
Voyager: Tracking Via a Click

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Student Name:
Samuel Decanio

Advisor:
Dr. Soltys

October 2020

c© 2020
Samuel Decanio
ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Michael Soltys Date

Name Date

Name Date

APPROVED FOR THE UNIVERSITY

Name Date

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Title of Item

3 to 5 keywords or phrases to describe the item

Author(s) Name (Print)

Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Voyager: Tracking Via a Click

Samuel Decanio

November 4, 2020

Abstract

Attribution, the ability to match events on the Internet to actors
who caused them, is a difficult problem in Cybersecurity and Digital
Forensics. The Internet was not designed to track behavior of users
[8]. In fact, being an easy to access and open platform, it is often
thought of as synonymous with anonymity. When actors attempt to
take advantage of this anonymity to break the law, it is up to law
enforcement to track them down, in a way that can potentially hold
up in a court of law. This is no easy feat though, and the odds are
stacked against them. In this paper a tool is presented, called Voyager,
based on the idea of a tracking pixel, meant to help investigators with
problem attribution.

Contents

1 Introduction 3

2 Background 7

2.1 AWS . 7

2.1.1 S3 . 7

2.1.2 EC2 . 9

2.1.3 EBS . 10

2.2 The OSI Model . 10

2.3 The TCP/IP Model . 11

2.4 HTTP . 13

2.4.1 User Agent Strings . 14

2.4.2 HTTP Methods . 16

2.5 The Southern California High Technology Task Force 18

2.6 Combating Child Pornography 19

2.7 Mortgage Scams . 20

2.8 Ransomware Attacks . 21

3 Design and Implementation 25

3.1 Hosting Server . 26

3.2 Provisioning . 30

i

3.3 Web Interface . 39

3.3.1 Front End . 40

3.3.1.1 Home Screen 40

3.3.1.2 Photo Log . 41

3.3.1.3 Photo Details 42

3.3.1.4 Event Log . 44

3.3.1.5 Event Details 45

3.3.2 Back End and Server Side 47

3.4 Data Storage . 49

3.5 Capturing Network Traffic . 52

3.6 Analyzing The Traffic . 55

4 Observations and Results 58

4.1 Real World Usage and Results 58

4.1.1 Case 1 . 58

4.1.2 Case 2 . 60

4.2 Exploratory Results . 62

4.3 Observations . 70

5 Conclusion and Future Work 74

5.1 Future Work . 74

5.1.1 Pcap Files . 74

ii

5.1.2 Authentication . 76

5.1.3 Leverage Additional AWS Resources 76

5.1.4 Addressing VPNs, Proxies, and TOR 77

5.1.5 User Agent String Analysis 78

5.1.6 Addressing HTTPS . 79

5.2 Conclusion . 80

References 85

iii

List of Figures

1 The seven layers of the OSI Model. [1] 11

2 The four layers of the TCP/IP Model. [1] 11

3 The Internet Protocol (IP) header structure. [17] 13

4 User Agent strings showing the device type. 15

5 Example tags applied to Elastic Cloud Compute (EC2) in-
stances. [3] . 29

6 Diagram of the installation script process. 31

7 The Voyager directory structure. 34

8 The cron command to run the parser.py script. 35

9 Voyager’s logging structure. 37

10 The command to configure the iptables port routing. 38

11 Voyager’s home screen. 41

12 Voyager’s photo log page. 42

13 Voyager’s photo details page. 43

14 Voyager’s event log page. 44

15 Voyager’s event details page. 46

16 Voyager’s event details page displaying geolocation data. . . . 47

17 The Voyager work flow for file uploads. 49

18 Voyager’s database schema. 50

19 The tcpdump command used to capture network traffic. . . . 52

iv

20 Breakdown of an example URL. 57

21 Example ransomware message, courtesy of the SCHTTF. . . . 61

22 Example email containing a Voyager link disguised as a thumb-
nail, courtesy of the SCHTTF. 62

23 Using Google Chrome on a macbook pro connected to a home
WiFi network. (Scenario 1) 64

24 Using the Safari browser on an iPhone 11 connected to a home
WiFi network. (Scenario 2) 65

25 Using the Safari browser on an iPhone 11 with 4g cellular data.
(Scenario 3) . 67

26 Using Google Chrome to view a Gmail image attachment on
a macbook pro connected to home WiFi. (Scenario 4) 68

27 Using Safari browser on an iPhone 11 from public WiFi. (Sce-
nario 7) . 70

v

Glossary

AMI Amazon Machine Image. 9, 27

API Application Programming Interface. 17, 32, 36, 37, 51, 52

AWS Amazon Web Services. 7–10, 26–28, 30, 72, 73, 75

CP Child Pornography. 5

EBS Elastic Block Store. 10, 28, 73

EC2 Elastic Cloud Compute. iv, 9, 10, 26–30, 36, 37, 39, 55, 72, 75

HTTP HyperText Transfer Protocol. 13–17, 29, 38, 51, 54, 56

HTTPS HyperText Transfer Protocol Secure. 14, 29, 54, 56

IP Internet Protocol. iv, 12, 13, 26–29, 45, 59, 61–66, 68, 69, 71, 78, 80

NVM Node Version Manager. 35

OSI Open Systems Interconnection Model. 10, 11

PM2 A daemon process manager used to run NodeJS applications. 32, 33,

38, 39

S3 Simple Storage Service. 7, 8, 32, 33, 38, 55, 73, 75

1

SCHTTF Southern California High Technology Task Force. 5, 18–21, 24,

25, 58, 59, 80, 81

TCP Transport Control Protocol. 12, 13, 29, 56

TOR The Onion Router. 77, 78

UAS User Agent String. 14

VPN Virual Private Network. 59, 63, 70

2

1 Introduction

With the creation and subsequent adoption of the internet the world be-

came more connected than it has ever been. Accompanying this came mas-

sive changes to our everyday lives. The way people communicate, conduct

business, and learn are just a few examples of areas that have been forever

changed by the Internet. But, with these advances came a pitfall as well.

Just as in every other facet of the world there are those who wish to take

advantage, the internet is no different. In fact, the internet has proven to be

a proverbial playground for these individuals due to the somewhat anony-

mous nature as well as the Internet’s inherent ability to blur lines between

countries, continents, and all else. In addition to these factors, the world

has steadily moved to making more available via the internet, ranging from

personal and private information to services such as banking and other im-

portant infrastructure. For all theses reasons many individuals looking to

conduct nefarious activities have moved online too. These actors, along with

any others using the internet with the intent of breaking the law, are to be

referred to as cybercriminals in this thesis.

Just as in the regular world there are those working to bring criminals to

justice, there are those working to stop cybercriminals as well. Sadly, these

law enforcement investigators are often fighting an uphill battle. The sheer

number of crimes committed online is enough to overwhelm law enforcement.

3

In 2019, the IC3 or Internet Crime Complaint Center, a division of the FBI

received 467,361 complaints [10]. That is a 32.79% increase from 2018, and a

62.27% increase from 2015 [10]. It is clear that the frequency of cybercrimes

committed is increasing, and shows no signs of slowing.

While defenders must discover every hole, bug, and flaw in their systems

to keep attackers out, the criminals only need to find one to get in. Cy-

bercriminals have a plethora of tools at their disposal to both help discover

these security holes as well as cover their tracks and keep them from being

discovered. Add to this that investigations often do not take place in real

time but long after an incident has occurred, when much of the digital ev-

idence is potentially gone, and you begin to paint a bleak picture for these

investigators. It was with these facts in mind that it became clear law en-

forcement investigators need to look at adopting new approaches to combat

cybercriminals.

In this thesis we propose a solution and tool to help combat the afore-

mentioned problems, named Voyager. Voyager is loosely based on the idea of

a tracking pixel, capable of automatically loading when a URL containing it

is requested. The goal being that the requester of the page is none the wiser

as this tracking pixel has no effect on the rendering of the page. Through this

tracking pixel, information is then logged about the requested page as well

as whoever requested it. This approach is often used in online marketing.

4

Through a similar approach used by companies in online marketing, Voy-

ager was developed to be able to log a plethora of information about a sus-

pect who accesses a specially crafted link that is created and served by law

enforcement investigators. In a sense Voyager is capable of conducting a re-

verse phishing scheme on cybercriminals allowing law enforcement to identify,

track, and apprehend these malicious actors.

Voyager was developed in direct support of the Southern California High

Technology Task Force (SCHTTF). More specifically, Voyager began as an

application to be used in combating online Child Pornography (CP). The

premise behind the idea being that investigators would be able to upload

files ranging from images to PDFs to Voyager. Then, Voyager would serve

them at a specially crafted URL which investigators would then provide to

suspects. Once the suspect opens the link, Voyager will record information

about that request that law enforcement could then use in their investigation.

However, due to the broad nature of Voyager’s implementation its quickly

expanded beyond simply combating CP. Investigators have also leveraged

Voyager in the same previously mentioned manner to entice suspects of other

cybercrime such as mortgage scams and ransomware attacks, both of which

are discussed in Section 2. It is worth noting that another California State

University, Channel Islands student, Dhruv Pandya, worked on a solution to

the same problem for his master’s thesis [15].

This project was first developed as an undergraduate capstone between

5

Vlad Synnes and myself. While the result of that capstone was a working

application, Voyager 1.0, it was in a primitive stage. It was capable of cap-

turing network traffic and displaying a limited amount of information. This

thesis served to build off that foundation to develop a more comprehensive

and fleshed out version of Voyager. This includes fixing bugs, adding ad-

ditional functionality and features, adopting a microservice oriented project

structure, as well as completely rewriting the project from the ground up

using a more industry standard development stack.

As a last note, a shortened version of this thesis paper was presented at

the KES 2020 International conference and subsequently published in volume

176 of the Procedia Computer Science journal [4].

