any POSIX compliant shell. It is required because the web interface

as well as the API are written using NodeJS. Once NVM is installed

35

successfully, it is used to install NodeJS.

8. Environment variable con�guration is required in order for all ap-

plications to function properly. These variables are used when launch-

ing the Voyager web application and can be changed to vary the port

the front end and API run on. It is important to keep in mind that

changing the port that the front end runs on requires updating the in-

bound network tra�c rules that were set up during the EC2 instance

creation. Otherwise the front end application will not be accessible at

all.

9. Setting up logging directories and �les is necessary before run-

ning the applications. To provide for easy debugging as well as general

logging there are two separate logs per application. There is a gen-

eral log which contains all generic output messages and an error log

which contains system errors as well as more serious output messages

pertaining to anything that interrupts the running of the application.

This con�guration is depicted in Figure 9.

36

Figure 9: Voyager's logging structure.

10. Cloning the Voyager project from the remote Git repositories is the

next step. There are two separate repositories, one hosting the front

end, and the other hosting the API or back end. While it is possible

to combine these two pieces into a single repository they are purposely

left apart. One reason for this is that is allows for the potential to

run each one on separate EC2 instances without any extra work of

decoupling them. Additionally, by following a microservice pattern

this allows for updates and changes to one piece without having any

e�ect on the other or forcing everything to be redeployed. Similarly,

37

any errors encountered will not crash the entire application but just

one piece of it, providing greater durability of the project as a whole.

11. Con�guring iptables is done after downloading all packages and

repositories. This step is responsible for directing all tra�c from port

80 into the application. Doing so allows the applications to run on any

desired port while still directing incoming tra�c from the standard

HTTP port to them. Speci�cally, this tra�c is directed to the part of

the application responsible for hosting the uploaded content. This is

accomplished via the command in Figure 10.

sudo iptables -A PREROUTING -t nat -i eth0 -p tcp
--dport 80 -j REDIRECT --to-port 9000

Figure 10: The command to con�gure the iptables port routing.

12. Starting tcpdump allows for the capture of network tra�c from this

point forward. This is saved as one of the last steps to avoid capturing

any tra�c pertaining to the provisioning of the instance. The spe-

ci�c use of the tcpdump command is covered in much greater detail in

Section 3.5.

13. Running the Voyager applications , the last step of provisioning, is

handled via PM2. Using the con�guration contained in the

ecosystem.config.js downloaded from S3 earlier, PM2 starts both

the front end and back end applications.

38

Upon successful completion of the provisioning script, the EC2 instance

is now fully con�gured and running Voyager. Should any errors occur, EC2

instances output logs from the user data script into

/var/log/cloud-init-output.log .

3.3 Web Interface

The web interface refers to the interface that law enforcement o�cials use

to interact with Voyager as well as where �les that have been uploaded are

hosted. Originally, it was created using basic PHP and very simple HTML.

This has however been refactored in an attempt to adopt more industry

standard web development techniques. Presently, it consists of two separate

components, the front end application and the server side or backend appli-

cation. Both the front end and back end servers are run using PM2, which

is a process manager for the JavaScript runtime Node.js. PM2 not only pro-

vides a simple and easy to use interface for running both applications but

grants other useful functionality. For example, it keeps applications running,

even after signing out of the EC2 instance and will automatically restart ei-

ther application should it crash. With a simple command the application is

con�gured to run with PM2 while also setting up logging for both error logs

and standard output logs. This proves useful for simply checking the status

of the application as well as debugging should any crashes or errors occur.

39

3.3.1 Front End

The front end user interface portion of the application is created using the

Node.js programming language, more speci�cally the React library. React

was chosen because it allows for the easy creation of interactive user interfaces

via encapsulated components each of which can contain their own state.

Furthermore, it o�ers \greater exibility in terms of how [I] structure and

display data" [9], making the application easier to both understand and use.

Additionally, other libraries and frameworks were leveraged to create the user

interface such as bootstrap. The front end provides interfaces for important

tasks such as allowing investigators to upload photos or other types of �les

they wish to use as well as viewing important information stored in the

database. This data consists of but is not limited to all uploaded photos,

and the logged events corresponding to those photos.

3.3.1.1 Home Screen

Shown in Figure 11 is the home page of the Voyager web application. It is

intentionally kept minimal in an e�ort to be simple and easy to use. From

the home screen the user can access the three di�erent functionalities that

the web application provides: the photo log, the event log, and the �le upload

page.

40

Figure 11: Voyager's home screen.

3.3.1.2 Photo Log

The photo log page is responsible for displaying a table that contains entries

for all the �les that have been uploaded to Voyager. This table can be seen in

Figure 12. The table is built to allow investigators to quickly �nd a previously

uploaded �le. Sorting is made available on the relevant rows, making �nding

records of interest a quicker endevour. When a record of interest has been

found, the user can click on that speci�c row to open the photo details page.

