Channel Islands

CALIFORNIA STATE UNIVERSITY

Malware Persistence Mechanisms

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

Student Name: Advisor:

Zane GITTINS Dr. Michael SOLTYS

July 2020

© Year
Zane Gittins

ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

\l\/\&l\r@\v{\ Nov 23, 2020

Advisor: Michael Soltys Date
Reza Abdolee Date
Socrates Frangis Date

APPROVED FOR THE UNIVERSITY

Name Date

Michael Soltys
Nov 23, 2020

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of

the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Malware Persistence Mechanisms, Masters Thesis

Title of ltem

Malware, persistence, cybersecurity

3 to 5 keywords or phrases to describe the item

Zane Gittins

Author(s) Name (Print)
Do\ 3]0

Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Zane Gittins
Malware Persistence Mechanisms, Masters Thesis

Zane Gittins
Malware, persistence, cybersecurity

Zane Gittins
Zane Gittins

Malware Persistence Mechanisms

Zane Gittins

November 23, 2020

Abstract

In the public imagination Cybersecurity is very much about mal-
ware, even though malware constitutes only part of all the threats
faced by Cybersecurity experts. However, malware is still one of the
best methods to gain persistent access and control of a target system.
There are many methods to deploy malware to a target system, a
common method is a well socially-engineered phishing attack that de-
ceives a user to gain a foothold on a system. Once the attacker gains
a beachhead in the victim’s network, it may be used to download ad-
ditional payloads and exploit vulnerabilities, to gain more control and
access within a network. Using malware as their foothold, attackers
are able to to conduct reconnaissance, gather intelligence (e.g., exfil-
tration of intellectual property) or simply inflict damage or extortion
(e.g., ransomware). All of this has to be done in a way that allows an

attacker to retain access for as long as possible; the ability to do so is

called persistence, and this thesis examines some of the different tech-
niques used by malware authors to accomplish persistence in an ever
evolving landscape. In the second section of this thesis we propose an
architecture for detecting malware persistence mechanisms, and give

examples to detect the malware that we cover in the first section.

Contents

1 Introduction

2 Contributions

3 Persistent malware

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Emotet
Ocean Lotus Symantec DLL Hijacking
TrickBot
Ocean Lotus — Explorer-COM Hijack
Agent Tesla

Search Protect

Detection Architecture

Windows Event Logs
Windows Event Forwarding
Apache Kafka oo
Logstash

Elasticsearch

16
24
28
35
46

5 Conclusion

References

i

74

79

List of Figures

10
11
12
13
14
15
16
17
18

Pyramid of Pain. 7
Steps that lead to an Emotet infection. 11
Vulnerable LoadLibraryW Call 19
Functions Imported from DLL 19
Library Exports oo 22
DNS Request 24
Process Monitoro 34
COM Export 35
MZ file signature oL 36
Steganography 37
Agent Tesla Structure 37
SetWindowsHookEx 00 40
Hook Function 40
vkCode 41
Screen Capture 41
Fakemail Agent Tesla 44
Visualization Layer Diagram. 53
Detection Architecture Diagram. 56

iii

1 Introduction

Malware authors continue to seek more advanced methods to maintain Per-
sistence on target systems. We define persistence as the method by which
malware survives a reboot of the victim operating system, and is a key el-
ement of attacks that require attackers to Pivot through a network to ac-
complish their objective. Pivoting is the process by which an attacker moves
from a compromised system that they control to otherwise innacessible sys-
tems [35]. Traditional methods for persistence are increasingly detected by
defenders and anti-virus software. This thesis seeks to give a deep dive on a
subset of persistence mechanisms used by malware. We start with traditional
persistence mechanisms used by criminal elements, and then analyze more
sophisticated persistence mechanisms believed to be utilized by nation state
actors. These more advanced persistence mechanisms are harder for defend-
ers to identify, and are less likely to be discovered by defenders. More obscure
persistence methods do not appear in common tools used by defenders such
as Autoruns. Autoruns is a utility that is apart of Microsoft’s system inter-
nals toolkit, which covers a wide range of auto-start locations [23]. These
techniques are generally deployed first by nation state actors, and later make
their way into criminally operated malware. One example of this is the tech-
nique known as application shimming, with the first known public sample as
Black Energy, which had application shimming capabilities added as early as

April 2013 [29]. This technique was later discovered in the banking trojan

Gootkit in 2014, and Dridex in 2015. The terminology of Advanced Persis-
tent Threat denotes a state-sponsored group with superior capabilities and
funding that gains unauthorized access to a system and remains undetected
for an extended period of time. These groups continue to attack their tar-
gets, even after failures, and often seek to deceive, deny, degrade, destroy,
and disrupt their adversaries. The advances in malware development made
by sophisticated groups often make their way into the hands of criminals, and
then become commodities on the Internet available at little or no cost to less
sophisticated actors. In the following sections we discuss malware samples
and the persistence techniques they use. At the end of each section we map
the persistence technique to the Mitre Attack framework. Mitre Attack is an
industry standard knowledge base for attack tactics and techniques. Mitre
Attack is organized in categories of tactics. The categories are initial access,
execution, persistence, defense evasion, credential access, discovery, lateral
movement, collection, command and control, exfiltration, and impact. The
subject of this thesis is the techniques used by malware authors to achieve
persistence, and therefore all map to the persistence tactic of Mitre Attack.
As of 2020, Mitre Attack currently lists 63 persistence techniques [24], and
there are undoubtedly more techniques not listed within Mitre’s framework.
In this thesis We cover examples of three common techniques in the persis-
tence category, and three more advanced techniques. In the second section
of this thesis, we propose an architecture for detecting persistence mecha-

nisms used by malware. First, we provide a generic architecture, and then

we discuss open source projects that can be used to satisfy this architecture.
Lastly, we dicuss how this architecture can be used to detect the malware

samples presented in the first section.

2 Contributions

This thesis provides analysis that focuses on the persistence mechanism of
several malware samples. All samples except the Ocean Lotus COM hijack-
ing sample have been analyzed previously, however these samples were not
analyzed with a focus on their persistence mechanism. By highlighting mal-
ware persistence mechamisms, we believe that malware eradication efforts
are made easier for defenders, as removing a persistence mechanism will stop
the malware from surviving a reboot of the victim operating system. In
some of the samples we analyzed, we provide custom tools and scripts to aid
in analysis, these scripts are available on Github. For example, in the case
of Trickbot, we provide a python script which uses regular expressions to
unwind obfuscated JavaScript. The JavaScript is obfuscated by creating a
mapping from numeric digits to characters, the python script scans an obfus-
cated JavaScript payload, creates a dictionary to unwind the encoding, and
then applies this dictionary to the payload. In the analysis of AgentTesla,
We provide a python program named Fakemail, which is a DNS and SMTP
server used to capture the data exfiltrated by AgentTesla and identify com-
mand and control servers used by AgentTesla.

We discovered a malware sample that uses COM Hijacking for persis-
tence using the malware sandbox Hybrid Analysis. This is important as it
identifies a new persistence technique likely used by the Ocean Lotus threat

group [6] that was not previously publicaly known to the security community.

Identifying this sample as possibly tied to Ocean Lotus allows defenders to
sweep their environments for this technique, and possibly identifiy Ocean Lo-
tus activity within their environments. Understanding threat groups allows
organizations to priortize defenses, and create strategies that seek to limit
the chances of success for attackers.

In the last section, we propose an architecture for detecting the malware
analyzed in the first section. This architecture makes use of open source and
free to use projects, and is a strong starting point for organizations who wish
to gain better optics into security events within their environments at little
cost.

We seek to explain each topic thoroughly, and make each section ap-
proachable, however this thesis assumes some knowledge of various operating
system and networking concepts. Specifically the malware analyzed in this
thesis all targets the Windows system, so to get the most out of this the-
sis the reader should have a basic understanding of the Windows operating
system and networking fundamentals. A high level understanding of DNS,
SMTP, and TCP/IP will greatly help when reading this thesis. Several of
the tools created to aid in the analysis of malware samples were written in
Python, so having an understanding of the language will help when reading
the code snippets within this thesis. Additionally, a high level understanding
of assembly is useful in understanding some of the techniques discussed, such

as web injections.

3 Persistent malware

In this section we are going to examine six representative samples of malware:
Emotet, Ocean Lotus Symantec DLL Sideloading, TrickBot, Ocean Lotus —
Explorer-COM Hijack, Agent Tesla, and Search Protect. Search Protect is
often classified as a potentially unwanted program, but we included it in our
analysis because it was a good representitive sample of a lesser used per-
sistence technique. We start each section with a brief summary of the file
type that carries the malware, together with its SHA256 signature. SHA256
Signatures are unique strings generated by the SHA256 hashing function,
hashing functions are one-way functions that return an output of a set size
given an arbitraty input. Hashing functions are commonly used in computer
security because they allow for the unique identification of files. We include
the hashes of the samples we analyzed so that our analysis may be verified,
and so the reader may follow along in analyzing malware while reading this
thesis. In the cases of the malware we analyzed, defenders using the SHA256
hash to identify and subsequently block the malware is a poor technique, this
is because these samples are constantly updated by their authors, or were
used in targeted attacks and likely compiled for each campaign. When devel-
oping detections it is best to look at the techniques, tactics, and procedures
of the attackers and build detections around them that are not easily changed
by malware authors. It is for this reason that We concentrate our analysis on

the persistence mechanism, which allow defenders to better detect existing

malware as well as prevent malware infections in the future. This idea is well
illustrated by David Bianco’s Pyramid of Pain, which illustrates that indi-
cators such as file hashes and IP addresses are easy for an actor to change,

however techniques and procedures are more difficult [1].

Tough
Tools Challenging
Network / Host Artifacts Annoying
Domain Names Simple

Trivial

Figure 1: Pyramid of Pain

3.1 Emotet

Word Document

SHA256 94926C8520049F7EE51334D699DFC63EB3DB7DDD9C29946161689E1E33BFCOF5

Emotet, also known as Geodo, is an information collection malware that

is used to install additional malware on victims. At the time of this writing,

Emotet targets solely Microsoft Windows systems. Emotet was first seen in
2014, and at that time its capabilities largely focused on stealing banking
credentials by using Web Injections. Web Injections are a technique where
malware intercepts Windows API functions called by the browser. The pro-
cess of intercepting a function is called hooking. There are many forms of
hooking, such as inline-hooking, and Import Address Table (IAT) hooking.
The Import Address Table is a table loaded in memory which keeps track of
the addresses of dynamic link libraries loaded within an executable [3]. An
attacker can modify the address of a module in the Import Address Table,
thereby intercepting a function call. In order to modify the Import Address
Table attackers must calculate its position in memory, this can be done by
inspecting the portable executable (PE) header of the application. The PE
format is a file format specification used by executables and dynamic link
libraries on Windows systems. the Generally in the case of Web Injections,
inline-hooking is used. Inline-Hooking is where a function in the victim pro-
cess is patched, in memory, to have a JMP instruction at the beginning, that
redirects to a new function that the attacker has written to the memory of
the victim application. This allows an attacker to intercept function para-
maters, and modify the result of the function. A commonly hooked function
to perform Web Injections on Windows is HttpSendRequestA. By intercept-
ing this function, the malware can scan HTTP requests for sensitive data
such as credit card numbers and login details, and send these to the operator

of the malware, all occuring silently to the infected user.

In the original versions of Emotet, initial access to target systems was
gained through email campaigns. These emails often contained the mali-
cious executable, or contained a link that tempted victims to download and
run a malicious executable [13]. The executable would manipulate victims’
browsers to show fake content overlaid on top of webpages. This technique
was used to steal credentials to sensitive accounts, such as username and
password pairs for online banking websites.