6

2 Background

2.1 AWS

Amazon Web Services (AWS) is a cloud computing platform with a large

number of services. Cloud computing is the on-demand availability of com-

puting resources over the internet. These range from on demand virtual

computing instances, long term data storage, and databases to some bleeding

edge technologies such as quantum computing, machine learning capabilities,

and virtual reality. It is leveraged by millions of companies and consumers;

from startups to large enterprise corporations such as Netflix and Capital

One, and even government agencies. AWS is the largest Cloud provider in

the world.

2.1.1 S3

Simple Storage Service (S3) is a functionality offered by AWS that provides

storage of objects while offering availability, security and performance. S3

has a plethora of use cases ranging from big data analytics to disaster recov-

ery and data archival. S3 serves as a financially feasible method of storing

large amounts of data for extended periods of time while still offering many

useful security features. For instance, S3’s standard storage costs $0.023 per

7

gigabyte per month for the first 50 terabytes of storage [2]. It is worth not-

ing these prices vary slightly depending on the AWS region selected. For the

purposes of Voyager, S3 has two specific use cases.

The first use case is to store data required for the provisioning of Voyager,

discussed in Section 3.2. This data is stored in an S3 bucket, which can be

thought of as similar to a file folder. Buckets hold objects, which are defined

as data and that data’s associated metadata. Voyager then retrieves the

necessary data from the S3 bucket during the provisioning process.

The second use case is for the storage of all network traffic that Voyager

records. Network traffic captures can quickly grow to become an overwhelm-

ing amount of data, yet maintaining it is vital for the investigations Voyager

aides in. S3 allows for this large amount of data to be moved off the Voyager

instance to a more long term and cost effective storage medium.

Should any data need to be archived for an even longer period of time,

in the event of a court case down the road, S3 offers Glacier storage as an

additional option. Glacier is specifically for long term backups and archives

and as such provides extremely inexpensive storage options, with the catch

being the time required to access the data. Should you need to access data

stored using Glacier, it can take anywhere from 1 minute to 12 hours to

retrieve it. Pricing for Glacier storage is roughly $0.004 per gigabyte per

month [2]. Similarly to the standard S3 prices, these vary slightly based

8

upon the AWS region selected.

2.1.2 EC2

Elastic Cloud Compute (EC2) instances, are on demand computing instances

that can be spun up and spun down at a moments notice, all hosted on Ama-

zon’s infrastructure and managed through AWS’s command line interface,

software development kit, API, or web interface. They are a secure, resiz-

able, and highly configurable compute capacity in the cloud. The beauty of

these EC2 instances is that they can be created and destroyed at anytime,

from anywhere. Not only can they be created at a moment’s notice but they

are cost effective to use when compared to an in house hosting solution.

Their creation is simplified by the ability to select a pre-configured im-

age, referred to as an Amazon Machine Image (AMI). These AMIs come in

many different flavors. The main differences between them is their operat-

ing systems as well as the packages and services that come already installed.

Leveraging AMIs allows for a much easier provisioning process than building

the server from the ground up.

9

2.1.3 EBS

Elastic Block Store, commonly refered to as EBS, is storage that can be

attached to AWS EC2 instances. EBS offers persistent storage for EC2 in-

stances when otherwise all data on the instance would be lost at shutdown.

They also provide an easy means of encrypting whatever data is stored on the

instance, providing another layer of security. Upon creating an EC2 instance

using the standard options, an EBS will also be created for that instance.

Further configuration can be done to increase capacity however the standard

configuration has proven more than enough for all uses of Voyager thus far.

2.2 The OSI Model

The OSI or Open Systems Interconnection Model is a conceptual model that

serves to define and standardize communication functions of computer sys-

tems. It does so with no thought to the underlying structure a computer

system uses to implement these functions. This communication model is

necessary to define a set of common ground rules that ensures all computers

can communicate with each other.

The OSI model consists seven distinct layers, shown in Figure 1.

10

Figure 1: The seven layers of the OSI Model. [1]

2.3 The TCP/IP Model

Equally important as the OSI model is the TCP/IP model. This model con-

sists of only four layers, as opposed to the seven of the OSI model. While the

OSI model is responsible for defining and standardizing communcation func-

tions of a computer system, the TCP/IP model is a more protocol oriented

standard. The four layers of the TCP/IP model are shown in Figure 2.

Figure 2: The four layers of the TCP/IP Model. [1]

11

There are two main protocols used on the modern Internet to transmit

data, both of which operate on the Transport layer of the TCP/IP model.

The first of which is TCP or Transmission Control Protocol. The second,

which we are not concerned with for the context of this paper, is UDP or

User Datagram Protocol. TCP, which was developed by ARPA (otherwise

known as DARPA) [1], was designed to be a “highly reliable host-to-host

protocol”[18]. This reliability was accomplished via the implementation of

sequence numbers and acknowledgements. This means each packet of data

that is transmitted between two hosts is assigned a sequence number and

each host must acknowledge the receipt of any data. TCP is also responsible

for handling the continuous flow of data between two sources and resolving

any associated problems such as congestion.

In order to work over a network, such as the internet, TCP works in as-

sociation with IP or the Internet Protocol. IP, which operates at the Intern-

erwork layer of the TCP/IP model [1], defines how computers send packets

of data to each other, essentially the routing between two destinations. This

is accomplished by attaching a header that contains metadata such as ad-

dressing and control information. Shown in Figure 3 is the structure of the

header that gets attached to data as part of the IP. This header contains

information that is very useful to Voyager such as the source and destination

addresses. These denote where the data originated and where it is being sent

to.

12

Figure 3: The IP header structure. [17]

TCP/IP is relevant to Voyager because all the network traffic the server

captures and parses is TCP traffic transmitted over the Internet using the

Internet Protocol. In order to parse the traffic received it is important to

understand the structure of the TCP/IP model, and the protocols associated

with it.

2.4 HTTP

HTTP or HyperText Transfer Protocol is a protocol whose primary pur-

pose is serving hypermedia documents such as HTML or Hypertext Markup

Language. While HTTP can be leveraged over any reliable transport layer

protocol, though most commonly TCP, HTTP itself operates at the Appli-

cation Layer [1]. The protocol implements communication between client

13

and server computers via the transmission of HTTP requests and HTTP

responses. In any instance where the URL of a website is prepended with

HTTP or even HTTPS then that website is utilizing the HyperText Transfer

Protocol. HTTP serves a crucial role in Voyager as it is both the protocol

that investigators use to interact with the web application as well as how a

suspect will access a file from a Voyager link. When this happens, HTTP

contains much of the useful information Voyager extracts and logs from these

requests.

2.4.1 User Agent Strings

The User Agent string (UAS), is a field included in all HTTP requests. It

is a string used to “convey client system configuration details to ensure that

content returned by a server is appropriate for the requesting host” [12].

The purpose of a UAS is “to provide sufficient detail about a client system

to enable a server to transmit content in the appropriate format and for

debugging interoperability problems” [12].

Websites will use the User Agent string to determine the format of the

content to return to the user [13]. You can see an example of this yourself

when you visit websites from your mobile device. Often times you will be

automatically redirected to a mobile friendly version of that website. These

mobile friendly versions are built to be viewed and used on the smaller screens

14

of devices like cell phones and tablets. Programmers can determine which

version of the website to serve a user by examining the User Agent string. If

the string contains information stating that the device that sent the HTTP

request is a mobile device, then the user is redirected. This can be observed

in Figure 4. Displayed in the figure are two different User Agent strings.

The first was from a HTTP request sent from a desktop computer, while

the second was from a HTTP request via a mobile device. The highlighted

portions show the parts of the User Agent strings that can be examined to

determine the device types.

((a)) An example desktop computer user agent string.

((b)) An example mobile device user agent string.

Figure 4: User Agent strings showing the device type.

In the case of Voyager, these User Agent strings can be extracted and used

to find out additional information about whomever made the request. These

strings can contain details such as the computer’s operating system and the

browser used to make the request even down to specific version numbers. An

important note is that User Agent strings are public information sent in all

HTTP traffic, and thus do not require a search warrant to collect or inspect.

15

This makes them an excellent means of open source intelligence gathering

for law enforcement.

2.4.2 HTTP Methods

Within HTTP there are a total of 8 different methods that can be leveraged

in HTTP 1.1, the most popular version of the protocol currently in use on the

internet. These methods define specific actions to be performed by a resource.

The eight methods are: OPTIONS, GET, HEAD, POST, PUT, DELETE,

TRACE, and CONNECT [7]. When it comes to traffic capture, Voyager is

mainly concerned with the GET method implemented in HTTP. However,

the portion of Voyager that investigators use leverages GET, POST, PUT,

PATCH, and DELETE.

When an HTTP message is sent that uses the GET method, it is often

referred to as a GET request. This is because the GET method is only used

in HTTP requests and not in HTTP responses.

GET requests serve as a means to “retrieve whatever information is iden-

tified by the Request-URI”[7]. Whenever a client is requesting a resource

from a web server, a GET request is sent to the server. This prompts the

server to respond with the specific resource that was requested. These GET

requests to the server are the traffic that Voyager captures. Voyager is then

able to extract meta-data from these requests, as discussed in detail later.

16

The POST method is used in HTTP for the purpose of telling the server

to accept the enclosed entity in the request as a new instance of whatever

resource is denoted by the request-URI. This simply means POST requests

are sent from the client to the server to create a new instance of some resource

on the server. Many web applications, including Voyager, leverage POST

requests to allow for the creation of new records via an API. In Voyager’s

case, POST requests are leveraged to both create new records within the

database as well as to upload files to the server.

PUT is often used in a similar manner to the POST method. The main

difference is that PUT is used to update a specified resource denoted by the

request-URI if it already exists, instead of creating it. This allows for the

updating of records that already exist on the server. This differs from a

simple POST request, which is merely responsible for creating new records.

However, if a PUT request is sent and the resource does not already exist on

the server then it will be created. This behavior mimics how a POST request

works. Within Voyager, PUT requests are used to update an existing record

on the server, such as a database record or an uploaded file.

The PATCH method loosely resembles the PUT method. It is also used

update or modify resources that already exist on the server. The difference

between PATCH and PUT is that when using the PATCH method you need

only include the parts of the resource that you wish to be updated, as opposed

to the entire new version of the resource. This is especially useful when

17

updating a single field in a large record, as you only need to include the

single field instead of the entire record in the request.