41

Figure 12: Voyager's photo log page.

3.3.1.3 Photo Details

The photo details page, shown in Figure 13, provides a more in depth look at

an individual �le that was uploaded to Voyager. On this page, information

about that speci�c �le upload can be found, such as the �le'slink hash. There

is two editable �elds on this page, the notes text box and the �le extension

42

input �eld. The notes box allows investigators to log and information relevant

to that speci�c �le upload to its record. The �le extension input allows for

the user to change the �le type that will be appended when accessing the

�le. Additionally, this page has a button that allows the user to preview the

�le that was uploaded.

Figure 13: Voyager's photo details page.

43

3.3.1.4 Event Log

Accessible via the home screen or the banner that runs across the top of every

page is the event log. As seen in Figure 14, this screen is similar to the photo

log. The di�erence between to the two is the information displayed in the

tables. In this case, the information pertains to speci�c events that Voyager

has recorded. This table also allows sorting based on relevant columns. Since

many of the �elds recorded for an event contain large amounts of text, they

are not able to easily be displayed or read from a table like view. In order to

combat this, each row is clickable and redirects the user to the event details

screen.

Figure 14: Voyager's event log page.

44

3.3.1.5 Event Details

Once on the event details screen, the user is able to see a plethora of informa-

tion about one speci�c event. This page contains thephoto id to which the

event corresponds as well as other �elds containing details about the event.

Shown in Figure 15 are all the �elds that are recorded about an event. Fur-

thermore, by clicking on the \Toggle Geo Info" button, a new �eld appears.

This �eld, as seen in Figure 16, displays all the geolocation information that

was able to be gathered for the given source IP address. The \Get Request"

and \Raw Data" text areas can be expanded to more easily read all of the

data stored in them. Lastly, similar to the photo details page, the event

details page has an editable �eld for notes. This allows investigators to save

relevant information associated with that speci�c event.

45

Figure 15: Voyager's event details page.

46

Figure 16: Voyager's event details page displaying geolocation data.

3.3.2 Back End and Server Side

The server side of the application is a simple API that interfaces with the

MySQL database, discussed in Section 3.4. It receives requests from the

front end and then creates, manipulates, or returns data based on those

47

requests. As shown in Figure 17, when a new artifact is uploaded via the

user interface it is sent to the server where it is given a hash corresponding

to the artifact itself combined with the time of upload. This hash along with

other information is entered into the database and the photo is then moved

to a directory that is accessible by the world wide web. The server side is

developed using Express, a Node.js framework and the de facto standard for

server frameworks. Express is especially useful for handling tasks such as

routing requests and simplifying the creation of APIs.

In addition to processing and returning data, the server is also respon-

sible for hosting the artifacts that have been uploaded by investigators. It

accomplishes this by storing them in a separate folder from the rest of the

application that has been made publicly accessible. Upon receiving a new

upload the server renames the �le to thelink hash, discussed in depth during

Section 3.4, that it has generated for that artifact and then moves it into the

public folder. Once this has been completed that artifact is ready to be used

by investigators.

48

Figure 17: The Voyager work ow for �le uploads.

3.4 Data Storage

The backbone of the Voyager tool is the MySQL database, containing two

tables of note, displayed in Figure 18. The �rst is thephoto log table which

is responsible for storing information associated with an artifact that has

been uploaded by an investigator. The table has a primary key,photo id,

which is a standard auto increment �eld. Additionally it contains a �eld

49

named photo hash that is created by hashing the raw bytes of whatever

artifact is uploaded. This allows for easy discovery of instances of the same

artifact being uploaded for di�erent uses, potentially with di�erent �le names.

Similarly, the table contains a �eld called link hash which is a hash created

from the raw bytes of the photo appended with a timestamp of the upload

date and time, creating a di�erent hash than thephoto hash. This serves

as a completely unique identi�er for each artifact uploaded, even if it is the

exact same artifact, as the upload time would di�er. Thislink hash is also

used in the URL for which that particular resource will be made available

at. Both the photo hash as well as thelink hash are created using the md5

hashing algorithm.

Figure 18: Voyager's database schema.

50

While the table is calledphoto log there is no requirement in the appli-

cation that the uploaded content be a photo. Since the table contains the

extension of the �le that is uploaded this allows Voyager to handle virtually

any �le type that a user wishes to upload. Voyager accomplishes this by

simply appending the �le type saved at time of upload to the web hosted

version of the content whenever that resource is requested.