Until 2015, Emotet was for sale on public forums [16], after which its sale
became private. Since Emotet became private, its capabilities have shifted to
support reconnaissance, and serve as a first stage in an infection chain that
may lead to additional malware being installed on victim systems. Emotet
has been observed deploying the trojans Dridex and Qakbot, information
stealer Trickbot, as well as the Ryuk ransomware. These malware samples
are operated by a wide range of actors, suggesting that Emotet operators sell
the access they obtain to other criminals. This model has been referred to
as access as a service, following the naming convention given to recent cloud
technologies. Ryuk is a ransomware tailored to target corporate environments
[12], due to the variance in ransom demands, CrowdStrike believes that Ryuk
operators calculate the price of a ransom per victim. This suggests that
Ryuk operators have maintained a presence in victim networks and have
thoroughly enumerated networks to determine their cost. Outsourcing the
initial access stage to Emotet operators allows Ryuk ransomware actors to

focus their efforts on the ransomware itself, and is a concerning development

which shows that malware authors are becoming increasingly specialized.
This specialization may be a quality that makes Emotet popular in criminal
communities, not worrying about initial access allows criminals to focus on
value generating strategies, such as ransomware, fradulent transactions, and
theft of valuable credentials.

At the time of this thesis, Emotet still uses malicious emails to gain initial
access, however these emails now contain Microsoft Office documents with
embedded Visual Basic macros. Visual basic macros allow users to extend
Microsoft Office applications by using the Visual Basic programming lan-
guage, which can be used to automate tasks and provides a rich feature set.
However, these Macros are commonly used by attackers to execute malicious
code when an office document is opened by a user. Using the Visual Basic
functions AutoOpen and Document_Open allows for malicious code to exe-
cute when a Microsoft office document is opened. Microsoft Word supports
five auto macros, AutoExec, AutoOpen, AutoOpen, AutoClose, and AutoExit
[22]. These functions can be used to run Visual Basic code automatically,
and are often abused by malware authors. For example, the AutoOpen func-
tion runs malicious code whenever the document is opened. In the case of
this Emotet sample, the Document_open function is used, which causes vi-
sual basic code to be executed when the malicious document is opened by the
victim, and the victim enables Macros for the document. The visual basic
Macros used in this sample were heavily obfuscated, junk instructions were

inserted and the names of variables were randomized, furthermore, execu-

10

tion flows through several unnecessary functions before reaching real code.
Obfuscation can make it more difficult for automatic malware scanners to
identify the sample as malicious, and also make it more difficult for malware
analysts to determine the result of the Macros. Code to execute malicious
PowerShell is embedded within several form variables within the document.
Form variables can be accessed by Visual Basic and are often used by mal-
ware authors to store malicious content within a document. On execution
of the macro, the contents of several form variables are appended together
to create a call to PowerShell.exe with Base64 encoded PowerShell code
as an argument. As soon as these Macros are executed, the PowerShell
code is launched. PowerShell is a Windows command-line shell built on top
of the .NET Framework, which accepts and returns .NET objects. In this
Emotet loader visual basic Macros embedded within an Office document are
used to execute PowerShell code on the victim system, and this PowerShell
code downloads the next stage of the malware. Because the arguments for
PowerShell.exe are constructed at runtime it makes it more difficult for
static analysis engines to detect the visual basic code as malicious. Figure 18

displays the process.

Figure 2: Steps that lead to an Emotet infection.

PowerShell.exe can be called with the parameter -EncodedCommand

11

with Base64 encoded PowerShell code as the value. This is a powerful fea-
ture, but it is often abused by malware to hide the content of a payload
within a Base64-encoded string. There are many techniques for hiding and
obfuscating PowerShell. Some of these techniques include inserting escape
characters, using PowerShell aliases, and abusing how each Cmdlet returns
a .NET object to make it difficult to statically analyze the code. Cmdlets
are commands in PowerShell that typically return a .NET object to an-
other cmdlet in the pipeline. An example of a cmdlet is the Get-ChildItem
cmdlet, which can be used to list the contents of a directory, much like the
1s command on Unix. Inserting escape characters into PowerShell code does
little to deter a determined defender, however it does make it more difficult
for anti-virus programs, which may be searching for specific strings, from
identifying a sample as malicious. PowerShell aliases allow for shortened
versions of PowerShell cmdlets, for example the cmdlet Invoke-Expression
can be shortened to IEX. Attackers may use expressions like Get-Command
which returns a PowerShell object, and can be invoked, to further obfuscate
scripts. These are only a few of the techniques that may be used to obfuscate
PowerShell code. A defense against malicious scripts in Windows is AMSI,
the Antimalware Scan Interface. AMSI allows applications to interface with
Windows security data. This data includes PowerShell scripts, user access
control prompts, memory scans, and more [17]. There are bypasses that ma-
licious actors may use to disable AMSI, a perpetuation in the cat and mouse

game of malware detection. One technique proposed by Cyberark disables

12

AMSI by loading a C# dll into the malicious process and modifying the
memory of the AmsiScanBuffer function. This technique patches the length
variable in AmsiScanBuffer to be 0 by xoring it with itself, this causes the
AmsiScanBuffer to fail to detect malicious PowerShell code [11].

Emotet invokes PowerShell with a Base64-encoded payload. This Pow-
erShell payload attempts to download the Emotet binary from five unique
command and control servers. Command and Control servers are systems
controlled by attackers which are used to communicate with malware on
compromised systems. The use of five command and control servers provides
this stage of the attack some resiliency; if any of these servers are success-
fully contacted, then the other servers under the attacker’s control are not
needed, and hence not contacted. Due to this, defenders only looking at
network traffic may miss some of the command and control servers and fail
to have a complete understanding of the attacker’s infrastructure.

If PowerShell successfully downloads the next stage from a command and
control server then a Windows executable named 377 .exe is saved with the
contents returned by the attackers server. The name of this executable differs
between samples, however in all cases we analyzed executables contained only
numeric names. However, other Emotet executables have been reported with
names containing a wide range of characters, this should not be used as any
sort of indicator of an Emotet infection. In our sample, 377 .exe is started
by PowerShell by making a call to the .NET System.Diagnostics.Process

class. When run with the name 377.exe, and administrative permissions,

13

the executable saves an exact copy of itself to the following location:

C:\Users\TargetUserName\AppData\Local\monthlymaker

Where TargetUserName is the name of the infected user. The executable
name varies between samples, however the directory is consistent in the
samples that we analyzed. 377.exe then starts the copy of itself called
monthlymaker.exe and deletes itself from the victim’s disk. monthlymaker.exe
then creates a service for persistence. Windows Services allow for the cre-
ation of executables that run for an extended duration, and that can be set
to run when a computer boots, similar to systemd on Unix. The service
created by monthlymaker.exe has the path where monthlymaker.exe was
saved, and has a description that is an exact copy of a legitimate Microsoft
Windows description for a service, in one case the description was copied
from Bitlocker’s service. By using the same description as the legitimate
Bitlocker service, the malicious service may be more difficult to spot by de-
fenders. Bitlocker is a encryption feature in Microsoft Windows [5]. The
service start type is set to automatic, which will cause monthlymaker.exe to
start each time the operating system does. There are five types of start types
for Windows services, automatic, boot, disabled, manual, and system. The
autmomatic start type starts the service at system startup. The boot type
starts drivers, and is only valid for driver services. The disabled start type
is for services that are inactive on the system. The manual start type allows

users and applications to manually start the service, but the service will not

14

be started automatically by the system. Lastly, the system start type is for
drivers started by the I0InitSystem function [18]. The most commonly used
start type by malware is the automatic start, because it allows malware to
start each time the system does, Rootkits are malware designed to give an
attacker super level access, and thus run in the kernel, and in Windows may
be implemented as services with the start type of boot or system. The name
of the service created by our sample was monthlymaker however this varies
from sample to sample. In the Mitre Attack Framework service creation is as-
signed the identifier T1050, and is a widely used technique by many malware
strains.

Defenders can detect variants of Emotet that use services for persistence
by monitoring for Windows event ID 7045 in the Windows system event log,
on Windows 2008R2 and later systems. Event logs are files on Windows sys-
tems that store events that occur on a system. Events include security data,
error logs, access logs, and many more [21]. Event ID 7045 is generated on a
Windows System whenever a new service is installed on a system. Event ID
7045 contains the service name, image path, service type, and account name
that the service runs under. The image path is the location of the executable
that the service will run, in this case the image path stores the file path to
the monthlymaker.exe executable. Another event ID that can be used to
detect service creation is event ID 4697 in the security log. This event ID
contains additional information compared to event ID 7045, namely, it con-

tains the user account and SID that the service will run under. Event ID 4697

15

is not enabled by default, and will require success auditing to be enabled
for the auditing category Audit Security System Extension. By carefully
monitoring this persistence mechanism in their environments, defenders can
create a reliable method for detecting variants of Emotet that use malicious
service creation for persistence. Additionally, monitoring for irregular service
creation is a strong method for identifying numerous other malware samples
and malicious actors that make use of this technique. In order to effec-
tively monitor service creations defender’s require a strong understanding of
their current environment, because service creation is common for legitimate
programs. It will also be necessary for defenders to centralize event logs
into one location, to run analytics and rules against. Common solutions to
this are security information and event management systems (SIEM), there
are a number a free and open source tools that can also aid defenderes in
centralizing logs such as Elasticsearch, Winlogbeat, Apache Kafka, Kibana,
Elastalert, Wazuh, Security Onion, Windows Event Forwarding, and many
others. Combining these technologies, defenders can create a strong solution

to centralize and alert on irregular service creation within their environments.

3.2 Ocean Lotus Symantec DLL Hijacking

Vulnerable Symantec RasTLS Application

SHA256 FOEBF6AEB3FOFBOC29BD8F3D652476CD1FES8BD9AOC11CB15C43DE33BBCEOBF68

Ocean Lotus Dynamic Link Library

16

SHA256 O06DECO082EAC094DCOB4B3DE8854F190F1D3112DADA0D414D9A085A0EE309199

Ocean Lotus is an advanced persistent threat, also known as Seal.otus,
APT-C-00 and APT32, that has been followed closely by security firms such
as ESET. Ocean Lotus is believed to be backed by the Viatnamese gov-
ernment, as their campaigns closely align with Viatnamese interests. Lotus
targets have included companies, governments, and dissidents. Most known
targets of Ocean Lotus have been located in and around Southeast Asia [7].
Ocean Lotus is also known for targeting foreign private sector companies
with operations in Vietnam [2]. Known private sector targets have included
companies from the United States, Germany, China, and the Philippines.
Ocean Lotus makes heavy use of spear phishing emails in their campaigns,
these emails have the goal of getting the victim to interact with a malicious
attachment so that Ocean Lotus can infect the victim with one of their pay-
loads. Attachments have included Microsoft office documents with malicious
Macros, as well as executables with names that are written to appear like
they are documents.