2.5 The Southern California High Technology Task Force

The Southern California High Technology Task Force or SCHTTF is one of

five task forces regional to California that was developed as part of the High

Technology Theft Apprehension and Prosecution Program (HTTAP). The

HTTAP was established in 1998 as a result of Senate Bill 1734 in order to

“help combat computer-related crimes such as network intrusions, computer

hacking, counterfeiting and piracy, theft of trade secrets, theft of high tech

related equipment, and telecommunications fraud”[19]. According to a Ven-

tura County Sheriff’s Office funding document, the SCHTTF’s jurisdiction

spans the counties of Los Angeles, Orange, and Ventura.

Part of the work that the SCHTTF does is partnering with other entities

to help prevent, detect, and respond to computer-related crimes. This allows

them to leverage these partnerships to better respond to the growing amount

of cybercrime taking place. One such partnership is with Califoria State

University, Channel Islands (CSUCI). This partnership affords students the

opportunity to do meaningful work as well as gain experience through real

world applications of their knowledge, while keeping the task force abreast

of the latest in cybersecurity related academic developments. Voyager’s in-

18

ception and implementation is one such result of this partnership.

2.6 Combating Child Pornography

Criminals looking to exploit people for financial gain were not the only ones

to transition to using the internet for their nefarious actions. Unfortunately

many other types of crime and criminals have developed a presence on the

internet, but perhaps none more despicable than pedophiles. Similarly to

criminals using the internet to anonymously steal data and money, pedophiles

have begun to leverage that same anonymity to protect themselves as well.

This proves to be a difficult problem for law enforcement to address when

attempting to bring these criminals to justice.

The initial inception of Voyager was originally oriented towards fight-

ing online child pornography. Unfortunately, the SCHTTF had seen many

cases of it and hoped to develop some way of helping to put a stop to it by

identifying these individuals. Thus, the idea of Voyager was conceived, an

application that would allow them to upload fake images of children as bait

for these predators. While Voyager served this purpose it became apparent

that it could be used in other scenarios as well. The SCHTTF then began

using it in other types of investigations which has helped to steer its further

refinement and feature development.

19

2.7 Mortgage Scams

One of the prevalent types of online crime that the SCHTTF deals with is

mortgage scams. In this relatively simple scam, a criminal typically sends the

victim, who is in the process of purchasing a home, instructions containing

details on where to wire the down payment for their new home. The problem

is that the account they are told to wire the money to is not the bank’s but

instead controlled by the criminal, typically through many proxies or mules.

Mules are, knowing or unknowing, participants in the scam. Their bank

accounts are used to store the stolen money, before it is transferred to the real

criminals account. By using many mules and transfers the criminal is able

to obscure the true path of the money, making it harder to law enforcement

to find.

These emails are typically sent from one of two types of email addresses.

The first, is from an email address that is made to look legitimate, but is

not. This is commonly achieved by using similar spelling to the name of

the bank but replacing, adding, or removing letter that may be harder to

notice. The problem with this method is that an attentive victim may notice

these inconsistencies and realize it is a scam. The second and ideal (in the

mind of the criminal) way, is to hack the email account of a bank employee

and then use that account to send these fraudulent emails. These emails

can easily fool even security oriented individuals since they are coming from

20

a legitimate email address at the bank that the victim is more likely to

recognize and trust.

In either scenario the recommended action is to directly contact the bank

via a different communication medium, such as in person or over the phone,

to confirm any such emails. An important note is to independently look up

the phone number for the bank, rather than using the one included in the

email. Often times these criminals will include a fake phone number that

people will call and be reassured of the legitimacy of the email.

Worse yet, it is not an easy feat the recover the money that is lost due to

this scam. Often times it is long gone, lost in a series of transfers between

banks around the world, never to be recovered. While these mortgage scams

are relatively simple and do not necessary require advanced technical knowl-

edge, they are effective. Sadly, many people in the SCHTTF’s jurisdiction

alone have fallen prey to this scam.

2.8 Ransomware Attacks

In today’s technology driven world, people live online. This has caused an ex-

odus of personal information and data onto devices such as our smartphones,

personal computers and even our televisions. On these devices people store

photos, business correspondence, financial information, conversations with

loved ones, and all other forms of sensitive data. But, what happens when

21

the access to that data, which we all take for granted, is threatened or even

taken away? Ransomware is a family of malware that exploits this fear. It

“locks the victims’ computers until they make a payment to re-gain access

to their data”[11]. This type of malware is especially scary for those who

do not have backups of their data or facilities, such as hospitals and power

plants, that cannot afford to lose their access to it for any period of time.

There are many different subcategories of ransomware but some of the

most prevalent ones are scareware, screen lockers, and encrypting ransomware.

• Scareware is perhaps the most benign type of ransomware. Typically,

scareware involves receiving many intruding pop-ups or notifications

on your screen alerting you to the fact there is some sort of malware

present on your system that can only be removed by paying. More often

than not there is no actual malware, other than the scareware itself, on

the system. Additionally, scareware does not typically destroy, modify,

or block files on the system, meaning it is essentially safe; albeit rather

annoying until removed.

• Screen Lockers do exactly what the name describes: they lock your

screen. This prevents you from being able to use the system at all.

This is achieved by overlaying the screen with a full size window that

cannot be closed and contains some sort of message stating you must

pay to have it removed. Often times the window will be made to look

22

official and claim it was put in place by the FBI, Police, Department

of Justice, or some other law enforcement entity that detected illegal

activity on the system. While screen lockers are often more tricky to

get rid of than scareware, they also usually do not modify the actual

files on the system. This makes them more annoying than dangerous

as your data is relatively safe.

• Encrypting Ransomware is the most infamous and dangerous cate-

gory of ransomware. This ransomware infects a computer and proceeds

to encrypt all the files on it, preventing the user from being able to ac-

cess them. This form of malware is especially nasty because the only

way to decrypt the files is using the key, which the hacker possesses.

More often than not, the hacker demands a payment in some form of

hard to trace currency, such as bitcoin, to be made in order to decrypt

the victim’s files. Unfortunately, even after paying the ransom, there

is no guarantee that the hacker will decrypt the files. Often times the

hacker will simply disappear and leave the victim high and dry, no

money and no decrypted files. If the prospect of potentially paying the

hacker and having them disappear with your money and leaving the

files lock was not scary enough; there are instances such as the Ryuk

ransomware. Due to a bug in the malware’s code, even when victims

paid the ransom any files larger than 54.4MB [6] could not be decrypted

successfully.

23

Unfortunately, instances of ransomware infecting unsuspecting victims

occur frequently. In the case that the victim is a nearby business or other

local entity that is specifically targeted and is being blackmailed for a ran-

som, the SCHTTF gets involved. In these cases it is important to consider

that a hacker capable of this sort of attack has advanced technological knowl-

edge and capability, often implementing many steps and protections to stay

anonymous. The SCHTTF has deployed the first iteration of Voyager during

some of these investigations in an attempt to reveal more information about

the hacker that could potentially aid in their apprehension or recovery of the

encrypted data.

24

3 Design and Implementation

Voyager’s inception stems from the SCHTTF’s need for additional tools to

effectively combat the cybercrime they face on a day to day basis. Thus, it

was developed based on feedback from their team as well as from Professor

Soltys. Voyager consists of multiple distinct parts that come together to

grant the aforementioned functionality. These distinct parts are as follows:

• Hosting Server

• Provisioning Script

• Web Interface

– Front End

– Back end

• Database Storage

• Network Traffic Capture

• Network Traffic Parser

25

3.1 Hosting Server

Hosting Voyager on a virtual machine in the cloud provides many advantages

such as a degree of anonymity as well as ease of use. More specifically,

Voyager is hosted on AWS using EC2 instances.

The functionality discussed in Section 2.1.2 along with ease of use and

availability influenced the decision of how to host Voyager. The use of cloud

computing, and more specifically AWS, lends Voyager the ability to be run-

ning independently on many instances at once. In particular, this allows

Voyager to be used for multiple separate investigations without risk of data

spillage between them because all the instances are siloed from one another.

Additionally, the lack of overhead required to use EC2 instances, or AWS

as a whole, means that law enforcement does not have to invest thousands

into servers and all their associated infrastructure. Throughout development

and testing, I have had multiple instances of Voyager continuously running.

While these versions of Voyager are running on micro instances, without

much computing power, it has cost no more than $10 per month. Even scal-

ing the instances up for real world use to handle more traffic and have better

performance, the savings would still be drastic. Furthermore, if law enforce-

ment were to use its own servers, those IP addresses would quickly become

known, and that would render Voyager useless. But on AWS, investigators

are able to open and close instances programmatically with new “unburned”

26

IP addresses.

Using the AWS website to create a new EC2 instance for Voyager is very

straightforward. The process is as follows:

1. Choosing an AMI. Leveraging these pre-configured images allows the

user to absolve themselves of the responsibility of need to completely

build the server from the ground up. Additionally, it insures that Voy-

ager is running on a server that is properly configured, using an image

that has been thoroughly tested. This serves to reduce the likelihood of

encountering any such errors related to the server’s creation or setup.

Voyager was created to run on the “Amazon Linux AMI 2018.03.0

(HVM), SSD Volume Type”. The main reason why Voyager had to be

created for a specific AMI is due to the difference in package managers

across different AMIs. While it is likely that everything would work

on another AMI that also uses the “yum” package manager, this was

outside of the project’s scope and has not been thoroughly tested.

2. Choosing an instance type. Once the AMI has been chosen, the

next step is to select an instance type. The different instance types

dictate the hardware that the EC2 instance will run on and thus its

performance. The user has control over this by selecting an instance

with the appropriate amount of CPUs, memory, and level of network

performance desired. Voyager is capable of running on any general pur-

27

pose instance type and the decision of which to use should be influenced

by the amount of expected traffic to the instance.