The second table is theevent log table, which is responsible for holding

details about captured network tra�c. In particular, the Python script,

which is discussed in detail in Section 3.6, populates this table with data

about HTTP requests that are made to the speci�c addresses of the uploaded

artifacts. These are the requests arising from clicking the bait link. The

data saved is robust in that certain parts of request are parsed out and saved

individually, such as the source ip address of the request and the user agent

string. In addition to these �elds, the entire packet is saved as well, allowing

for deep investigation of the tra�c at a later time. This provides a means for

the data Voyager extracted from the request to be validated. The events are

associated with the uploaded image or artifact requested via a foreign key,

photo id, referencing the primary key in thephoto log table.

In addition to data extracted from these requests theevent log table also

stores data regarding the believed geolocation of the ip address that made

the request. This is stored as JSON in the form that the leveraged API

returns. This allows for the potential of future processing of this data, either

51

from within Voyager or another application that externally accesses the data

via the API.

Both tables consist of �elds that allow for the investigators using Voyager

to creates notes associated with either an uploaded artifact or a speci�c event

that is logged. These �elds have seen use as a place to list notes about the

speci�c case being worked on as well as a �eld to list which investigator

uploaded which artifact.

3.5 Capturing Network Tra�c

In order to log the events, or clicks, on a speci�c artifact a tool needed to

exist that was capable of capturing all the incoming tra�c on the server. The

tool selected for this job was tcpdump. Tcpdump is a command line tool

for packet analysis and is used in conjunction with libpcap, which allows for

the capturing of network tra�c. Both of these are used on the web server in

order to capture incoming TCP requests. This tra�c is logged in the form

of a .pcap �le which is analyzed at a later time by the Python script.

tcpdump -w /home/ec2-user/voyager/tcpdump/tcpdump_%F_%H:%M:%S.pcap
-G 60 -n -Z root `dst $IP_ADDRESS and (port 80 or 443 or 8080)'

Figure 19: The tcpdump command used to capture network tra�c.

The tcpdump command used, shown in Figure 19, leverages several op-

tions that allows for high level �ltering of the tra�c recorded. This is use-

52

ful because the ability to eliminate a large majority of the irrelevant tra�c

greatly reduces the size of the .pcap �les, making the later processing much

easier as well as more e�cient. Additionally options are used to allow for a

more optimal organization of the tra�c that is recorded, rather than sim-

ply saving it all to a nondescript .pcap �le. The speci�c tcpdump options

leveraged are as follows:

� -w : Allows the user to specify the output �le path and name. Then,

strftime formatting options are used to specify the output �le name.

%F outputs the date in YYY-MM-DD format. %H speci�es the hours

in a 24 hour format. %M speci�es the minutes, ranging from 0 to 59.

%S speci�es seconds, again ranging from 0 to 59. Appending the date

and time to the output �le is useful for reference if the speci�c tra�c

needs to examined at a later date. It can also be cross referenced with

the date times recorded in the event log to easily �nd the �le containing

the tra�c that yielded a speci�c event record.

� -G : Used to con�gure output �le rotation. In this case the process will

be creating a new .pcap �le every 60 seconds; this rotation frequency

keeps the �les from becoming too large. Rotation every minute also

allows for easier reference should they be needed at a later time, as

mentioned above.

� -n : To avoid DNS lookups; investigators want to keep the IP addresses

53

of the incoming tra�c rather than associating them with a host name.

Associating with a hostname can be done later on IPs of interest if it

is determined to be relevant.

� -Z : By using this option with the argument of root this ensures that the

tcpdump command is running at root privilege level. This is needed to

allow for all tra�c to be captured on the web server.

The last argument, `dst $IP_ADDRESS and (port 80 or 443)', is the

�lter that used to narrow down the tra�c that is recorded to the output

�les. The `dst' denotes the destination address that should be �ltered for,

in this case it is the address of the web server. This is read in from an

environment variable that is set up during provisioning of the instance. We

are then further �ltering the tra�c to look speci�cally for anything that is

using the common HTTP port: 80. Additionally, we are capturing tra�c for

port 443 as well, which is used for HTTPS. While we cannot read this tra�c

due to its encryption, we wanted to capture and archive it for potential future

use. By �ltering out any tra�c that is not on these speci�c ports it avoids

recording excess tra�c that is not relevant. For example, any interactions by

the investigators with the front end interface will not be recorded because it

takes place over port 9000.

Saving the network tra�c in easy to organize and �nd .pcap �les is ex-

tremely important in this speci�c scenario. After the creation and processing

54

of these .pcap �les, they are archived inde�nitely. This is because they may

be needed down the road to submit as evidence in court. Thus, investiga-

tors need to be able to �nd the �les of interest easily while sifting through

potentially thousands of archived tra�c capture �les. For more long term

storage these �les can also be moved o� the EC2 instance into an S3 bucket

or even Glacier storage. This provides a more cost e�ective way to store large

amounts of network tra�c for extended periods of time.