In 2018, the security firm ESET released a whitepaper [8] which described
how Ocean Lotus deployed a backdoor which made use of a flaw in the Syman-
tec Network Access Control application to maintain persistence and bypass
security products. In the ESET report, Ocean Lotus delivers their payload
through email, using names that entice their targets to open a malicious
executable. One example of the initial executable from the ESET report is

"Mil7 Technical issues — Phonesack Grp.exe”, the name is crafted in a way

17

to convince the target that this is not an executable, but a document. When
opened, these files execute their payload as well as open a document on the
victim’s computer. The title of one of the documents includes the word Mil7
[8]. The Mil7 is a Russian made helicopter, this suggests their targets may
be interested in the Mil7, as phishing documents are usually crafted to be
enticing to their targets. This backdoor has only been observed effecting tar-
gets running Microsoft Windows. The flaw used by Ocean Lotus to maintain
persistence is a common technique, which makes use of the lack of validation
when the Symantec Network Access Control application loads a dynamic
link library. This vulnerability is a flaw overlooked by the developers of this
version of the Symantec Network Access Control application. This technique
is known as DLL-sideloading, and has identifier T1073 in Mitre Attack. Dy-
namic link libraries, abbreviated as DLLs, are libraries that contain code
that can be used by multiple programs simultaneously. DLL-Sideloading is
a technique where an attacker causes an unintended library to be loaded.
By placing a malicious DLL with the same name that the Symantec product
expects, and by exporting the same functions as the legitimate library, Ocean
Lotus is able to force the Symantec Network Access Control application to
load a malicious dynamic link library. It appears that Ocean Lotus deletes
the legitimate symantec library, and replaces it with their own malicious li-
brary. Because this version of the Symantec application does not check the
digital signature of the RasTls.dl1l library it loads, attackers are able to

force the application to execute their malicious code. The vulnerability oc-

18

curs when the Symantec Application attempts to use LoadLibraryW to load

the RasTls.d1ll with no validation:

local 4 = DAT 00410358 ~ (uint)local_414;
GetWindowsDirectoryW(local_ 414,0x104);
HVarl = LoadLibraryW(L"RasTls.dll"):;

* (HMODULE *) (unaff ESI + 4) = pHVarl;

Figure 3: Vulnerable LoadLibraryW Call

When the Symantec Network Access Control application attempts to call
one of the functions imported from the malicious library, the Ocean Lo-
tus code executes. Instead of the legitimate function embedded within the
real dynamic link library, a malicious function is imported and executed.
The Symantec application can be seen importing these functions from the

RasTls.dll here:

pVar2 = GetProcAddress (* (HMODULE *) (unaff ESI + 4),"RasEapGetInfo”):

* (FARPROC ¥*) (unaff ESI + 0Oxc) = pVar2;

if (pVar2 '= (FARPROC)0x0) {
pVar2 = GetProcAddress (* (HMODULE *) (unaffi ESI + 4),"RasEapFreeMemory"”);
* (FARPROC *) (unaff ESI + 0x14) = pVar2;
if (pVar2 != (FARPROC)0x0) {

Figure 4: Functions Imported from DLL

It does not appear that the malicious library maintains any of the original
functionality of the original library, and therefore may cause instability in the
Symantec application.

AppLocker is a tool created by Microsoft to enable application whitelist-
ing. AppLocker can be used to block unknown applications from running

on a system, and is a powerful feature for defending Windows systems [19].

19

For example, AppLocker can be configured to only allow executables signed
by Microsoft and a few other trusted vendors to run on Windows systems.
If code signed by Symantec is whitelisted in AppLocker then this technique
could be used to bypass AppLocker as the malicious code will be running
under the context of the legitimately signed Symantec executable. Further-
more, using side-loading as a method of persistence makes it more difficult
for defenders to detect the malware, because it is executing in the context of
a trusted software security vendor.

To ensure that the Symantec Network Access Control application starts
each time the operating system reboots, the malware modifies a Registry key

in the current user Registry hive:
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\run

The Windows Registry is a hierarchical database that stores settings used
by the Windows operating system and Windows applications. The Win-
dows Registry is composed of multiple registry hives, which are the top-
level container in the registry. Each user on the system has an HKCU reg-
istry hive, which is stored in a file on disk called NTUSER.DAT, data is
copied between NTUSER.DAT and the HKCU registry hive stored in mem-
ory. NTUSER.DAT is a hidden file located at:

C:\Users\USERNAME

Where USERNAME is the name of a user on the system. The HKCU

registry hive is modifiable by the current user, without administrative priv-

20

ileges. There is another registry hive, HKLM, which contains system wide
configurations. There is only one HKLM Registry hive per system, and it
requries administrative privileges to modify. The registry key modified by
Ocean Lotus, is used to start the Symantec application each time that an in-
fected user logs in, and is in the HKCU registry hive. Modifting registry run
keys has identifier T1060 in the Mitre Attack framework, and is a common
technique used by malware samples. What makes Ocean Lotus’ use of this
technique unique, is that they are starting a legitimate application each time
the user logs in, and abusing a vulnerability to subvert that application. The
HKCU registry hive is writable without administrative permissions and will
launch Symantec Endpoint Protection when the user who was infected logs
on to the system. The value stored in this registry key is the path to where

the Symantec application, rastlsc.exe, is located on disk:

C:\Users\Username\AppData\Roaming\Symantec Endpoint Protection)\

12.1.671.4971.104a\DeviceAssociationService\rastlsc.exe

Each time a user logs in, rasltsc.exe is started, and once started, it
imports the malicious Ocean Lotus library. Then, when rasltsc.exe at-
tempts to use one of the imported functions, malicious shellcode stored in
a file SysLog.bin — located in the same directory — is executed by code
located at the function imported from the malicious library. This technique
functions because the malicious rastls.dll exports the same five functions

that the legitimate library exports, and because the application does not

21

properly validate the imported library. Using the tool Ghidra, a decompiler
and disassembler developed by the United States National Security Agency,

we were able to find the exported functions of the Ocena Lotus library:

)GetCredentials
EVAGED
RasEapFree y
JGE Payload
RasEapInvokeInteractiveUI

EVAGED!

Figure 5: Library Exports

All exported functions from the malicious library call the same mali-
cious function. Shellcode is position independent code, written in assembly
language, which traditionally launches a shell, but may take any action. Po-
sition independent code executes properly despite not knowing its relative
address. Typical assembly code does not have this restriction, and may re-
quire loading at a specific memory location to execute correctly. A shell is
an interactive command line interpreter, an attacker may use this shell to
conduct further stages of an attack on the victim system [33]. Shellcode need
not end in a shell, it may be used to install malware on the victim system, or
used to crash the target system. Shellcode is often used by exploits, but has
gained traction in malware author communities because it can often be used
to bypass endpoint protection products, such as traditional anti-virus and
endpoint detection and response (EDR). One example of using shellcode to

bypass anti-virus is a technique presented by Brian Fehrman of Black Hills

22

Information Security [9]. His technique uses the installutil.exe program
to run shellcode when it executes malicious C# code. This can be used to
bypass application whitelisting because installutil.exe is often a trusted
program on Windows systems.

The shellcode used by Ocean Lotus is a backdoor which communicates
over TCP port 25123 [8]. The shellcode has an interesting defense mecha-
nism, the clearing of its File Signature. The shellcode makes use of function
RtlZeroMemory to clear the MZ file signature of the Symantec application
in memory. RtlZeroMemory takes a pointer to a block of memory, as well as
a length, it then fills this block, up to the length, with zeros. File signatures
are the bytes at the beginning of a file, used to identify a file. Windows
executables and dynamic link libraries start with the two bytes, 0x4D 0x5A,
which in ASCII is MZ. Windows executables are also known as PE files, and
the MZ file signature is the first few bytes of a PE executable. Some security
solutions scan memory for this file signature to identify Windows executa-
bles. Clearing the MZ file signature may prevent some security solutions
from scanning the application in memory, and thus failing to identify the
injected shellcode. Automatic Memory Dumping may also fail because of
this defense mechanism [8]. Memory dumping is the process of writing a
region of memory to disk. Automatic memory dumping scans memory for
file signatures that correspond to executables, and dumps these executables
to disk. An example of C++ code that can clear the MZ file signature can

be found below, this is not the exact code used by Ocean Lotus, but is an

23

example of the MZ signature removal technique:

Listing 1: Clear MZ File Signature

VirtualProtect ((LPVOID) peHeaderAddress, peHeaderSize ,PAGEREADWRITE, oldProtect);
RtlZeroMemory ((PVOID) peHeader Address , sizeOfHeader);
VirtualProtect ((LPVOID) peHeaderAddress , peHeaderSize ,o0ldProtect ,oldProtect);

First the protection of the MZ File Signature in memory is changed
to PAGE_READWRITE, next the block of memory is filled with zeroes using
RtlZeroMemory, lastly the block is reset to it’s previous memory protections
prior to the initial change.

To communicate, the malware chooses between one of three subdomains
in its configuration and prepends a subdomain that is generated from the

computer name of the victim system [§].

1008 43.942335 192.168.59.134 8.8.8.8 DNS 120 Standard query ©x52ea A mhggniggmlggnjggidggnnggmbggjgggjhgg.iknlbkgp.traveroyce.com

Figure 6: DNS Request

If this DNS request is successful than the malware attempts to commu-
nicate over TCP with a command and control server. The communication is
encrypted using RC4, however the key is prepended to the data, and thus the
communication is accessible with some basic scrutiny of the packets. RCY is
a stream cipher, which is used to encrypt plaintext in one character chunks

[14].

3.3 TrickBot

HTML Email Attachment

24

SHA256 T7AEE90A79191DBB914C77D886C14D5BCAF217CE9C046B85407F69A6F9ABTBB73

Trickbot is a malware aimed at stealing valuable information from the
targets that it infects. Trickbot is a modular malware, that is, the initial
executable does not contain all of the malware’s functionality, instead mod-
ules are downloaded from the Trickbot command and control server based
on the data sent by the client. These modules typically perform special-
ized actions, such as stealing passwords from victim’s browsers. This model
has several advantages. First, it allows the malware authors to distribute
new modules to clients when they see fit. Secondly, if a Trickbot module
is detected by an anti-malware solution, only the module may be removed,
leaving the primary Trickbot infection behind. Trickbot is well known for its
ability to steal passwords saved in browsers, including Google Chrome (note
that Google Chrome, when the user is not logged into their Google account,
keeps all passwords in a sqlite database encrypted using a key that can be
retrieved by making a Windows API call in the context of the current user),
Firefox, as well as stealing saved information from Microsoft Outlook.

Trickbot samples have been observed using the following method to gain
initial access. A malicious email is sent to targets, this email contains an
.html attachment. If the user downloads and opens the .html attachment
they are presented with a web page with a single line of text, that prompts
them to download a Microsoft Word document. The Word document is
embedded within the html page in Base64. Opening this word document

results in embedded visual basic code being executed via a malicious macro,

25

the purpose of this code is to construct a JScript script, which is placed in
the same directory as the word document. JScript is Microsoft’s implemen-
tation of JavaScript, and can be executed natively on Windows systems. The
VBA code ends by executing the JScript by calling Microsoft’s Wscript tool.
WScript also known as Windows Script Host, is a tool by Microsoft that
allows users to execute scripts in a variety of languages.

The JScript used by Trickbot is heavily obfuscated — a common technique
used by writers of malware —, however using Python code we were able
to extract its contents; see the code snippet in Listing 2. Note that the
obfuscation, although difficult for a human to parse, can be unwound with

simple regular expressions, as show in the Python code.

Listing 2: Python script for de-obfuscating the Trickbot JScript

import re
def matches(regex, text):

pattern = re.compile(regex)

return pattern.search (text)
payload = "payload. js”
data = open(payload, "r”)
payload _data = data.read ()
data.close ()
new_dict = {}

payload_data = payload_data.split (”\n”)

26

for line in payload_data:

if matches(”[0—9]+:\\-\\\"", line):
print(line)
data = int(re.search(r’\d+’, line).group())
val = re.findall(r’7(["7]*)” ", line)
new_dict [data] = val

elif matches(”[0—9]+\\]J\\([0—9]+" ,line):
data = map(int, re.findall(r’\d+’, line))
data = list (data)
key = data[len(data)—1]
print (new_dict [key])

new_dict = {}

The Trickbot JScript attempts to download the next stage of the payload
by making an HT'TP GET request to a Trickbot command and control server.
If the request is made with the proper paramters then Trickbot is downloaded
to the target system. If the GET request does not contain the expected
parameters then the request is rejected by the command and control server
and the next stage of the malware is not downloaded. Trickbot copies itself to
%APPDATAY,\Roaming\ms1libs\ and chooses a random lowercase alpha string
for its name. This was the behaviour observed by the sample we analyzed,
other variants of Trickbot may copy themselves to alternate locations, and use

different file names. These therefore should not be used in writing detections,

27

as they can be easily modified by the malware authors. Detection rules should
focus on techniques and not indicators of compromise which may be brittle
and specific to a single variant of a broader malware family.