3. Setting configuration details. This step has a plethora of options,

which may be leveraged or ignored at the discretion of the user. In this

section the user can configure many details of the instance being cre-

ated, such as the IP address, IAM (Identity and Access Management)

roles for the instance, as well as shutdown behavior. The most im-

portant option in this step is the “User Data” section under advanced

details. This is where the provisioning script, which is responsible

for setting up Voyager on the new instance, is included. This can be

achieved by either copy and pasting the script’s text or uploading the

file directly.

4. Configuring storage and tags. This step can be skipped, in which

case AWS will create a default EBS setup for us and attach it to our

instance. However, if the user wishes to modify the storage used on the

EC2 instance then this is the step in which they have the option to do

so. Additionally, the user can add any desired tags to the EC2 instance

at this point. Tags are used to help categorize your AWS resources and

consist of a key and an optional value as shown in Figure 5.

28

Figure 5: Example tags applied to EC2 instances. [3]

5. Choosing security groups. This step is required in order to allow

network traffic to reach your EC2 instance. Each security group is

essentially a set of firewall rules that control inbound traffic for your

instance. It is important to remember that these rules only apply to

inbound traffic and have no bearing on any traffic coming out of the

instance. In the case of Voyager the default security group is left and

two additional groups are added. One of the two additional groups

allows HTTP and HTTPS traffic on ports 80 and 443 respectively. The

other group allows any TCP traffic on port 9000 to reach the Voyager

front end interface. The applied inbound network traffic rules are shown

in Table 1. Note the last rule, which allows TCP traffic on port 9000,

should have the source IP address restricted to only allow traffic from

the investigator’s network. Since port 9000 is where the front end

29

web application lives, it should only be accessible by investigators and

nobody else.

Type Protocol Port Range Source Description

SSH TCP 22 0.0.0.0/0
Allows user to SSH
in to instance.

HTTP TCP 80 0.0.0.0/0
Allows traffic to the
uploaded artifacts.

HTTPS TCP 443 0.0.0.0/0
Allows traffic to the
uploaded artifacts.

Custom TCP Rule TCP 9000
Investigators’

Network
Allows user to access
the Voyager front end.

Table 1: Inbound traffic rules.

3.2 Provisioning

In order for each EC2 instance to be quickly provisioned with Voyager, an

installation script was created. It began as a simple bash script that was

manually run by the user, via SSHing into the instance, but has since evolved

to be more complex in efforts to make set up easier when spinning up new

instances of Voyager. The current implementation of the installation script

was created with the purpose of being run as a User Data script during the

creation of an EC2 instance from the AWS console. The user simply includes

it during the third step of the instance creation process by either uploading

the file or copying the text and then completing the launch of a new EC2

instance, allowing AWS to take care of running the script.

30

Creates new EC2
Voyager Instance

S3
Bucket

Voyager
Schema

PM2
Ecosystem

Config

Network
Traffic
Parser
Script

Required
Pip

Packages
List

User Data
Script

EC2
Instance

Creates the Voyager
database

Downloads and
Configures NVM

Sets up project
directory structure

Sets up logging
structure for Voyager

apps

Clones Voyager
Applications From

Git Repos

Runs Voyager
Applications using

PM2

Installs NodeJS

Installs python
libraries and

dependencies
Sets up cron job for

parser script

Configures required
environment

variables

Configures iptables

Begins Tcpdump
traffic capturing

Install Git
Downloads

resources from a S3
bucket

Install Python 3.6 Install MySQL
Server Install Tcpdump

Retrieves
provisioning
resources

Figure 6: Diagram of the installation script process.

31

This provisioning script consists of multiple components, each responsible

for setting up and provisioning a different part of the Voyager project. These

steps, illustrated in Figure 6, are as follows:

1. Installation of required packages via the yum package manager.

These packages include Python 3, MySQL server, the tcpdump utility,

and Git.

2. Downloading resources from S3 that are required during the pro-

visioning process. There are four files that are downloaded from a

remote S3 bucket, the address of which can be easily changed inside

the provisioning script.

(a) voyager.sql: This SQL files contains the database schema defi-

nition. It also creates two MySQL users, one for the API and one

for the python parsing script. The creation of these two users is

done in an effort to increase the security of Voyager in the event

of an attack such as SQL Injection. By using distinct users for

each part of the application this supports the implementation of

the principle of least privilege as well as increases audibility for

forensics should an attack occur.

(b) ecosystem.config.js: This JavaScript file is the configuration file

used by PM2 1, a Node.JS process manager used to keep Voyager’s

1https://pm2.keymetrics.io/

32

front end and server running. Within it is defined how PM2 is

supposed to run the web applications as well as specify options

such as the location of error and output logging files. Lastly,

also included are environment variables which will be used by the

applications upon launch. These variables are used to instruct the

application which environment type to run in, be it production or

development, as well as which database and database user to use.

(c) parser.py: This python file is responsible for parsing the network

traffic, indentifying events, and subsequently creating entries in

the database. It is copied onto the system for later use. This

script is discussed in detail in section 3.6.

(d) pip packages.txt: This text file is used for installing all the

python libraries and dependencies that are required for the parser.py

script to run.

3. Creation of the Voyager database using the voyager.sql file pre-

viously downloaded from a S3 bucket.

4. Set up of the project directory structure is required in order

for Voyager to operate correctly. An outline of the required directory

structure is pictured in Figure 7.

33

/home

ec2-user

voyager

tcpdump

archive

logs

fe

server

voyager_fe

voyager_api

Figure 7: The Voyager directory structure.

5. Installation of python libraries and dependencies in order to

allow the parser.py script to run. Specifically, the Python 3.6 devel-

opment tools as well as the mysql development tools are installed using

the yum package manager. Then, the pip_packages.txt file is used

with pip, the standard Python package manager, to install all other

34

dependencies. The critical packages listed in pip_packages.txt and

subsequently installed with pip are depicted in Table 2.

Package Name Version Purpose

mysql-connector-python 8.0.19
Used to connect to the Voyager MySQL
database.

mysqlclient 1.4.6 Used to easily create MySQL queries.
requests 2.23.0 Used to query the IP Geolocation API.

scapy 2.4.3
Used to dissect and analyze pcap files
containing network traffic.

Table 2: Relevant pip packages.txt packages.

6. Setting up the cron job of the parser script. This is to ensure that

the parser script runs on a regular time interval to clear the network

traffic capture files. The time between runs can be modified based on

the amount of expected traffic however it is given a default of every 2

minutes. This can be adjusted to a longer time between runs if you

expect less traffic, or more often if large amounts of traffic are expected.

The command used to set up the cronjob is displayed in Figure 8.

(crontab -l 2>/dev/null; echo ’’*/2 * * * * /usr/bin/python3

/home/ec2-user/voyager/parser.py’’) | sort - | uniq - | crontab -

Figure 8: The cron command to run the parser.py script.

7. Installing NVM (Node Version Manager) and NodeJS. NVM

is a version manager for the NodeJS programming language that works

in any POSIX compliant shell. It is required because the web interface

as well as the API are written using NodeJS. Once NVM is installed

35

successfully, it is used to install NodeJS.

8. Environment variable configuration is required in order for all ap-

plications to function properly. These variables are used when launch-

ing the Voyager web application and can be changed to vary the port

the front end and API run on. It is important to keep in mind that

changing the port that the front end runs on requires updating the in-

bound network traffic rules that were set up during the EC2 instance

creation. Otherwise the front end application will not be accessible at

all.

9. Setting up logging directories and files is necessary before run-

ning the applications. To provide for easy debugging as well as general

logging there are two separate logs per application. There is a gen-

eral log which contains all generic output messages and an error log

which contains system errors as well as more serious output messages

pertaining to anything that interrupts the running of the application.

This configuration is depicted in Figure 9.

36

logs

fe

error.log
output.log

server

error.log
output.log

...

Figure 9: Voyager’s logging structure.

10. Cloning the Voyager project from the remote Git repositories is the

next step. There are two separate repositories, one hosting the front

end, and the other hosting the API or back end. While it is possible

to combine these two pieces into a single repository they are purposely

left apart. One reason for this is that is allows for the potential to

run each one on separate EC2 instances without any extra work of

decoupling them. Additionally, by following a microservice pattern

this allows for updates and changes to one piece without having any

effect on the other or forcing everything to be redeployed. Similarly,

37

any errors encountered will not crash the entire application but just

one piece of it, providing greater durability of the project as a whole.

11. Configuring iptables is done after downloading all packages and

repositories. This step is responsible for directing all traffic from port

80 into the application. Doing so allows the applications to run on any

desired port while still directing incoming traffic from the standard

HTTP port to them. Specifically, this traffic is directed to the part of

the application responsible for hosting the uploaded content. This is

accomplished via the command in Figure 10.

sudo iptables -A PREROUTING -t nat -i eth0 -p tcp

--dport 80 -j REDIRECT --to-port 9000

Figure 10: The command to configure the iptables port routing.

12. Starting tcpdump allows for the capture of network traffic from this

point forward. This is saved as one of the last steps to avoid capturing

any traffic pertaining to the provisioning of the instance. The spe-

cific use of the tcpdump command is covered in much greater detail in

Section 3.5.

13. Running the Voyager applications, the last step of provisioning, is

handled via PM2. Using the configuration contained in the

ecosystem.config.js downloaded from S3 earlier, PM2 starts both

the front end and back end applications.

38

Upon successful completion of the provisioning script, the EC2 instance

is now fully configured and running Voyager. Should any errors occur, EC2

instances output logs from the user data script into

/var/log/cloud-init-output.log.

3.3 Web Interface

The web interface refers to the interface that law enforcement officials use

to interact with Voyager as well as where files that have been uploaded are

hosted. Originally, it was created using basic PHP and very simple HTML.