3.6 Analyzing The Tra�c

After the network tra�c is received, �ltered and recorded to pcap �les by

tcpdump it will then be parsed by the Python scriptparser.py . This script

runs at scheduled intervals via the Cron tool. While the Cron tool allows for

easy modi�cation of how often the script should be run it is initially set to

every other minute. This timing can be adjusted based on how much tra�c

the instance is receiving.

The parser.py script is responsible for taking the pcap �les, processing

them, inserting necessary data into the database and then archiving them. It

is important to note that it will process the total number of pcap �les in the

directory minus one. This is because the tcpdump is constantly running, and

thus writing to pcap output �les, even as the parser is processing them. By

sorting the �les in the directory via time of creation in ascending order the

55

script is able to process the older �les �rst, leaving the newest one as the last

�le, which remains unprocessed. This avoids conicts with both processes

attempting to access a �le at the same time.

The parser leverages a Python library named Scapy2 to read the pcap �les

and examine the tra�c captured in them. Should it come across any HTTP

GET requests for artifacts that exist in the database, that tra�c is noted and

has an entry created for it in the event log table of the database. Furthermore,

Scapy is used to extract the speci�c details of interest to investigators out of

the entire request, including but not limited to: the IP address that made

the request, the speci�c URL that was requested and the user agent string.

The task of �nding packets of relevance is accomplished through a process

of elimination via progressive �ltering. The tcpdump command has already

�ltered out any tra�c that is not TCP tra�c on ports 80 or 443. This means

the majority of the tra�c will be HTTP or HTTPS. This process begins by

checking if the packet is a GET request. This will �lter out HTTPS tra�c

as the parser is unable to see inside the packet to check if it is a GET due

to the encryption. This also �lters out anything that is not HTTP as it

will obviously not be a GET request. Once the script is sure it is working

with a GET request then it uses string manipulation to �lter out the path

of the URL. As shown in Figure 20, the path is the last part of the URL

that speci�es which �le on the server is being requested. More speci�cally,

2https://scapy.net/

56

only the last element of the path, which is refer to as the link hash, is of

interest in this case. This link hash is, by design, unique to each artifact

uploaded to Voyager. Once it is con�rmed the URL in question has a link

hash it is extracted. Then it is compared it to all link hashes stored in the

database to �nd which artifact this speci�c request corresponds to. Once the

script has found the correct �le, con�rming the request was for an artifact

uploaded to the server, the script begins extracting additional information

from the packet. This information is then inserted into the eventlog table

in the database.

Figure 20: Breakdown of an example URL.

In addition to just extracting information from the requests to artifacts of

concern, the script goes a step further. It also extracts the source IP address

from the request and use it to query the IPStack3 Geolocation API. This

generally returns additional information regarding the believed geographical

location of the IP address as well as other useful information. All this is then

stored in the database as well to give investigators even more information to

work with during their investigations.

3https://ipstack.com/

57

4 Observations and Results

4.1 Real World Usage and Results

Due to the �rst iteration of Voyager being deployed to the SCHTTF for

some period of time, there have been multiple instances of its use in real

investigations and cases. While it would be simple to boast the cases where

Voyager worked perfectly and led to the identi�cation of a cybercriminal with

no complications, this is not always the reality. Many of these cybercriminals

are very savvy in protecting themselves, using a plethora of tools to do so.

Some of these are discussed in Section 5. Two more realistic examples of

the deployment of Voyager's �rst iteration that are especially interesting are

described below.

4.1.1 Case 1

The �rst case consisted of a cybercriminal illegally accessing a government

health care agency's computer network and compromising the email account

of an employee. Using this email account the criminal sent out emails, pre-

tending to be the government employee, attempting to steal $18,650 through

wire transfers. The transfers were sent to a co-conspirator's Chase Bank ac-

count. This is a typical scenario referred to as Business Email Compromise

58

	Introduction
	Background
	AWS
	S3
	EC2
	EBS

	The OSI Model
	The TCP/IP Model
	HTTP
	User Agent Strings
	HTTP Methods

	The Southern California High Technology Task Force
	Combating Child Pornography
	Mortgage Scams
	Ransomware Attacks

	Design and Implementation
	Hosting Server
	Provisioning
	Web Interface
	Front End
	Home Screen
	Photo Log
	Photo Details
	Event Log
	Event Details

	Back End and Server Side

	Data Storage
	Capturing Network Traffic
	Analyzing The Traffic

	Observations and Results
	Real World Usage and Results
	Case 1
	Case 2

	Exploratory Results
	Observations

	Conclusion and Future Work
	Future Work
	Pcap Files
	Authentication
	Leverage Additional AWS Resources
	Addressing VPNs, Proxies, and TOR
	User Agent String Analysis
	Addressing HTTPS

	Conclusion

	References