Windows Scheduled Tasks are a feature that allows for running a exe-
cutable or script whenever a given trigger is met, this is similar to cron
on Unix. Trickbot creates a scheduled task named Ms Libraries with two
different triggers. The first trigger runs the trickbot executable every time
the user logs on. The second trigger will run the executable every 9 minutes
for the next 415 minutes on the day that the scheduled task was created.
This is likely to make multiple attempts in case initial connection to the
Trickbot command and control servers fail. Scheduled task creation has
identifier T1053 in the Mitre Attack framework. When a scheduled task is
created, event ID 4698 is logged in the security event log. This event ID
contains information about the new scheduled task, some important fields
for defenders are Command which contains the command that will be exe-
cuted by the scheduld task, and Enbaled which shows if the scheduled task
is active. In our case, the Command field contained the path to the trickbot
executable located at %APPDATA%\Roaming\mslibs\. Defenders that closely
monitor scheduled tasks can identify Trickbot samples that make use of this

persistence mechanism.

3.4 Ocean Lotus — Explorer-COM Hijack
COM Hijack Library

28

SHA256 CO9CC360ESDEA7OE62F1A6564B258962E72FCF808292FBB6861486356A5EF8BB9

By searching for the IP address 198.50.234.111 from the Ocean Lotus
report by ESET in Hybrid Analysis, we were able to discover another sample
that may be used by the Ocean Lotus group. This IP address was an indicator
of compromise in the 2017 report by ESET on Ocean Lotus, and identified as
a command and control server by Unit42 in 2019. Indicators of compromise
are pieces of data that can be used to identify a specific group or malware.
This sample was uploaded publicly in November of 2018, and therefore may
be tied to Ocean Lotus. If this sample is not tied to Ocean Lotus it still
serves as a clear example of a persistence technique that we have not yet
discussed. Hybrid Analysisis a free to use malware sandbox, that runs a given
executable, or opens a specified url inside of a virtual machine and records
events that occur inside of the virtual machine for a specified timeframe.
Hybrid Analysis is currently owned by the security firm CrowdStrike and
provides rich search capabilities, including the ability to find malware samples
using Yara rules. Yara is an open source tool backed by VirusTotal for
classifying and identifying malware. Combining the in-depth features of Yara
rules with the large number of malware in Hybrid Analysis, we were able
to identify this sample. During the analysis of this sample the IP address
198.50.234.111 resolved to DNS name ristineho.com which in February
of 2019, was identified as a command and control server for Kerrdown by
Palo Alto’s Unit42 [30]. Kerrdown is a downloader used by Ocean Lotus

to install additional malware such as Cobalt Strike. Cobalt Strike (https:

29

https://www.cobaltstrike.com/
https://www.cobaltstrike.com/
https://www.cobaltstrike.com/

//www .cobaltstrike.com/) is a publicly available command and control
framework used by red teams to legally test the security of organizations,
however it has also been used by actors in real attacks [30]. The Kerrdown

sample we found communicating with ristineho.com was:

SHA256 860£165c2240£2a83eb30c412755e5a025e25961¢ce4633683f5bc22f6a24ddb6

Our contribution to the community is the identification of another sample
communicating with the ristineho.com domain that is using COM Hijack-
ing for persistence, as of June 2020, this is not a listed technique for Ocean
Lotus in Mitre Attack or in Unit42’s post on Kerrdown. COM hijacking may
be used by Ocean Lotus to persist the Kerrdown downloader, which could
be used to inject a Cobalt Strike beacon into the memory of a victim host
whenever the hijacked COM class is laoded. Beacon is the payload gener-
ated by Cobalt Strike, and is favored by red teams for its ability to create
communication which can blend into normal traffic, using techniques such as
DNS to relay commands. Cobalt Strike can use DNS to communicate to a
command and control server by making unique DNS requests to a domain
controlled by the operator, because the operator controls the authoritative
name servers for the domain, all unique DNS requests are forced to be an-
swered by the authoritative name server. The name server replies with an
IP address which corresponds to the requested domain, the data that makes
up this IP address is interpreted as a command by the Cobalt Strike beacon.

For example, a reply of 0.0.0.0 indicates that there are no tasks for the

30

https://www.cobaltstrike.com/
https://www.cobaltstrike.com/
https://www.cobaltstrike.com/

Beacon [25]. Note that the actor can change the Cobalt Strike reply for no
tasks to any IP address by modifying the variable dns_idle in their com-
mand and control profile in Cobalt Strike. Additionally, actors can use the
variable dns_max_txt to limit the size of TXT records, and maxdns to limit
the length of DNS names [27]. Using these options to limit the size of TXT
records and DNS name length will greatly increase the stealth of Beacon,
however comes at the cost of the speed of data relayed to the beacon, as the
smaller space in each DNS request means that less can be relayed to and
from the command and control server. Tasks can be communicated to the
beacon using different modes, DNS A record responses, DNS AAAA record
responses, or TXT records [27]. DNS TXT records are the fastest, with DNS
AAAA and A each being progressively slower. An example of this communi-
cation is a Cobalt Strike beacon with a command and control server that is
authoritative for malware.c2.com. To communicate the beacon first crafts a
DNS query to the authoritative server and prepends a unique identifier, for
example 1234 .malware.c2.com[26], this DNS request is made to the local
DNS server. Because the local DNS server does not know the answer to this
query it asks a top level root CA. The root CA will not know the answer
for 1234 .malware.c2.com so it replies to the local DNS server with a DNS
server that is authoritative for .com. The .com dns server will not know the
answer to the query, but will reply with the DNS server that is authoritative
to c2.com. This server does not know the answer to the query, but replies

with the DNS server authoritative for malware.c2.com, which is the Cobalt

31

Strike team server. The server authoritative for malware.c2.com knows the
4 byte answer to the DNS A record query, and replies to the local DNS
server, the local DNS server forwards the response to the Cobalt Strike bea-
con, and thus is able to send data to the Cobalt Strike beacon. This covers
communication from the team server to the beacon, but for the Cobalt Strike
beacon to send data to the team server it generates long DNS requests (200-+
characters) that only the authoritative server can respond to. Within these
requests is the data that the beacon wishes to send to the team server. The
maximum length of requests can be shortened, however this requires more
DNS requests to be made to send data.

This malware sample makes use of a technique known as Component Ob-
ject Model (COM) hijacking. The Component Object Model is a standard
for creating platform independent software components, and is the basis of
Microsoft’s OLE and ActiveX technologies. COM servers provide access to
COM objects through pointers to interfaces. One example of a COM class
the reader may be familiar with is the Wscript.Shell class commonly used
in Visual Basic. COM servers are implemented in the form of Windows dy-
namic link libraries. For a dynamic link library to be a valid COM server
it must export two functions at a minimum, DIllGetClassObject, and DII-
CanUnloadNow. DIlGetClassObject is called when an application needs to
access a COM object, the server which exports DIIGetClassObject returns a
pointer to the interface for the COM object. DLLCanUnloadNow is called

when the application is no longer using any COM objects, and unloads the

32

COM server library. COM objects are loaded by using the Windows Reg-
istry. Specifically, a COM object is searched for by looking at the registry

keys present in:

System Hive HKLM:\\SOFTWARE\Classes\CLSID

User Hive HKCU:\\SOFTWARE\Classes\CLSID

The DLL path for the COM server is stored within the registry key In-
ProcServer32, which is a subkey of either the system or user hive. The user
registry hive is queried before the system hive. This can pose a serious issue,
if an attacker creates or modifies a user hive key then their COM server will
be loaded instead of the legitimate COM server which may be located in
the system hive. Because the user hive is modifiable without administrative
privileges, by the current user, an attacker can cause malicious COM servers
to be loaded. In the Hybrid Analysis report for this malware sample we no-
ticed the registry value for a COM object was modified, the CLSID for this
COM object is:

CLSID OE5AAE11-A475-4C5B-AB00-C66DE400274E

The Location of the legitimate registry key is HKLM:

HKLM: \\SOFTWARE\Classes\CLSID\{OE5AAE11-A475-4C5B-ABO0-C66DE400274E}

The Location of the malicious registry key is HKCU:

HKCU:\\SOFTWARE\Classes\CLSID\{OE5AAE11-A475-4C5B-AB0O0-C66DE400274E}

33

The legitimate CLSID contains the registry value %SystemRoot%\system32\Windows.Storage.d11l
within the subkey InProcServer32. Which is a legitimate COM server used
by Windows Explorer (explorer.exe). Explorer.exe is a core part of the
Windows operating system, and it runs under each user interactively logged
into a system. By creating a similar registry key in HKCU that contains a
path to a malicious DLL, the malware is able to perform COM hijacking.
This will cause the malware to be loaded any time an executable is launched
from the task bar. By using the Windows system internals tool, Process
Monitor, we were able to verify that Explorer attempts to load the COM

server:

:22:3... HKCU\Software\Gasses\CLSlD\{OESAAE11 A4754CSB ABDDCGGDE400274E)\InProcServer32
3:22:3... p Explorer.EXE 2040 RegQueryKey

3:22:3... 'y Explorer.EXE 2040 @4 RegQueryKey
3:22:3... p Explorer.EXE 2040 ﬁRegOpenKey

p
HKCU\Software\Classes\CLSI D\{OESAAE1 1 A475-4CSB ABOOCBGD E400274E)\InprocServer32
HKCR\CLSID\{0E5AAE 11-A475-4C5B-AB00-C66DE400274E \Inproc Server32

Figure 7: Process Monitor

We then used the tool Ghidra to verify that the malicious dynamic link
library exports DIlGetClassObject, which is necessary to perform COM hi-
jacking of Windows Explorer. Component object model hijacking is identified
as T1122 in the Mitre Attack Framework. To detect this technique defenders
can use sysmon to monitor event ID 13, Registry value modification events.
Monitoring for new subkeys of the CLSID key will allow defenders to detect

new COM servers.

34

HRESULT D11GetClassObject(IID *rclsid,IID *riid,LPVOID *ppv)

{
FUN_180001000() ;
return 0x0;

b

Figure 8: COM Export

3.5 Agent Tesla

Agent Tesla Dropper

878F50F5965B5C795BE1E1D7A12CE6155DC6FDE4ED127ES8839EF 1EAEE66BD708

Agent Tesla is a publicly available, for purchase malware, that enables
threat actors to steal passwords saved in browsers, collect keystrokes, and
take screen captures of victim computers. Agent Tesla has been around since
at least 2014, and has been used by criminal groups such as Silver Terrier in
attacks against comapnies [31]. In this section we analyze a sample of Agent
Tesla used in a campaign in 2020. Agent Tesla targets solely the Microsoft
Windows operating system, and is focused on user workstations from which
it can steal user information.

Agent Tesla employs layers of obfuscation and XOR encryption. The
XOR function is a Boolean function which on input (z,y), where z, y are bits,
returns 1 if and only if exactly one of x,y is 1. This function is ubiquitous
in cryptography as it is reversible and easily used to encrypt a stream of
data. To decode the Agent Tesla sample we opened the sample in DnSpy.
DnSpy is an open source .NET assembler and debugger. Upon inspecting

the sample we found code which executed a method named cor41, which was

35

loaded from a resource within the Agent Tesla sample. .NET Resources are
non-executable data that is included within the application. An example of a
resource is a image used by the interface of the application. Using DnSpy we
viewed the suspicious resource in the DnSpy hexadecimal editor, and noticed
the bytes MZ in the ASCII view, these two bytes are the File Signature for
Windows executables and dynamic link libraries. Noting that this was likely
an executable or dynamic link library embedded as a resource, we extracted

the resource.