This has however been refactored in an attempt to adopt more industry

standard web development techniques. Presently, it consists of two separate

components, the front end application and the server side or backend appli-

cation. Both the front end and back end servers are run using PM2, which

is a process manager for the JavaScript runtime Node.js. PM2 not only pro-

vides a simple and easy to use interface for running both applications but

grants other useful functionality. For example, it keeps applications running,

even after signing out of the EC2 instance and will automatically restart ei-

ther application should it crash. With a simple command the application is

configured to run with PM2 while also setting up logging for both error logs

and standard output logs. This proves useful for simply checking the status

of the application as well as debugging should any crashes or errors occur.

39

3.3.1 Front End

The front end user interface portion of the application is created using the

Node.js programming language, more specifically the React library. React

was chosen because it allows for the easy creation of interactive user interfaces

via encapsulated components each of which can contain their own state.

Furthermore, it offers “greater flexibility in terms of how [I] structure and

display data” [9], making the application easier to both understand and use.

Additionally, other libraries and frameworks were leveraged to create the user

interface such as bootstrap. The front end provides interfaces for important

tasks such as allowing investigators to upload photos or other types of files

they wish to use as well as viewing important information stored in the

database. This data consists of but is not limited to all uploaded photos,

and the logged events corresponding to those photos.

3.3.1.1 Home Screen

Shown in Figure 11 is the home page of the Voyager web application. It is

intentionally kept minimal in an effort to be simple and easy to use. From

the home screen the user can access the three different functionalities that

the web application provides: the photo log, the event log, and the file upload

page.

40

Figure 11: Voyager’s home screen.

3.3.1.2 Photo Log

The photo log page is responsible for displaying a table that contains entries

for all the files that have been uploaded to Voyager. This table can be seen in

Figure 12. The table is built to allow investigators to quickly find a previously

uploaded file. Sorting is made available on the relevant rows, making finding

records of interest a quicker endevour. When a record of interest has been

found, the user can click on that specific row to open the photo details page.

41

Figure 12: Voyager’s photo log page.

3.3.1.3 Photo Details

The photo details page, shown in Figure 13, provides a more in depth look at

an individual file that was uploaded to Voyager. On this page, information

about that specific file upload can be found, such as the file’s link hash. There

is two editable fields on this page, the notes text box and the file extension

42

input field. The notes box allows investigators to log and information relevant

to that specific file upload to its record. The file extension input allows for

the user to change the file type that will be appended when accessing the

file. Additionally, this page has a button that allows the user to preview the

file that was uploaded.

Figure 13: Voyager’s photo details page.

43

3.3.1.4 Event Log

Accessible via the home screen or the banner that runs across the top of every

page is the event log. As seen in Figure 14, this screen is similar to the photo

log. The difference between to the two is the information displayed in the

tables. In this case, the information pertains to specific events that Voyager

has recorded. This table also allows sorting based on relevant columns. Since

many of the fields recorded for an event contain large amounts of text, they

are not able to easily be displayed or read from a table like view. In order to

combat this, each row is clickable and redirects the user to the event details

screen.

Figure 14: Voyager’s event log page.

44

3.3.1.5 Event Details

Once on the event details screen, the user is able to see a plethora of informa-

tion about one specific event. This page contains the photo id to which the

event corresponds as well as other fields containing details about the event.

Shown in Figure 15 are all the fields that are recorded about an event. Fur-

thermore, by clicking on the “Toggle Geo Info” button, a new field appears.

This field, as seen in Figure 16, displays all the geolocation information that

was able to be gathered for the given source IP address. The “Get Request”

and “Raw Data” text areas can be expanded to more easily read all of the

data stored in them. Lastly, similar to the photo details page, the event

details page has an editable field for notes. This allows investigators to save

relevant information associated with that specific event.

45

Figure 15: Voyager’s event details page.

46

Figure 16: Voyager’s event details page displaying geolocation data.

3.3.2 Back End and Server Side

The server side of the application is a simple API that interfaces with the

MySQL database, discussed in Section 3.4. It receives requests from the

front end and then creates, manipulates, or returns data based on those

47

requests. As shown in Figure 17, when a new artifact is uploaded via the

user interface it is sent to the server where it is given a hash corresponding

to the artifact itself combined with the time of upload. This hash along with

other information is entered into the database and the photo is then moved

to a directory that is accessible by the world wide web. The server side is

developed using Express, a Node.js framework and the de facto standard for

server frameworks. Express is especially useful for handling tasks such as

routing requests and simplifying the creation of APIs.

In addition to processing and returning data, the server is also respon-

sible for hosting the artifacts that have been uploaded by investigators. It

accomplishes this by storing them in a separate folder from the rest of the

application that has been made publicly accessible. Upon receiving a new

upload the server renames the file to the link hash, discussed in depth during

Section 3.4, that it has generated for that artifact and then moves it into the

public folder. Once this has been completed that artifact is ready to be used

by investigators.

48

File uploaded to
Voyager

File hash generated

File moved and
hosted

File details stored in
database

Uploaded file is
available

Investigator

Figure 17: The Voyager work flow for file uploads.

3.4 Data Storage

The backbone of the Voyager tool is the MySQL database, containing two

tables of note, displayed in Figure 18. The first is the photo log table which

is responsible for storing information associated with an artifact that has

been uploaded by an investigator. The table has a primary key, photo id,

which is a standard auto increment field. Additionally it contains a field

49

named photo hash that is created by hashing the raw bytes of whatever

artifact is uploaded. This allows for easy discovery of instances of the same

artifact being uploaded for different uses, potentially with different file names.

Similarly, the table contains a field called link hash which is a hash created

from the raw bytes of the photo appended with a timestamp of the upload

date and time, creating a different hash than the photo hash. This serves

as a completely unique identifier for each artifact uploaded, even if it is the

exact same artifact, as the upload time would differ. This link hash is also

used in the URL for which that particular resource will be made available

at. Both the photo hash as well as the link hash are created using the md5

hashing algorithm.

���������

���������	
���

���������	
���

����������������	��

��������������������

��� ����������!�

������ ������!�

 �����"�������!�

��#��������!�

��������!�

	�
����

$�	���%

��������

��������

���������	
���

�������������������&'�

(��)��������������&'�

��(��������������	��

*�(���+�������,�

��������!�

	�
����

$�	���%

(��)�����

Figure 18: Voyager’s database schema.

50

While the table is called photo log there is no requirement in the appli-

cation that the uploaded content be a photo. Since the table contains the

extension of the file that is uploaded this allows Voyager to handle virtually

any file type that a user wishes to upload. Voyager accomplishes this by

simply appending the file type saved at time of upload to the web hosted

version of the content whenever that resource is requested.

The second table is the event log table, which is responsible for holding

details about captured network traffic. In particular, the Python script,

which is discussed in detail in Section 3.6, populates this table with data

about HTTP requests that are made to the specific addresses of the uploaded

artifacts. These are the requests arising from clicking the bait link. The

data saved is robust in that certain parts of request are parsed out and saved

individually, such as the source ip address of the request and the user agent

string. In addition to these fields, the entire packet is saved as well, allowing

for deep investigation of the traffic at a later time. This provides a means for

the data Voyager extracted from the request to be validated. The events are

associated with the uploaded image or artifact requested via a foreign key,

photo id, referencing the primary key in the photo log table.

In addition to data extracted from these requests the event log table also

stores data regarding the believed geolocation of the ip address that made

the request. This is stored as JSON in the form that the leveraged API

returns. This allows for the potential of future processing of this data, either

51

from within Voyager or another application that externally accesses the data

via the API.

Both tables consist of fields that allow for the investigators using Voyager

to creates notes associated with either an uploaded artifact or a specific event

that is logged. These fields have seen use as a place to list notes about the

specific case being worked on as well as a field to list which investigator

uploaded which artifact.

3.5 Capturing Network Traffic

In order to log the events, or clicks, on a specific artifact a tool needed to

exist that was capable of capturing all the incoming traffic on the server. The

tool selected for this job was tcpdump. Tcpdump is a command line tool

for packet analysis and is used in conjunction with libpcap, which allows for

the capturing of network traffic. Both of these are used on the web server in

order to capture incoming TCP requests. This traffic is logged in the form

of a .pcap file which is analyzed at a later time by the Python script.

tcpdump -w /home/ec2-user/voyager/tcpdump/tcpdump_%F_%H:%M:%S.pcap

-G 60 -n -Z root ‘dst $IP_ADDRESS and (port 80 or 443 or 8080)’

Figure 19: The tcpdump command used to capture network traffic.

The tcpdump command used, shown in Figure 19, leverages several op-

tions that allows for high level filtering of the traffic recorded. This is use-

52

ful because the ability to eliminate a large majority of the irrelevant traffic

greatly reduces the size of the .pcap files, making the later processing much

easier as well as more efficient. Additionally options are used to allow for a

more optimal organization of the traffic that is recorded, rather than sim-

ply saving it all to a nondescript .pcap file. The specific tcpdump options

leveraged are as follows:

• -w: Allows the user to specify the output file path and name. Then,

strftime formatting options are used to specify the output file name.

%F outputs the date in YYY-MM-DD format. %H specifies the hours

in a 24 hour format. %M specifies the minutes, ranging from 0 to 59.

%S specifies seconds, again ranging from 0 to 59. Appending the date

and time to the output file is useful for reference if the specific traffic

needs to examined at a later date. It can also be cross referenced with

the date times recorded in the event log to easily find the file containing

the traffic that yielded a specific event record.

• -G: Used to configure output file rotation. In this case the process will

be creating a new .pcap file every 60 seconds; this rotation frequency

keeps the files from becoming too large. Rotation every minute also

allows for easier reference should they be needed at a later time, as

mentioned above.

• -n: To avoid DNS lookups; investigators want to keep the IP addresses

53

of the incoming traffic rather than associating them with a host name.

Associating with a hostname can be done later on IPs of interest if it

is determined to be relevant.

• -Z: By using this option with the argument of root this ensures that the

tcpdump command is running at root privilege level. This is needed to

allow for all traffic to be captured on the web server.