Figure 9: MZ file signature

Once extracted to disk, we discovered that the embedded resource was a
dynamic link library that is used to convert another resource, a PNG image,
into an executable. This technique, known as steganography, involves hiding
one file within another. In this case, Agent Tesla operators have hidden the
next stage of the malware within a XOR encrypted executable embedded
within a PNG resource. The PNG resource looks like the following when
viewed in DnSpy:

An overview of the structure of the executable can be found in Figure 11.

Using PowerShell and its ability to invoke C# code we were able to use the

functions in the malware author’s library to decode the image and produce

36

Figure 10: Steganography

Agent Tesla Loader

Figure 11: Agent Tesla Structure

an executable. The PowerShell code to decrypt the PNG resource is provided
on a Github repository for this thesis (https://github.com/zaneGittins/
AgentTeslaStegDecoder) but a significant snippet is provided in Listing 3.
This code converts non-black pixels into byte arrays. This data is still XOR
encrypted, and must go through an additional decryption to obtain the mal-

ware executable.

37

https://github.com/zaneGittins/AgentTeslaStegDecoder
https://github.com/zaneGittins/AgentTeslaStegDecoder

Listing 3: PowerShell code to decrypt the PNG resource

public static byte[] FromBitmap(Bitmap cor23) {
ArrayList arrayList = new ArrayList ();
checked {
int num = cor23.Size.Width — 1;
for (int i = 0; i <= num; i++) {
int num2 = cor23.Size.Height — 1;
for (int j = 0; j <= num2; j++) {
Color pixel = cor23.GetPixel(i, j);
Color color = Color.FromArgb(0, 0, 0, 0);
bool flag = !pixel.Equals(color);
if (flag) {
arrayList.InsertRange (arrayList.Count, new
pixel .R,
pixel .G,

pixel.B }); } } }

return (byte[])arrayList.ToArray(typeof(byte)); } }

In the PowerShell code we also perform XOR decryption using a copy
of the C# code analyzed via DnSpy; see Listing 4. Once the image is ex-
tracted and XOR decrypted, we obtain the final payload. The key is a sixteen
character key, where an invidivual character of the key is XORd with the ci-
phertext, and rotates by using the modulus operation to loop the key across

the entire ciphertext.

38

Listing 4: PowerShell code for XOR decryption

public static byte[] XOR(byte[] cor30) {
byte [|] array = new byte[cor30.Length — 16 — 1 + 1];
Array.Copy(cor30, 16, array, 0, array.Length);
int num = array.Length — 1;
for (int i = 0; i <= num; i++) {
byte [] array2 = array;
int num2 = i;
array2 [num2] "= cor30[i % 16]; }

return array; }

Because of the ease in reverse engineering .NET code, authors have uti-
lized control flow flattening to make it difficult to analyze. Control flow flat-
tening is a method for obfuscating code. In this case the malware author’s
use switch statements inside of a for loop to make it difficult to determine the
flow of execution. When a block of code in a switch statement is executed,
the program returns to the beginning of the for loop, until the final block,
which exits the for loop. This allows the malware authors to re-arrange the
code inside of switch statements within the for loop, which makes it diffi-
cult to read. The end of each switch statement determines the next switch
statement that will be executed on the subsequent iteration of the for loop.

When first run this payload checks for the mutex, qaxmCJedRGq, if it ex-
ists then the malware does not run. Mutexes are objects that allow programs

to share the same resource, by temporarily locking that resource to prevent

39

multiple processes from accessing a resource simultaneously. Mutexes are
commonly used by malware to check if a computer is already infected, addi-
tionally mutexes can be used by defenders to identify compromised systems.
Agent Tesla uses a mutex to prevent multiple instances of Agent Tesla run-
ning on the victim system. This mutex is likely not shared with other vari-
ants of Agent Tesla, and can only be used to uniquely identify this particular
sample.

If run with administrative privileges the malware disables Windows De-
fender by setting several registry keys. Through Registry manipulation,
Agent Tesla disables the Windows Defender AntiSpyware, OnAccessPro-
tection, BehaviourMonitoring, and TamperProtection keys. These changes
cause Windows Defender to be inactive on the victim system.

To capture keystrokes of the victim system Agent Tesla hooks WH_KEYBOARD_LL
by using the Windows API call SetWindowsHookEx, which captures all keys

that users enter on the victim system.

on = CallingConvention.StdCall, CharSet = CharSet.Auto, EntryPoint = "SetWindowsHookEx")]
\ et, int gx);

Figure 13: Hook Function

This hook function takes three variables that are necessary for keyboard

hooks. This first variable, jra is a code that determines how the next hook

40

handles the return of this hook, the next variable jrf is a pointer to a
keyboard input notification, this can be used to determine if a key is pressed
down. The third variable jra is a pointer to a struct which contains the
keycode of the pressed key, a hardware scan code, and a timestamp for the
event. This allows the Agent Tesla malware to steal sensitive keystrokes, such
as passwords entered into web pages, and exfiltrate them by one of Agent

Teslas several channels.

X.ve ve = ve2;
bg;
t obj2 = .PtrToStructure(jra, bg.GetType());

bg2;
d((Keys)((obj2 != null) ? ((jkp.vx.bg)obj2) : bg2).vkCode));
3024804571U;

Figure 14: vkCode

Bitmap bitmap;
Graphics graphics = Graphics.FromImage(bitmap);
Graphics graphics2 = graphics;

point = ne (e, 0);

upperLeftSource = point;

upperLeftDestination = ne (0, 0);
graphics2.Co (upperLeftSource, upperLeftDestination, blockRegionSize);
memoryStream MemoryStream();

Figure 15: Screen Capture

To take screen captures of the victim computer, Agent Tesla uses .NETGraphics.CopyFromScree
from the System.Drawing namespace. The image data is stored in a mem-
ory stream and exfiltrated via email. Capturing screenshots can allow Agent
Tesla actors to learn how users operate, what applications they use, and
what data they interface with, potentially increasing the revenue they can
generate from an infected system. This helps operators of the malware to

gain a clearer understanding of their target environments, by watching what

41

systems users interact with, they can identify high value targets for further
malware deployments, such as crytpominers and ransomware. Additionally,
these screenshots may contain sensitive data of what is currently open on a
victim’s system.

Once sensitive data is collected Agent Tesla must exfiltrate this data
to its operators. Agent Tesla has several methods for communicating with
command and control servers, the technique we observed was SMTP. To
communicate Agent Tesla uses the simple mail transfer protocol (SMTP) to
send an email, which contains data that Agent Tesla wishes to exfiltrate. In
the sample we analyzed, the from and to address of the email were the same,
and credentials for the email address were embedded within the executable.
The sample we analyzed connected to port 587 on the destination server
to exfiltrate data via email. The subject line for each email appears to
correspond to the type of information exfiltrated, the username, and the

system name. For example,
PW_SYSTEMNAME/USERNAME

Where PW may denote the exfiltrated data is a password, SYSTEMNAME
is the name of the compromised system, and USERNAME is the name of the
compromised user. The body of the email contains a timestamp, the user-
name of the infected user, system name of the infected system, and operating
system details. Emails exfiltrating passwords, use the following format for

the body of the email:

42

Time: TIMESTAMP

User Name: OSUSERNAME
Computer Name: COMPUTERNAME
OSFullName: OSINFO

CPU: CPUINFO

RAM: RAMINFO

URL: URLINFO

Username : USERNAME

Password :PASSWORD
Application : APPLICATION

Where TIMESTAMP, OSUSERNAME, COMPUTERNAME, OSINFO,

CPUINFO, RAMINFO, URLINFO, USERNAME, PASSWORD, APPLI-

CATION are values assigned by the malware during exfiltration. To cap-

ture this information we developed a python tool called Fakemail, (https:

//github.com/zaneGittins/Fakemail). This tool changes DNS to point to

the local host 127.0.0.1, responds to DNS queries on a specified port, and

responds to SMTP traffic on a given port. For compatability with windows it

is necessary to call Fakemail with the -d 53 commandline argument, which

causes Fakemail to listen for DNS queries on port 53. Port 53 is the stan-

dard port for DNS traffic. For our sample, we used the paramters -p 587 to

have Fakemail listen for SMTP traffic on port 587. With these configurations

when the query for the email server weldonsqfe. com is made by Agent Tesla,

43

https://github.com/zaneGittins/Fakemail
https://github.com/zaneGittins/Fakemail

our server replies with 127.0.0.1. This allows us to identify the malicious
domain used by Agent Tesla, as well as to redirect the SMTP traffic to our
Fakemail SMTP listener. The malware therefore connects back to 127.0.0.1
instead of the malicious domain and attempts to send an email via SMTP.
Because Fakemail responds to SMTP traffic we were able to gather the data
and format that Agent Tesla uses to exfiltrate data. Fakemail was written to
respond to programs that use the .NET class SmtpClient, and therefore does
not implement the entire SMTP protocol. Agent Tesla is written in .NET
and uses the class SmtpClient for communication, which makes Fakemail
the perfect tool to intercept Agent Tesla SMTP exfiltration. Using Fakemail
we were able to intercept this email and it’s contents, displayed in the figure

below.

Sending '354 start mail input, end with <CRLF>.<CRLF>" to client.
Breaking recieved end.

Received mail data.

MIME-Version: 1.0

From: amandayang@weldonsqgfe.com

To: amandayang@weldonsqfe.com

Date: 13 Jun 2020 14:08:20 -0700

Subject: PW_Researche ES-WKO1

Content-Type: text/html; charset=us-ascii
Content-Transfer-Encoding: quoted-printable

Time: 06/13/2020 14:08:18<bi
Microsoft Windows 10 Enter = Intel(R) Core(TM) 19-8950H

CPU @ 2.90GHz
RAM: 4095.49 MB http counts.google. com/signin hallenge/pwd
=
=0D=0AUsername:test555
=0D=0APas :Spri ! r>=0D=0AApp1ication:Chrome
=
=0D=0A<hr>=0D=0A

Sending '250 OK' to client.

Figure 16: Fakemail Agent Tesla

Research into the server-side of Agent Tesla suggests that cyber-criminals
do not directly view these emails, but instead they are parsed and ingested
into a database and displayed to the actor via a web browser. Because

the contents of these emails are not encrypted in any way, defenders who

44

have access to full network data can determine the severity of a compro-
mise by disecting the command and control traffic between an Agent Tesla
sample and a command and control server. Two open source tools capa-
ble of enabling defenders to inspect this communication are Security Onion
(https://securityonion.net/) and Moloch (https://molo.ch/).
Analyzing the payload we found that Agent Tesla uses the following Reg-

istry key to maintain persistence:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\StartupApproved\Run

Registry run keys have identifier T1060 in Mitre Attack, and are a com-
mon technique for malware persistence. This key is in the current user reg-
istry hive, HKCU, and will cause the Agent Tesla sample to run each time
the affected user logs in. The HKCU registry run keys are editable by the
current user, and therefore Agent Tesla does not require administrative priv-
ilges for this method of persistence. To detect Agent Tesla defenders should
alert on SMTP communication to untrusted domains, as well as monitor for
the creation of startup registry keys. Detecting SMTP exfiltration requires
application level protocol identification, as many Agent Tesla samples do not
use the typical port 25 to communicate over SMTP. To identify new reg-
istry run keys, defenders can use the tool Sysmon, a service and driver by
Microsoft that can be used to monitor a wide range of security events and
generate Windows event logs. Event ID 13 in Sysmon is logged when a value

is set in the Windows registry. This event ID can be used to monitor when

45

https://securityonion.net/
https://molo.ch/

the path to the Agent Tesla payload is added as a value to a run key. To
determine if a machine is compromised by Agent Tesla without Sysmon in-
stalled prior to an infection, defenders can use tools such as Kansa, OSQuery,
GRR, and Velociraptor to query large numbers of hosts in real time for the

current entries in their Registry hives.

3.6 Search Protect

Search Protect

SHA256 6D5048BAF2C3BBA85ADCOACSFFDI96B21COA27D76003C4AA657157978D7437A20

Windows Shims allow programs created on older operating systems, such
as Windows XP, to run on newer systems such as Windows 10. Windows
shims are libraries that apply fixes which allow older programs to run on
newer systems. Using the application compatability administrator tool a
user can create a Shim database file by specifying a target executable, which
the tool will filter for based on file name, file location, file size, and others
[29]. Once the application is specified a user can select several modes and or
fixes. Fizes are changes that a shim can apply to a target executable. Modes
are bundles of fixes, for example the mode WIN7RTM which is a group of fixes
to ensure compatability with Windows 7 programs. There are over eight
hundred fixes available in Microsoft’s compatability administrator utility.
Some of the pre-defined fixes for shims include InjectD11, DisableNX, and

RedirectEXE. These are only a small number of the predefinded fixes avail-

46

able for creating shims using Microsoft’s application compatability admin-
istrator tool (https://docs.microsoft.com/en-us/windows/deployment/
planning/compatibility-administrator-users-guide). The RedirectEXE
fix is of use to attackers because it allows for redirection of an executable while
maintaining the privileges of the original executable. This technique has been
used by the malware Black Energy, which targeted Ukrainian SCADA sys-
tems, to bypass user access control (UAC) prompts [29][34]. User Access
Control was a feature introduced in Windows Vista and Server 2008, that
requries a prompt to gain administrative privileges, child processes are the
exception, they inherit the administrative token from their parent process.
This feature can help to prevent malware from launching with administrative
privileges, because it requires the administrator to accept the UAC prompt,
Black Energy uses an application compatability shim to bypass this secu-
rity feature. Black Energy also used the fix DisableNXShowUI to disable
data execution prevention (DEP). Data Ezxecution Prevention marks mem-
ory regions as non-executable, this prevents shellcode from being executed
in a process, and requires attackers to use more advanced techniques, such
as return oriented programming (ROP). Return Oriented Programming is a
method by where an attacker chains together instructions already present in
the target programs memory to achieve a goal, instead of injecting shellcode.
This can be done when the attacker controls the instruction pointer, (EIP)
on 32 bit programs, (RIP) or 64 bit programs. Each gadet is an instruction

typically followed by a return instruction, which allows the actor to chain

47

https://docs.microsoft.com/en-us/windows/deployment/planning/compatibility-administrator-users-guide
https://docs.microsoft.com/en-us/windows/deployment/planning/compatibility-administrator-users-guide

together multiple gadgets by redirecting execution to a new gadget after the
completion of the previous gadget. This is a powerful technique for bypass-
ing protections such as data execution protection (DEP), where the attacker
may not be able to write and execute the memory of the target application.

One of the most valuable shim fixes for persistence is InjectD11l, which
was designed to pre-load libraries into an executable. From an attacker’s
perspective, this can be used to inject a malicious library into an executable,
and thereby gain persistence by injecting and executing the malicious library
whenever the shimmed executable is launched. If a commonly launched ex-
ecutable is chosen to shim, attackers can obtain a reliable method of persis-
tence.

When a program in Windows is executed the application compatability
database is queried to determine if the program requires a shim. The shim-
cache, a component of the application compatability database, has been used
by the Windows forensic community to determine what programs have ex-
ecuted on a Windows system. However, shims can also be used maliciously
to accomplish evasion, process manipulation, persistence, denial of service,
obfuscation, and in-memory patching of applications [29].

Windows shims are typically installed using a native program called
sdbinst.exe. This program registers a shim database file, which has the

extension .sdb, by creating subkeys under the following registry locations:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Custom

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\InstalledSDB

48

It requires administrative access to make changes to the HKLM Reg-
istry hive. Normally, shims are installed using the sdbinst.exe program,
which causes a listing to be creating for the shim as an installed program on
the system. In the case of the financially motivated criminal group FIN7,
they use the sdbinst.exe to install their malicious shim, but use a name
of Microsoft KB2832077 in an attempt to hide amoung Windows patches.
This name follows the naming convention for Windows patches, even though
it is actually a malicious application shim. However, malware that manually
creates these keys itself, instead of using sdbinst.exe has one key advan-
tage, the listing for the shim does not appear in the Windows add and remove
program interface, and therefore is more difficult to identify by defenders.
A program known as Search Protect, often classified as a potentially un-
wanted program by anti-virus, uses shims to maintain persistence on victim
hosts. Search Protect uses the InjectD11 fix to inject a malicious dll into the
processes chrome. exe, firefox.exe,iexplorer.exe, and software_removal_tool.exe.
This causes Search Protect to start whenever one of these common internet
browsers is started.
Using the tool python-sdb (https://github.com/williballenthin/python-sdb),
it is possible to parse and view a shim database file. Using this tool to view

the Search Protect shim database revealed the following:

<STRINGTABLE>
<STRINGTABLE_ITEM type=’string’>2.1.0.3</STRINGTABLE_ITEM>"
<STRINGTABLE_ITEM type=’string’>Apps32</STRINGTABLE_ITEM>"

<STRINGTABLE_ITEM type=’string’>VC32Ldr\x04\x02</STRINGTABLE_ITEM>"

49

https://github.com/williballenthin/python-sdb

<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM
<STRINGTABLE_ITEM

<STRINGTABLE_ITEM

type=’string’>InjectD11</STRINGTABLE_ITEM>"

type=’string’>\\\\.\\globalroot\\systemroot\\apppatch\\nbin\\vc32loader.d11</STRINGTABLE_ITEM>"

type=’string’>chrome.exe</STRINGTABLE_ITEM>"
type=’string’>ch</STRINGTABLE_ITEM>"
type=’string’>&1t;Unknown> ; </STRINGTABLE_ITEM>"
type=’string’>*</STRINGTABLE_ITEM>"
type=’string’>explorer.xxx</STRINGTABLE_ITEM>"
type=’string’>ex</STRINGTABLE_ITEM>"
type=’string’>firefox.exe</STRINGTABLE_ITEM>"
type=’string’>ff</STRINGTABLE_ITEM>"
type=’string’>iexplore.exe</STRINGTABLE_ITEM>"
type=’string’>ie</STRINGTABLE_ITEM>"
type=’string’>software_removal_tool.exe</STRINGTABLE_ITEM>"
type=’string’>sr</STRINGTABLE_ITEM>"
type=’string’>software_reporter_tool.exe</STRINGTABLE_ITEM>"

type=’string’>sr2</STRINGTABLE_ITEM>"

</STRINGTABLE>’

This shim loads the dynamic link library located at:

\\\\.\\globalroot\\systemroot\\apppatch\\nbin\\vc32loader.d1ll

into the programs chrome. exe, explorer.exe, firefox.exe, iexplore.exe,
and software_removal_tool.exe.
To install the .sdb file Search Protect uses the native windows tool

sdbinst.exe:

c:\windows\system32\sdbinst -q C:\Users\admin\AppData\Local\Temp\VC_browsers32.sdb

The -q switch runs the sdbinst program in quiet mode, which automati-

cally accepts all prompts, this is useful for adversaries who may be running sd-

50

bisnt without interaction, such as launching sdbinst from an office macro. Ap-
plication shimming has identifier T1138 in the Mitre Attack framework. To
detect application shimming defenders should monitor modifications to the
Registry key AppCompatFlags, and its subkeys Custom and InstalledSDB.
To do this defenders can use event ID 13 of Microsoft’s sysmon tool. Ad-
ditionally, defenders can use event ID 1 from sysmon, process-created, for
sdbinst.exe, however this is not a strong a detection because it is possible
to modify these registry keys without the use of Microsoft’s sdbinst.exe

utility.

51

4 Detection Architecture

In this section we propose an architecture for detecting malware persistence
techniques in Windows environments. This architecture is for collecting and
alerting on Windows events from endpoints. There are several methods for
detecting malicious actors presence on endpoints, such as anti-virus and end-
point detection and response (EDR), user behaviour and entity analytics
(UEBA), network security monitoring (NSM), and system information and
event management (SIEM). To bolster the likelihood of detection defenders
should layer these technologies, and conduct pro-active human driven hunting
activities to search for signs of attackers within their environments. Combin-
ing business specific knowledge, such as where sensitive data is stored, what
data storage services are legitimate, and the roles of various users within
an organization are critical to detecting adversaries. Defenders can prevent
attackers from completing their goals by detecting adversaries, fully scoping
intrusions, and removing adversaries access before adversaries accomplish
their objective. This requires defenders to have strong optics into their en-
vironments and analysts who understand what to look for on the technical
side, combined with the knowledge of business critical assets and data.

The architecture we discuss is a general architecture that will be useful in
detecting a wide range of security events. This section is primarily focused on
the application of multiple open source projects to create a robust detection

platform. Before we discuss the specific open source projects, it is important

52

to discuss a general architecture that could be applied in the future, should
any of the specific open source projects we discuss no longer be supported.

In Figure 17 we show such an architecture.

N

Visualization Layer

Endpoints Event Collector Message Queue Log Enrichment Storage and Search Alert Visualize
% 'F Dalll f°
0 -

Figure 17: Visualization Layer Diagram.

Figure 17 shows each generic component of our detection architecture.
Endpoints are the systems where we seek to discover malware persistence
mechanisms, they are the source of data. Endpoints in this architecture are
configured to send logs to an Event Collector. The Event Collector in turn
sends events to a high performance message queue that can handle a large
volume of data. Events from the queue are then enriched by a log enrichment
component that adds metadata to specified logs. Next, these logs are stored
in a high performance database. Two components connect to the database.
The first component alerts analysts of logs that match rules. The second
component allows analysts to search for and visualize data.

Our proposal is not novel, and is close to the architecture used by the
Hunting ELK (HELK) project by Roberto Rodriguez (https://github.
com/Cyb3rWardOg/HELK). The HELK project is a powerful way to quickly

deploy a security logging stack, and many of the ideas in our project were

53

https://github.com/Cyb3rWard0g/HELK
https://github.com/Cyb3rWard0g/HELK

influenced by Roberto Rodriguez’s work. HELK includes two additional tech-
nologies not present in our proposed architecture, Apache Spark, and Jupyter
Notebooks. Apache Spark can provide data science capabilities, and Jupyter
Notebooks can be used to create powerful run books for hunting for mali-
cious activity. Jupter notebooks also allow for a nice way for defenders to
document an investigation, as each section of a notebook shows the progress
of an investigation, and the defenders understanding of an adversary at a
given point in time. These technologies were not included in our architecture
for simplicity, however because we use Apache Kafka, these two technologies
could be integrated into this stack, which would make the architecture very
close to the HELK project [32].

Although our proposed architecture is similar to HELK, we seek to pro-
vide additional details on exact event ids to monitor, as well as an overview
of how the various technologies work together to create a strong log central-
ization, hunting platform, and alerting solution. Hunting is the process of
proactively searching for adversaries within an environment based on tech-
niques, tactics, and procedures of known malicious groups. Using this stack
defenders will be able to hunt for adversaries by writing queries in Kibana.
Additionally we give examples of queries and rules that can be used to detect
the malware presented in the first section of this thesis.