The last argument, ‘dst $IP_ADDRESS and (port 80 or 443)’, is the

filter that used to narrow down the traffic that is recorded to the output

files. The ‘dst’ denotes the destination address that should be filtered for,

in this case it is the address of the web server. This is read in from an

environment variable that is set up during provisioning of the instance. We

are then further filtering the traffic to look specifically for anything that is

using the common HTTP port: 80. Additionally, we are capturing traffic for

port 443 as well, which is used for HTTPS. While we cannot read this traffic

due to its encryption, we wanted to capture and archive it for potential future

use. By filtering out any traffic that is not on these specific ports it avoids

recording excess traffic that is not relevant. For example, any interactions by

the investigators with the front end interface will not be recorded because it

takes place over port 9000.

Saving the network traffic in easy to organize and find .pcap files is ex-

tremely important in this specific scenario. After the creation and processing

54

of these .pcap files, they are archived indefinitely. This is because they may

be needed down the road to submit as evidence in court. Thus, investiga-

tors need to be able to find the files of interest easily while sifting through

potentially thousands of archived traffic capture files. For more long term

storage these files can also be moved off the EC2 instance into an S3 bucket

or even Glacier storage. This provides a more cost effective way to store large

amounts of network traffic for extended periods of time.

3.6 Analyzing The Traffic

After the network traffic is received, filtered and recorded to pcap files by

tcpdump it will then be parsed by the Python script parser.py. This script

runs at scheduled intervals via the Cron tool. While the Cron tool allows for

easy modification of how often the script should be run it is initially set to

every other minute. This timing can be adjusted based on how much traffic

the instance is receiving.

The parser.py script is responsible for taking the pcap files, processing

them, inserting necessary data into the database and then archiving them. It

is important to note that it will process the total number of pcap files in the

directory minus one. This is because the tcpdump is constantly running, and

thus writing to pcap output files, even as the parser is processing them. By

sorting the files in the directory via time of creation in ascending order the

55

script is able to process the older files first, leaving the newest one as the last

file, which remains unprocessed. This avoids conflicts with both processes

attempting to access a file at the same time.

The parser leverages a Python library named Scapy2 to read the pcap files

and examine the traffic captured in them. Should it come across any HTTP

GET requests for artifacts that exist in the database, that traffic is noted and

has an entry created for it in the event log table of the database. Furthermore,

Scapy is used to extract the specific details of interest to investigators out of

the entire request, including but not limited to: the IP address that made

the request, the specific URL that was requested and the user agent string.

The task of finding packets of relevance is accomplished through a process

of elimination via progressive filtering. The tcpdump command has already

filtered out any traffic that is not TCP traffic on ports 80 or 443. This means

the majority of the traffic will be HTTP or HTTPS. This process begins by

checking if the packet is a GET request. This will filter out HTTPS traffic

as the parser is unable to see inside the packet to check if it is a GET due

to the encryption. This also filters out anything that is not HTTP as it

will obviously not be a GET request. Once the script is sure it is working

with a GET request then it uses string manipulation to filter out the path

of the URL. As shown in Figure 20, the path is the last part of the URL

that specifies which file on the server is being requested. More specifically,

2https://scapy.net/

56

only the last element of the path, which is refer to as the link hash, is of

interest in this case. This link hash is, by design, unique to each artifact

uploaded to Voyager. Once it is confirmed the URL in question has a link

hash it is extracted. Then it is compared it to all link hashes stored in the

database to find which artifact this specific request corresponds to. Once the

script has found the correct file, confirming the request was for an artifact

uploaded to the server, the script begins extracting additional information

from the packet. This information is then inserted into the event log table

in the database.

http://www.ec2-54-86-127-94.compute-1.amazonaws.com/images/bdf60ba888fe33b0e9def7f67168c8c5

Protocol Subdomains Domain name Path

Figure 20: Breakdown of an example URL.

In addition to just extracting information from the requests to artifacts of

concern, the script goes a step further. It also extracts the source IP address

from the request and use it to query the IPStack3 Geolocation API. This

generally returns additional information regarding the believed geographical

location of the IP address as well as other useful information. All this is then

stored in the database as well to give investigators even more information to

work with during their investigations.

3https://ipstack.com/

57

4 Observations and Results

4.1 Real World Usage and Results

Due to the first iteration of Voyager being deployed to the SCHTTF for

some period of time, there have been multiple instances of its use in real

investigations and cases. While it would be simple to boast the cases where

Voyager worked perfectly and led to the identification of a cybercriminal with

no complications, this is not always the reality. Many of these cybercriminals

are very savvy in protecting themselves, using a plethora of tools to do so.

Some of these are discussed in Section 5. Two more realistic examples of

the deployment of Voyager’s first iteration that are especially interesting are

described below.

4.1.1 Case 1

The first case consisted of a cybercriminal illegally accessing a government

health care agency’s computer network and compromising the email account

of an employee. Using this email account the criminal sent out emails, pre-

tending to be the government employee, attempting to steal $18,650 through

wire transfers. The transfers were sent to a co-conspirator’s Chase Bank ac-

count. This is a typical scenario referred to as Business Email Compromise

58

or BEC. Business email compromise as a popular and still growing scam.

According to the 2019 Internet Crime Report [10], published by the IC3;

there was 23,775 complaints with over $1.7 billion in losses due to BEC in

just 2019 alone.

Working with the CISO of the government agency, the SCHTTF deployed

Voyager in an attempt to learn more about the cyberciminal in this case. An

email was sent to the suspect which included an attachment that linked to

Voyager. This link was disguised as a thumbnail containing an image of the

online banking portal for Chase Bank. Later that day, Voyager logged a click

on the bait that was sent to the suspect, capturing the suspect’s IP address

along with other information.

Researching the captured IP address revealed that it was in a block owned

by the internet service provider M247.com. Following this trail, M247.com

revealed that the IP address was subleased to a Canadian company, wind-

scribe.com. Windscribe.com is an online company that provides services such

as adblockers, VPNs, and other anonymizing features. While this is a dead

end for Voyager, the investigators were able to learn that the suspect’s user

account was made with an email created with a German IP address and a

Ghana phone number.

In this particular instance, Voyager did not lead to successful identifi-

cation of the criminal. However, it did open a path of investigation that

59

otherwise would not have existed as well as provided valuable insight into

the operational security or OPSEC of the criminal. All the aforementioned

information led the task force to come to the conclusion this cybercrime was

not the product of a local small time criminal who gained access to the vic-

tim’s email using dumpster diving or simply guessing credentials. Instead,

it was deemed very likely that this attack came from a sophisticated ring of

cybercriminals, likely carrying out such attacks from a foreign country. It is

also thought that this government health care agency was just one victim in

a larger campaign of these types of attacks from the same group.

4.1.2 Case 2

The second case was one in which Voyager was deployed against a suspect

in a ransomware case. The victim came in to work one morning to find

Figure 21 displayed on their monitor.

Upon further inspection, the victim discovered all the company’s data

had been encrypted. In this particular instance the company elected to pay

the ransom that the cybercriminal was demanding, in hopes of their data

being returned. While some data was unecrypted as a result, the rest was

ransomed again. Unfortunately, this is not particularly uncommon in these

crimes. It was at this point that the company agreed to send the suspect

an email. Similar to the first case, the email contained a link to Voyager

60

disguised as a thumbnail image, shown in Figure 22.

Voyager recorded two unique IP addresses accessing the link. The first

was quickly dismissed as an automated web crawler. The second however

was discovered to be within an range of addresses owned by Dropbox. Un-

fortunately they were unable to receive any response from Dropbox, so this

is where this avenue of investigation dead ends as the significance of this

finding is undetermined.

Figure 21: Example ransomware message, courtesy of the SCHTTF.

61

Figure 22: Example email containing a Voyager link disguised as a thumbnail,
courtesy of the SCHTTF.

4.2 Exploratory Results

The second case described above led to an interesting finding, an IP address

belonging to Dropbox being logged in an undetermined manner. As a result

of this, testing was conducted in order to observe what effects occurred when

accessing Voyager’s links from different mediums. Setup included provision-

ing a Voyager instance in the exact same manner that it would actually be

deployed, by using the provisioning script discussed in Section 3.2.

Once the instance was finished provisioning itself, images were uploaded

via the Voyager web interface. In order to keep all results completely segre-

62

gated, an independent image and thus link was used for each different medium

of access. This allows for an easy distinction when viewing the event log page

as each image was only accessed by one simulated scenario.

For this testing 7 different scenarios were explored. The selected scenarios

were used as they were the most likely cases to resemble the real world use

of Voyager. Each scenario along with its results are outlined below.

1. Standard WiFi, Macbook Pro, Google Chrome. Standard WiFi

refers to the network most people have at home. Specifically, there was

no user firewalls, VPN or other protections set up. The computer used

was a Macbook Pro. Google Chrome refers to the web browser used to

access the link.

The results of visiting the Voyager link are displayed in Figure 23. As

can be seen from the highlighted fields, Voyager correctly recorded the

IP address of the request and subsequently used that to identify the

city in which the computer is located. Additionally, the user agent

string was extracted from the request as well. From that string it can

be observed that the computer making the request was a Mac running

OS X version 10.14.1 and used the Google Chrome browser.

63

Figure 23: Using Google Chrome on a macbook pro connected to a home
WiFi network. (Scenario 1)

2. Standard WiFi, iPhone 11, Safari. Similar to the previous, a

standard WiFi network was used, but this time via a mobile device.

Safari is the standard iOS web browser that is on all of Apple’s devices.

Unsurprisingly, the results of this scenario were similar to the previous

one. Voyager was able to correctly identify the IP address and further

use it to geolocate the device. The main difference lies in the user agent

string field that was collected. Examining the event logged, shown in

Figure 24 can see that this time it identifies the device which made the

request as an iPhone using the Safari browser.

64

Figure 24: Using the Safari browser on an iPhone 11 connected to a home
WiFi network. (Scenario 2)

3. 4g Cellular Data, iPhone 11, Safari. This scenario was the first

to not be connected to the same standard WiFi network. Instead, a

4g cellular data connection was used to access the link, via the Safari

browser on an iPhone 11.