All of the technologies used in this infrastructure are free to use, however
the paid licenses and support are worth consideration for production environ-

ments, as it will allow for a larger feature set, and increased security of each

o4

component, as well as additonal features useful for detecting adversaries. It
is critical to properly defend this architecture, as failure to do so can allow
adversaries to disrupt the optics of defenders into their environments. The
architecture we propose uses an ELK stack, ELK stands for Elasticsearch,
Logstash, and Kibana. Additionally we add Apache Kafka for dealing with
spikes of data that may otherwise adversely effect Logstash, and Elastalert
to write rules that alert on security events in Elasticsearch. There are no
recommendations regarding sizing or number of nodes per technology in this
thesis, as these numbers are highly dependent on the amount of data being
ingested and the rate that this data is ingested. Special considerations should
be taken for production environments to ensure that this technology stack
does not have a single point of failure. Many of the components we propose
such as Apache Kafka, Logstash, and Elasticsearch can be run in clusters,
which should reduce the likelihood of a single component failing, and defend-
ers losing visibility into security events. The HELK project combines all of
these technologies into an easily deployable docker container, however it is
also useful to understand how each of these technologies work independently
so that they can be deployed as standalone instances for environments that
require more powerful nodes and easier customization options to tailor the
architecture to the business needs of an organization. Additionally, an in
depth understanding of this logging stack will allow for integrating with new

technologies in the future, and troubleshooting each component.

95

LOGGING INFRASTRUCTURE

{

Windows Event Collector Domain Controllers Kibana

Kafka
Logstash Elasticsearch Elastalert

Workstations
1 ry > “1 N A A
e "B | |B PEreliE el K

WEF SERVER

Figure 18: Detection Architecture Diagram.

4.1 Windows Event Logs

Windows can be configured to write logs for a large group of events that
are useful for detecting malware and malicious actors in an environment.
Some of these categories include process creation, interactive login, service
creation, and scheduled task creation. To supplement native logging capa-
bilities defenders can make use of Sysmon (https://docs.microsoft.com/
en-us/sysinternals/downloads/sysmon) which allows for further logging
such as writing to the event log when files are created and Registry keys
are modified. Additionally, some of the Sysmon events contain further de-
tail then their native counterparts, such as Sysmon’s event ID 1, which logs
process creation. The native event ID for process creation, 4688, contains
seven less fields then event ID 1 in sysmon. Noteably, event ID 1 contains
a field titled OriginalFileName which includes the name of the executable
based on compilation information. This is a useful field because it allows
defenders to filter on OriginalFileName even if the attacker has modified
the name of a file, since it’s compliation name cannot be as easily changed.

One example use case is alerting on execution of the tool PsExec. PsExec

56

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

is a tool for executing Windows binaries on remote systems, used by both
system administrators and adversaries. Using OriginalFileName will allow
for alerts on PsExec to trigger even if an adversary modifies the name of
the PsExec executable. Event ID 1 also includes the hash of the executable,
which can be used to search for malware samples within an environment.
Furthremore, event ID 1 also includes more deatils on the parent process
of the executable than the native event ID 4688 does. Event ID 4688 only
includes the path of the parent process, while event ID 1 includes the process
identifier of the parent process, as well as the command line arguments of
the parent process. Command line arguments can be critical information
to determing what an actor did while in control of a victim system. In the
case of the Search Protect malware, analyzing the arguments provided to the
sdbinst.exe application would be critical to identifiying malicious activity,
furthermore using the parent process information defenders can identify the
process that launched sdbinst.exe and installed the malicious application
shim. In our proposed architecture, windows event logs are forwarded from
hosts to a Windows event collection (WEC) server. If using event ID 4688
instead of event ID 1 then it is crucial that defenders enable command line
logging. Neither event ID 4688 or commandline logging are enabled be de-
fault in Windows domains. To enable 4688 process creation events navigate
to the following path in group policy and change Audit Process Creation

from Not Configured to Enabled.

Computer Configuration > Policies > Windows Settings

o7

> Security Settings > Advanced Audit Configuration > Detailed Tracking

To enable command line logging navigate to the below path and change

Include command line in process creation events to Enabled [20].
Administrative Templates\System\Audit Process Creation

Daniel Panay from FireEye stated that Mandiant, FireEye’s digital foren-
sics and incident response (DFIR) team, rarely sees command line logging
enabled in their customer’s environments [28]. This is critical for defenders
to enable as it provides important context to process creation events. One
example of this is Emotet, which launches powershell.exe with a Base64
encoded payload as an argument. By enabling command line logging for pro-
cess creation, defenders can catch the malicious Base64 executed by Emotet.
This is critical to detection, but also plays an important role in forensics,
as the malicious document may be deleted from disk by the attacker, and
event logs may be the only record which contains a complete copy of the ma-
licious PowerShell that was executed on a compromised endpoint. Another
example is the use of the sdbinst program to install a malicious applica-
tion shim, without command line logging it is difficult to determine if the
installed shim is malicious or not. Use of the -q switch makes the usage of
sdbinst more suspicious, and may warrant additional investigation by de-
fenders, such as examiniation of the parent process and user of the process

launching sdbinst.

58

4.2 Windows Event Forwarding

All of the windows event we discussed in the last section are written to the
local system that they were generated on. Events are written to .evtx files
in the C:\Windows\System32\winevt\Logs directory. In order to alert and
hunt for security events it is necessary that we centralize event logs and get
them off of endpoints as soon as possible. Events on compromised endpoints
may be deleted or modified, so it is critical that these are sent to a secure
location. There are two methods for collecting event logs, installing an agent
on each endpoint, or using Windows event forwarding (WEF).

Windows event forwarding allows for Windows workstations and servers
to forward event logs to a destination server. Windows event forwarding al-
lows for two models, source initiated (push) or collector initiated (pull). We
recommend using the source initiated model, as it does not require config-
uration of each host in the collector and therefore scales more easily. The
Windows event collection (WEC) server can have multiple subscriptions con-
figured, these subscriptions dictate which hosts to accept events from, the
destination log to collate events to, as well as the type of events, and event
ids to accept. Windows event collectors should be configured to store event
logs (.evtx files) on a separate hard drive. This will help to reduce the chance
that the disk write speed becomes a bottleneck for collected events. Because
our architecture will forward events off of the collector to an Apache Katka

topic in realtime, the size of the forwarded event logs on the collector can

59

be kept small (1-5G), which will greatly increase the performance of the col-
lector. Large log files will lead to high RAM utilization and slower write
times for incoming events. Forwarded event logs are by default all stored
in one log file, however this can be modified to store events in unique event
logs, which allows for more easily diagnosing issues on the Event Collector,
especially when multiple log sources may use the same numerical event ids.
Using seperate log files should also increase performance, as each log file can
be kept at a small size, and one noisy event channel should not effect the
performance of other event channels.

Windows event forwarding can be deployed with group policies to easily
configure large groups of endpoints to send logs to a central server. Us-
ing windows event forwarding has several advantages over directly running
a log collection agent on each host. First, it allows administrators to focus
on a single log collection technology rather than managing the log collec-
tion software on each host. Furthermore, forwarding Windows event logs
off of hosts in realtime makes it more difficult for actors to remove event
logs before they reach their destination. For example, attackers can clear
windows event logs, thereby denying defenders evidence. There have also
been techniques proven to be able to delete individual event records, a ca-
pability not supported by Microsoft, which greatly hampers analysis. It
is paramount that defenders get logs off of endpoints as fast as possible
to limit the capability of attackers to disrupt their optics. Logs collected

on the Windows event collection server should be forwarded using winlog-

60

beat (https://www.elastic.co/beats/winlogbeat), a tool by Elastic, to

an Apache Kafka host.

4.3 Apache Kafka

Apache Kafka is a technology for ingesting data into Kafka topics. Topics
in Kafka are streams of records, in our case, each record will be a security
event sent from winlogbeat on a WEC server. Events from our Apache
Kafka topics will be collected by Logstash, which will in turn send our events
to Elasticsearch for search and storage. It would be possible to use this
architecture without Apache Kafka, and instead configure winlogbheat to send
events directly to Logstash. This may be a suitable approach for smaller
environments that do not need to worry about large spikes of events and do
not want to add the complexity of Apache Kafka. Apache Kafka also allows
for the addition of other technologies into this architecture, such as Apache
Spark, and Jupyter Notebooks.

Apache Kafka uses a consumer, producer architecture, that is, producers
subscribe to Kafka topics and add events, and consumers subscribe to topics
and read events. Apache Kafka is an important technology to include in
our detection stack because it prevents Logstash from being overwhelmed in
the event of a spike in the number of events sent by winlogbeat from our
WEC server. Additionally, if Logstash goes down, it can later be brought
back online and continue to read data from Kafka as a consumer from it’s

last position in the topic. There another advantage to using Kafka, which

61

https://www.elastic.co/beats/winlogbeat

is a tool called Kafkacat. Kafkacat allows for replaying events into a Katka
topic, this is an invaluable ability to have as it allows us to save samples
of malicious activity and replay them into our detection architecture to test
alerts and train new analysts. One such project already exists called Mor-
dor, (https://github.com/hunters-forge/mordor) which contains numer-

ous pre-recorded security events that can be replayed using Kafkacat.

4.4 Logstash

Logstash is a tool for ingesting, modifiying, formatting, and sending data to
a selected output. In the case of our architecture Logstash is configured to
read data from a Kafka topic and output this data to Elasticsearch. Logstash
can also filter out noisy events, and integrate with other systems. For ex-
ample, Logstash can be used to integrate a wide range of security products
into our logging stack, such as anti-virus alerts, and firewall logs. There are
a wide variety of plugins for Logstash, written in the Ruby programming
language, available to integrate additional logs. It is also easy to write your
own Logstash plugin to interface with an API and send results to Elastic-
search. Logstash has a wide array of input plugins that allow for connecting
data to our Elasticsearch instance. Existing Logstash plugins also allow for
ingesting common file formats such as csv files, this is a powerful feature
as many tools currently support output to csv. Additionally, Logstash has
output plugins which allow for the output of data to other platforms besides

Elasticsearch, this allows flexibility and defenders to send logs ingested by

62

https://github.com/hunters-forge/mordor

this platform to other platforms such as a user entity and behaviour analytics
(UEBA) solution. Logstash is therefore a critical component of the logging
architecture. Logstash can also be configured to ingest network data such as
Zeek logs, formerly known as Bro, and Cisco eStreamer logs, which help to
facilitate network security monitoring (NSM), and offer further context into
malicious activity. A powerful solution for capturing and analyzing network
data is Security Onion, which uses the ELK stack as well. Security Onion,
much like HELK, provides an out of the box deployment for collecting secu-
rity data, unlike HELK, Security Onion is focused on network data, but can
also be used to ingest Windows event logs. Ingesting network data into our
architecture will allow for correlation between host based data and network
data, and therefore provide a clearer picture of an environment. Network
data can be especially powerful, because a properly configured network tap
will contain an entire record of what transpired on the network, whereas host
based data can be dependent on proper configuration of each host. Endpoint
systems may not be configured to collect the logs necessary to detect an ad-
versary, whereas network data contains all network information, it is for this
reason that network data is often called the great equalizer of log sources. It
is critical that defenders ingest and analyze both host and network data. In
production environments, multiple Logstash instances can be used to read

data from an Apache Kafka cluster.