With this scenario came very interesting results. As with the last sce-

nario, the user agent string correctly identified the device as an iPhone

using the Safari browser. However, when resolving the geolocation of

the recorded IP address, it is identified as being from Temple City,

CA even though the actual device was located in the same location as

65

the previous scenarios. This can be seen in geo info displayed in Fig-

ure 25. This seems to align with the findings detailed in [20] in which

the authors examined the geolocation of ip addresses that were used

in cellular data networks. They concluded that the margin of error in

geolocation of these IP addresses was at least 100km (which is roughly

62 miles) for about 70% of there dataset. My result falls in this 70%

figure as the distance from Oxnard to Temple City is roughly 128 km

(80 miles).

This result is likely due to the use of NAT or Network Address Trans-

lation that is implemented by the mobile provider. Use of NAT by

mobile providers is increasingly common with the scarcity of space in

the IPv4 address range.

66

Figure 25: Using the Safari browser on an iPhone 11 with 4g cellular data.
(Scenario 3)

4. Standard WiFi, Macbook Pro, Google Chrome, Gmail Image

Attachment. This scenario is the first where the link was not directly

accessed in a browser. Rather than simulating a suspect clicking the

link, the file was included in an email using the “Attach Image” feature

in Gmail and inputting the URL.

Unlike the previous scenarios, this one generated two separate events in

Voyager’s event log. The first event logged was at the time of inserting

the image into the email. The second event was at the time of the

recipient opening the email which proceeded to load the included image.

67

Unfortunately, both events failed to log the actual IP address of the

user. Instead they logged the IP address and subsequently the location

of Google’s servers running their Gmail Image Proxy. These results

can be observed in Figure 26. Additionally, it can be seen that the user

agent string also collaborates this.

Figure 26: Using Google Chrome to view a Gmail image attachment on a
macbook pro connected to home WiFi. (Scenario 4)

5. Standard WiFi, Macbook Pro, Google Chrome, Gmail Hy-

perlink. Similar to the previous scenario this one also involved using

email, more specifically Gmail. This time, the Voyager link was set as

a hyperlink inside the body of the email.

68

Unlike the previous scenario however, there was only one event gener-

ated this time. This event occurred when the recipient clicked on the

hyperlink, directing them to the image hosted on Voyager. As with sce-

narios 1 and 2, the IP address of the device along with its geolocation

were correctly captured by Voyager. This makes sense as they effec-

tively accessed the link as anyone typing it into their browser would.

However, it is notable that Google does nothing to screen hyperlinks

in their emails.

6. Standard WiFi, Macbook Pro, Google Chrome, Dropbox URL.

While this scenario uses the same hardware as scenario 1, there is one

crucial difference. This scenario has the Voyager link being accessed via

a shortcut created via Dropbox. To access it, the shortcut was clicked.

Surprisingly, this scenario logged roughly the same information as sce-

nario 1. Unfortunately this leaves the question unanswered as to how

an IP address within Dropbox’s range was logged in Case 2 described

above.

7. Public WiFi, iPhone 11, Safari. This last scenario simulates a

criminal operating out of a cafe or other location with publicly acces-

sible WiFi. In this case I observed the effects of visiting a Voyager

link on an iPhone 11 that was connected to the free WiFi of a local

Starbucks. As shown in Figure 27, the IP address resolves to a location

that is consistent with the location of the Starbucks. Additionally, the

69

user agent string is no different then when visiting the Voyager link

over home WiFi or cellular data. This shows that even when visiting a

Voyager link from a public source without any other protections such

as a VPN or proxy, the collected information can still be of tremendous

use to investigators.

Figure 27: Using Safari browser on an iPhone 11 from public WiFi. (Scenario
7)

4.3 Observations

Examining the results of the previously described scenarios, both real world

and staged, we can observe many instances in which Voyager can be leveraged

70

to provide investigators another tool in their battle against cybercriminals.

In the majority of tested scenarios Voyager is able to record the actual IP ad-

dress of a suspect, allowing for easy geolocating of them as well as additional

follow up in the investigation. However, there are also multiple scenarios

where Voyager is not capable of identifying the sole IP address of a suspect.

While this is unfortunate, it may not be as detrimental as originally thought.

Often times the IP address logged can be identified as belonging to some sort

of organization, be it an ISP, mobile service provider, or even a Starbucks.

It is not always the case, but sometimes these organizations are often able

to provide investigators with useful information that can help lead to the

apprehension of the suspect.

Even though throughout the scenarios that were tested I was unable to

deduce how exactly the IP address described in Case 2 was logged, I also

eliminated multiple possibilities. It is worth noting though that is it entirely

possible the event logged was correct and in fact whoever accessed the link

was using a network that belongs to Dropbox. This is possible if they were

using a wireless network at a Dropbox office, or even accessed the link from

a server owned by Dropbox somehow. Without additional information from

the investigators as to their exact actions, as well as the exact results, it

is unlikely I will be able to determine the exact circumstances that led to

Voyager logging an IP address in Dropbox’s IP space.

When it comes to observations about this tool there is more to examine

71

than merely the output. A vital part of the project was creating an easily

usable and deploying system. Even a system with all the answers in the

world is likely to garner a groan of contention from its users if it is unreliable,

slow, or just too complicated to understand. With this in mind, Voyager was

designed to be as fast, simple, and easy to use as possible from the perspective

of the end user. A large amount of time was devoted to implementing this

design philosophy in regards to the creation process of new Voyager instance.

Being able to provision a blank EC2 instance to a fully operational Voy-

ager system through the use of one script is no small task. However, it pays

dividends in making Voyager easy to set up and pain free for the end user.

In addition to the script simplifying the provisioning process, it also greatly

speeds it up. During the testing of Voyager it took roughly 30 seconds to

create a new EC2 instance, including attaching the provisioning script, when

using the AWS console. Once the instance was created, and using a t2.micro

EC2 instance, it took roughly 3 minutes for the instance to be fully provi-

sioned. This 3 minutes includes all the set up that AWS does to create the

instance, along with the running of the provisioning script. Once complete,

the user is left with a fully running Voyager system, in under 5 minutes total.

In addition to a quick and easy method of standing up Voyager instances,

AWS EC2 instances provide cost effective computing resources for law en-

forcement. Using AWS’s pricing calculator 4 anybody is able to estimate the

4https://calculator.aws/

72

cost of running Voyager. Using 5 t2.medium instances (which each consist of

2 virtual CPUs, 4GB of memory, and low to moderate network performance)

along with 100GB of storage on an EBS the total comes to roughly $117.50

per month. Adding 5GB of standard S3 storage as well as 100GB of Glacier

storage (for previously processed .pcap files) only adds roughly $0.50. This

brings the total cost to about $118 per month to run 5 separate instances of

Voyager as well as store all process .pcap files in the cloud. Running an in

house server capable of the same performance would cost at least a couple

thousand dollars, for the server alone. Add to that all the potential expenses,

such as electricity, and the cost continues to rise. When considering these

costs coupled with all the other overhead that hosting a server in house re-

quires, it quickly becomes a much less feasible set up. In contrast, AWS

allows Voyager to be hosted for a fraction of the cost.

73

5 Conclusion and Future Work

5.1 Future Work

In the future there are multiple features that could be implemented to in-

crease the functionality and further refine the Voyager application. Addition-

ally, through further use of the tool the existing functionality and implemen-

tation can be refactored in order to better meet the needs of the investigators

who are using the tool. Some of the potential changes envisioned for Voyager

are discussed below.

5.1.1 Pcap Files

One potential problem with this application is that an attempt to scale it to

ingest large amounts of traffic, the pcap files recording the traffic grow in size

very quickly. While this has not been a problem during my testing there is

the potential for a problem to occur where the Python parser script will not

finish parsing all the pcap files in the directory because another instance of

it is spawned 2 minutes later. This creates the potential for multiple Python

parsers to attempt to access the same files, which could result in unexplored

error cases.

A possible solution to this problem would be to move away from tcpdump

74

and pcap files as a whole. One way to do this would be to leverage the Scapy

library being used in the Python parser. Scapy offers the ability to monitor

traffic on the network via its sniffer module. This approach would monitor

the traffic in real time and generate the same results of the Python parser

but on a packet by packet basis as opposed to parsing a pcap file full of traffic

on a set time interval. Thus, this would eliminate the need for tcpdump and

pcap files, resolving any problems they may create during periods of heavy

traffic. This however raises concerns over archiving and future review of data

as user will only have records of what Scapy saves. This makes it difficult if

user wanted to latter analyze all the traffic to see if any was missed or for

another reason.

Another potential approach would be to change the architecture to be

more microservice oriented. One way to go about this would be to automati-

cally store all recorded pcap files in an AWS S3 bucket. Then you would use

a λ function, which is trigger via new pcap files being added to the bucket, to

add those files to an AWS Simple Queue Services queue. Lastly, the parser

would then pull pcap files from the queue to process. This approach has

several possible advantages. One such being that you could have multiple

parsers running across multiple EC2 instances, all pulling from the queue

without any worry of potential conflicts. Another advantage is the extreme

cost effectiveness of storing all the pcap files on S3.

75

5.1.2 Authentication

Perhaps one of the most straight forward ways in which to increase the se-

curity of this application would be to implement some sort of login or user

authentication for accessing the non-artifact pages of the application (such

as the file upload and log pages). Currently these pages are restricted using

the Apache htaccess feature (login and password required to enter the site).

5.1.3 Leverage Additional AWS Resources

An additional feature that would increase the overall security of the appli-

cation would be splitting it up onto multiple EC2 instances. Serving the

application that allows for file upload and event viewing from the artifact

hosting would server to sandbox the parts and help to avoid any overlap.

With the current implementation there is the possibility that someone who

goes to view an artifact could potentially find their way to other pages hosted

on that domain, such as the file upload or log pages. However, if these pieces

were separated, along with the database, one could leverage AWS features

such as the Virtual Private Cloud to ensure sensitive resources are not ac-

cessible by everybody.

An additional benefit gained from using separate EC2 instances is that

it would allow for the use of HTTPS on the instance hosting the database

76

as well as the upload and log pages. This would mean that the traffic when

using those pages would be encrypted. At the same time, since they are on

separate instances the files that are hosted would be able to remain using

HTTP allowing the traffic to be recorded using tcpdump.

Furthermore AWS offers a robust toolkit of cloud computing functionality,

featuring many tools that could potentially be used to expand Voyager. More

research would need to be done to determine which tools to leverage and how

to integrate them into the current project.

5.1.4 Addressing VPNs, Proxies, and TOR

With the current implementation of Voyager there is no way to distinguish

if somebody is using a VPN or a proxy. In these cases, Voyager will only

be able to log the IP address of the exit node for their traffic rather than

their real IP address. Adding techniques for detecting the presence of proxies

described in [16] would potentially allow for the detection of proxy but would

not allow for the detection of any information about the user behind that

proxy unless they were not using a fully anonymized one.

In a similar vein, use of TOR or The Onion Router by the client would

serve to stop identification of a suspect. TOR is “a distributed overlay net-

work designed to anonymize TCP-based application” [5]. It functions by

essentially routing your traffic through a number of intermediary servers be-

77

fore it reaches its real destination. These intermediary servers only know the

previous and the next destination, and are thus unaware of where the traffic

originated or where its final destination is. However, much like user agent

string analysis, discussed in the next section, there is a large amount of re-

search being done to investigate how secure TOR really is. Many approaches

have been developed to deanonymize traffic on the TOR network. One such

example that could be leveraged is a basic website fingerprinting attack, de-

tailed in [14]. Many other more advanced techniques become feasible with

the computing resources and state of the art algorithms of a nation state or

similar entity.

5.1.5 User Agent String Analysis

While Voyager does extract the user agent string from requests, it does not

perform any sort of analysis on the extracted string. However, these strings

are potentially capable of yielding large dividends if analyzed correctly. The

information contained in the user agent string has been leveraged before in

attempts to track users across attempts to change or mask their IP address.

Performing analysis on the user agent strings in the web traffic captured

would provide an interesting addition to Voyager’s toolkit and make it even

more robust in its ability to provide investigators with as much information as

possible. However, “the analysis of these strings is a complex endeavor” [12]

as they vary greatly in format. Additional information about this technique

78

along with other more advanced ones such as checking installed fonts and

plugins can be found at the Panopticlick5 project.

5.1.6 Addressing HTTPS

HTTPS or Hypertext Transfer Protocol Secure is a more secure version of

HTTP which offers encryption of network traffic using TLS or SSL. HTTPS’s

use and adoption has grown greatly in recent years as companies and users

alike have become more security conscious. While this is undoubtedly a

positive change in the internet it presents a problem for Voyager. Many

users may shy away from accessing sites that do not support HTTPS, as

it means the traffic between them is in plaintext and can be intercepted.

In Voyager’s case, we must not leverage HTTPS or we would be unable

to read the traffic that is recorded by tcpdump into the pcap files. One

potential solution would be moving away from tcpdump to some tool or

functionality that allows Voyager to log the network requests after they have

been decrypted on the server. Further investigation is required but this may

be accomplished by recording the requests inside the server side application

as once it receives the requests they have already been decrypted.

5https://panopticlick.eff.org/

79

5.2 Conclusion

As described by Kimo Hildreth, a member of the SCHTTF, “Voyager is a

tool in the arsenal of an investigator”. Voyager is not capable of solving cases

on its own. While it sometimes works extremely successfully, identifying the

IP address of an attack and allowing investigators to obtain a search warrant,

this is not always the case. In most situations Voyager can be used to guide

investigation efforts and reveal new paths of investigation that may have

otherwise been unknown.

Furthermore, Voyager demonstrates the ability of a partnership between

law enforcement and academia to be a symbiotic relationship. Students gain

the ability to develop tools that will not only see use but also serve to make

a difference in the world. While law enforcement can gain insight into new

techniques and methods they can leverage in their investigations.

It is evident that the struggle between law enforcement and cybercrimi-

nals is not going to be slowing down any time soon. As such, law enforcement

must adapt in order to stay relevant and capable of bringing these criminals

to justice. One such method to do so is by constantly developing new tools,

techniques, and procedures to combat the crime they investigate. While it

is impossible for a single tool to the end all answer to the problem these in-

vestigators face it is my belief that by implementing some of the future work

mentioned previously, along with other refinements, it is entirely possible for

80

Voyager to become an even more useful tool in the arsenal of the SCHTTF.

81

References

[1] Mohammed M. Alani. Guide to OSI and TCP/IP Models. Springer

International Publishing, Cham, 2014.

[2] Amazon Web Services Inc. Amazon s3 simple storage service pricing,

2020. https://aws.amazon.com/s3/pricing/, Last accessed on 2020-

08-10.

[3] Amazon Web Services Inc. Tagging your amazon ec2 resources,

2020. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

Using_Tags.html?icmpid=docs_ec2_console, Last accessed on 2020-

07-12.

[4] Samuel Decanio, Michael Soltys, and Kimo Hildreth. Voyager: Tracking

with a click. Procedia Computer Science, 176:98 – 107, 2020. Knowledge-

Based and Intelligent Information Engineering Systems: Proceedings of

the 24th International Conference KES2020.

[5] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The

second-generation onion router. In Proceedings of the 13th Conference

on USENIX Security Symposium - Volume 13, SSYM’04, page 21, USA,

2004. USENIX Association.

[6] Emsisoft Malware Lab. Caution! Ryuk Ransomware decryp-

tor damages larger files, even if you pay: Emsisoft: Secu-

82

https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html?icmpid=docs_ec2_console

rity Blog, Dec 2019. https://blog.emsisoft.com/en/35023/

bug-in-latest-ryuk-decryptor-may-cause-data-loss/, Last ac-

cessed on 2020-07-12.

[7] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk

Nielsen, Larry Masinter, Paul J. Leach, and Tim Berners-Lee. Hyper-

text transfer protocol – http/1.1. RFC 2616, RFC Editor, June 1999.

http://www.rfc-editor.org/rfc/rfc2616.txt.

[8] Rajesh Kumar Goutam. The problem of attribution in cyber secu-

rity. International Journal of Computer Applications, 131(7), December

2015.

[9] Pete Hunt, Paul O’Shannessy, Dave Smith, and Terry Coatta. React:

Facebook’s functional turn on writing javascript. Queue, 14(4):96–112,

August 2016.

[10] Internet Crime Complaint Center. 2019 internet crime report, Feb 2020.

https://pdf.ic3.gov/2019_IC3Report.pdf, Last accessed on 2020-

07-12.

[11] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and

Engin Kirda. Cutting the gordian knot: A look under the hood of ran-

somware attacks. In Magnus Almgren, Vincenzo Gulisano, and Federico

Maggi, editors, Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 3–24, Cham, 2015. Springer International Publishing.

83

https://blog.emsisoft.com/en/35023/bug-in-latest-ryuk-decryptor-may-cause-data-loss/
https://blog.emsisoft.com/en/35023/bug-in-latest-ryuk-decryptor-may-cause-data-loss/
http://www.rfc-editor.org/rfc/rfc2616.txt
https://pdf.ic3.gov/2019_IC3Report.pdf

[12] Jeff Kline, Paul Barford, Aaron Cahn, and Joel Sommers. On the struc-

ture and characteristics of user agent string. In Proceedings of the 2017

Internet Measurement Conference, IMC ’17, pages 184–190, New York,

NY, USA, 2017. Association for Computing Machinery.

[13] T. Laakko and T. Hiltunen. Adapting web content to mobile user agents.

IEEE Internet Computing, 9(2):46–53, 2005.

[14] Aleksandr Lazarenko and Sergey Avdoshin. Anonymity of tor: Myth

and reality. In Proceedings of the 12th Central and Eastern European

Software Engineering Conference in Russia, CEE-SECR ’16, New York,

NY, USA, 2016. Association for Computing Machinery.

[15] Dhruv Pandya. Voyager: Identifying IPs from Online Clicks . Master’s

thesis, California State University, Channel Islands, 2017.

[16] M. Pannu, B. Gill, R. Bird, K. Yang, and B. Farrel. Exploring proxy

detection methodology. In 2016 IEEE International Conference on Cy-

bercrime and Computer Forensic (ICCCF), pages 1–6, June 2016.

[17] Jon Postel. Internet protocol. STD 5, RFC Editor, September 1981.

http://www.rfc-editor.org/rfc/rfc791.txt.

[18] Jon Postel. Transmission control protocol. STD 7, RFC Editor, Septem-

ber 1981. http://www.rfc-editor.org/rfc/rfc793.txt.

[19] State of California - Department of Justice - Office of the Attorney Gen-

eral. High technology theft apprehension and prosecution (httap) pro-

84

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt

gram, Nov 2015. https://oag.ca.gov/ecrime/httap, Last accessed

on 2020-07-12.

[20] Sipat Triukose, Sebastien Ardon, Anirban Mahanti, and Aaditeshwar

Seth. Geolocating ip addresses in cellular data networks. In Nina Taft

and Fabio Ricciato, editors, Passive and Active Measurement, pages

158–167, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

85

https://oag.ca.gov/ecrime/httap

	Introduction
	Background
	AWS
	S3
	EC2
	EBS

	The OSI Model
	The TCP/IP Model
	HTTP
	User Agent Strings
	HTTP Methods

	The Southern California High Technology Task Force
	Combating Child Pornography
	Mortgage Scams
	Ransomware Attacks

	Design and Implementation
	Hosting Server
	Provisioning
	Web Interface
	Front End
	Home Screen
	Photo Log
	Photo Details
	Event Log
	Event Details

	Back End and Server Side

	Data Storage
	Capturing Network Traffic
	Analyzing The Traffic

	Observations and Results
	Real World Usage and Results
	Case 1
	Case 2

	Exploratory Results
	Observations

	Conclusion and Future Work
	Future Work
	Pcap Files
	Authentication
	Leverage Additional AWS Resources
	Addressing VPNs, Proxies, and TOR
	User Agent String Analysis
	Addressing HTTPS

	Conclusion

	References