63

4.5 FElasticsearch

Elasticsearch is a search technology that can be used to store and query large
volumes of data. By default, Elasticsearch listens on port 9200. Events sent
to Elasticsearch in JSON format will be automatically parsed and searchable
by field, therefore it is preferable that all events are sent in JSON format
where possible. Elasticsearch is a powerful component because it provides
close to realtime search capabilities over vast amounts of data, and therefore
enables defenders to hunt for adversaries in large data sets. Elasticsearch
also scales easily, so it is quick to add additional nodes to handle an increase
in log intake, such as new log sources, or additional endpoints added to an
environment. Elasticsearch allows for storing a wide-range of data, including
structured and unstructured data. The windows event logs read from our
Kafka topics will be in JSON format, and thus are easily stored and searched
for in Elasticsearch. It is recommended that defenders configure Elasticsearch
to store at least thirty days of logs, however the longer that data can be
kept, the better for post incident analysis. Dwell time is the time it takes for
defenders to discover a breach internally. FireEye reported that the mean
Dwell time amoung their customer’s in 2020 was 56 days [10]. Therefore, if
possible, defenders should look to extend the time that security data is stored
for to as long as possible in order to enable searching data for past intrusions.
Many organizations may experience much longer dwell times, even lasting

several years, therefore security data should be kept for long periods of time if

64

possible. Storing data for long periods should be considered when designing
this architecture, as storage will be important to maintaining records for
a reasonable amount of time. This data need not be kept in memory in
Elasticsearch, but can instead be sent to cold storage, and restored if it is

needed at a later time to investigate an incident.

4.6 Kibana

Kibana is a web interface for interacting with Elasticsearch. Kibana allows
users to write queries in Lucene syntax to search for data, this is a powerful
tool for defenders as it will allow us to visualize the data collected, as well
as discover malicious events within an environment. For example, the below

Lucene search can be used to identify Pass-The-Hash attacks.

event_id: 4624 AND auth_process: seclogo AND logon_type: 9

This event is generated on the source host, therefore this query only pro-
vides optics into Pass-The-Hash attacks that occur on a defender monitored
system, and not Pass-The-Hash attacks that originate from a un-monitored
system. In other words, this is a source host detection, there are similar de-
tections that can be configured on the destination host of a Pass-The-Hash
attack. Pass-The-Hash is a method whereby an attacker passes a stolen
NTLM password hash to challenge-response authentication on a Windows
system. Because the hash of a password is required to authenticate, and not

the password itself, it is not necessary for the attacker to crack the stolen

65

hash. This allows attackers that have administrative access to a system to
steal hashes from other users who have logged into that system, and use
these hashes for authentication on other systems. Using this technique an
attacker can move throughout a victim environment using the privileges that
correspond to the user of the stolen hash. Hashes are kept on systems from
a variety of actions, one example is an administrator opening an interactive
RDP session on a computer, and then not properly closing the session. If
default settings are in place, a password hash for the administrator will be
stored on the system and accessible by anyone with administrative privileges
on that system. This would allow a local administrator to steal the password
hash of a domain administrator, and then conduct pass-the-hash attacks,
thereby expanding their access. One defense against pass-the-hash attacks is
the built-in security group Protected Users which prevents credentials from
being cached, Kerberos from using DES/RC4, and several other protections
for accounts. Adding users to this group and then rotating their password,
from before their addition to the group, can be an effective strategy to pro-
tecting priviliged accounts from pass-the-hash.

The variant of Emotet we analyzed in a previous section used Windows
services for persistence. A query to detect the service creation technique used
by Emotet is as simple as searching for event_id: 4697, however Windows
services are used by many legitimate applications, so it will be necessary to

filter out known good processes. To do this the following syntax can be used:

event_id: 4697 AND NOT process_directory: KNOWNPATH

66

Where KNOWNPATH can be replaced by the paths to legitimate services used
within an environment. The sample of Trickbot we analyzed used scheduled
tasks for persistence. Searching for scheduled task creation used by Trickbot
is similar to searching for service creation, except event ID 4696 is used

instead.

4.7 Elastalert

Elastalert is a tool developed by Yelp which allows for writing rules that
trigger on data in Elasticsearch. Using Elastalert defenders can write rules
that trigger alerts whenever certain events occur within their environments.
Elastalert can be configured to query Elasticsearch at a given interval, this in-
terval can be as short as several seconds, or as long as many weeks. Elastalert
is a powerful tool for automating queries and sending alerts to Email, Slack,
Microsoft Teams, and many more destinations. Elastalert also integrates
with powerful outputs such as Atlassian’s Jira, which allows for creation and
assignment of a ticket in reseponse to an alert. This allows for better tracking
and resolution of alerts by defensive teams. One example of an Elastalert
rule is alerting on bogon IP addresses returned by the Cobalt Strike DNS

beacon:

alert:
- debug
- ms_teams

description: Adversaries may communicate using a common, standardized application

67

layer protocol such as HTTP, HTTPS, SMTP, or DNS to avoid detection by blending

in with existing traffic. This rule detects Cobalt Strike DNS.
filter:
- query:

query_string:
query: (event_id:"22" AND DNSResolvedIP:("0.0.0.0"))

index: winlogbeatx*
name: Bogon-DNS-Response
priority: 3
realert:

minutes: O

type: any

Using Elastalert it is possible to write a wide range of rules to trigger
alerts on security related events. Elatalert supports many rule types, the
above rule is an ANY rule, which means that any event that matches the query
will trigger an alert. Another powerful type of alert are cardinality rules,
which trigger when a number of unique values for a specified field is reached
within a given time range. This can enable rules for triggering on attacks
such as when one IP address is used to attempt to login to multiple accounts
within a week, which many be an indicator of a password spraying attack.
Password spraying is where an attacker attempts to use one password against
many accounts, the goal of the attacker is not to gain access to a specific

account, but to gain access to any account. Password spraying is often more

68

difficult to detect then brute force attacks, because it is rare for password
sprays to trigger account lockouts. To bypass this detection attackers can
rotate the IP addresses that they use for each login attempt, however this
increases the technical effort on the side of the attacker. These alerts can be
configured to trigger on unusual scheduled task creation, service creation, and
run key modification. Elastalert uses yaml files for it’s rules, however another
alternative is to write rules in the Sigma language. Sigma is a universal rule
language for security information and event management systems (SIEM)
(https://github.com/Neo23x0/sigma). Rules in Sigma can be converted
to a wide range of commercial SIEMs. This makes it easier to share rules with
others, and allows rules that are written to not be tied to any one platform.
In the event that the writer switches from this architecture to another, for
example a commercial STEM, the rules they spent time developing can likely
be converted if they were written in Sigma.

An exaple if a Sigma rule can be found below:

title: Process LSASS Access
logsource:
product: windows

service: sysmon

tags:
- attack.credential_access
- attack.t1030

detection:

69

https://github.com/Neo23x0/sigma

selection:
EventID: 10
TargetImage:
- "C:\\Windows\\System32\\1lsass.exe"

Access:

0x1010

Ox1FOFFF

Ox1F1FFF

Ox1F2FFF

Ox1F3FFF

Ox1FFFFF
condition: selection
falsepositives:
- Legitimate applications.

level: high

This sigma rule detects applications accessing the 1sass.exe process with
suspicious access permissons. This can be used to detect malicious tools
which steal credentials from memory by reading data from the lsass.exe
process. One such tool is Mimikatz.exe which is commonly used by pene-
tration testers and real adversaries for credential access, which accesses the
memory of 1sass.exe with the permissions 0x1010.

It is important for defenders to know what attacks look like, and identify
gaps in their alerting and monitoring capabilities. One tool that greatly aids

this process is Atomic Red Team by Red Canary (https://atomicredteam.

70

https://atomicredteam.io/
https://atomicredteam.io/
https://atomicredteam.io/

io/). Atomic Red Team allows defenders to run sample attacks which
correspond to techniques in the Mitre Attack framework. Using Atomic
Red Team, defenders can run examples for many of the persistence tech-
niques used by adversaries. This allows defenders to identify gaps in the
logs that they collect, make changes in their log collection process, write
rules for Atomic Red Team events, and educate new analysts by show-
ing them examples of real techniques. When writing new detection rules
defenders should be careful to not write brittle rules that only detect at-
tacks run by Atomic Red Team. An alternative to Atomic Red team is
Caldera(https://github.com/mitre/caldera), which can also be used to
run example attacks to test detection and optics. Ideally defenders should
make use of multiple adversary simulation technologies, as well as real red
teams to ensure that they have sufficient logging, alerting, and training. Us-
ing multiple technologies will help defenders stray away from writing rules
that are tool specific and may fail if the adversary makes minor changes in
their toolset. It is important for defenders to create rules that are difficult
for adversaries to avoid without changing techniques and tactics, this will in-
crease the cost of the attack for the adversary as well as increase the chance
that an adversary makes a mistake that leads to their detection.

When writing rules defenders should try to keep in mind capability ab-
straction, proposed by the SpectreOps detection team[4]. Capability abstrac-
tion is the idea that the core features of adversary tools are abstracted, often

by multiple levels, from the users of those tools. By taking a deep look into

71

https://atomicredteam.io/
https://atomicredteam.io/
https://atomicredteam.io/
https://github.com/mitre/caldera

multiple tools used to accomplish the same technique, defenders can write
rules that target the underpinnings of a tool, and therefore these rules are
likely to work for updated versions of the tool, and other tools that use the
same technical underpinnings. Detection rules written with capability ab-
straction in mind are much less brittle, and do not alert on indicators such
as specific strings, which can easily be changed by attackers. In the blog
post by SpectreOps, Capability Abstraction, the team reveals that three
tools used for Kerberoasting, Invoke-Kerberoast, Rubeus and Mimikatz all
use the same RPC call. Kerberoasting is an attack against Microsoft’s Ker-
beros implementation, created by Tim Medin, where an attacker with a valid
ticket granting ticket (TGT) requests many service tickets (TGS), because
portions of the TGS are encrypted with the password of the service, attackers
can conduct an offline brute force against TGS tickets to obtain passwords
for service accounts [15]. One important note is that while lower levels of
abstraction apply to more tools, they also generally have higher false-positive

rates and may capture legitimate activity as well.

4.8 Application of Architecture

In order to validate the above architecture we created detection rules and
loaded them into Elastalert. We then ran each sample in an isolated envi-
ronment. The environment contained an instance of each component of our
detection architecture, where data flowed from an endpoint to our detection

stack.

72

Our detection architecture was able to successfully detect each sample an-
alyzed within this paper, additionally, our detections targeted the persistence
mechanisms used by the malware samples, making it more difficult for mal-
ware authors to evade. In the case of Emotet we alerted on Windows event
id 7045, which detects when Emotet creates a new service. The Ocean Lotus
DLL Sideloading sample was detected by monitoring for changes to registry
run keys, which generates an event id 12 event. Trickbot was detected by
alerting on new scheduled task creation, event id 4698. The second Ocean
Lotus sample, using COM Hijacking, was detected by alerting on event id 12
events to COM registry keys. Agent Tesla was detected in a similar manner
to the first Ocean Lotus sample, by alerting on event id 12 events to Win-
dows run registry locations. Lastly, Search Protect was detected by alerting
on values set within the shim database using event id 13.

By alerting on persistence mechanisms defenders can create rules that are
more difficult for malware authors to evade. Furthremore, a single rule that
alerts on a persistence mechanism can be useful in detecting a wide array of

malware samples.

73

5 Conclusion

For all the mythology and Hollywood glamour surrounding malware, all mal-
ware is limited to a finite number of persistence mechanisms. In the case of
Emotet a Windows service is created. In the case of Trickbot scheduled
tasks are leveraged. In Ocean Lotus Symantec DLL Sideloading, the mal-
ware takes advantage of the lack of validation in loading of dynamic link
libraries (DLLs); in the case of Ocean Lotus — Explorer-COM Hijack, the
malware rides the Component Object Model by manipulating a key in the
user hive; in the case of Agent Tesla, the malware payload was embedded in a
PNG file, using a modern variation of the art of steganography, and starting
the malware by leveraging Windows run registry keys. Search Protect abuses
Windows application shims, typically used for backwards compatability, to
inject itself into commonly used web browsers.

In the second section of the thesis we covered an architecture that can be
used to detect the malware presented in this report. The architecture uses
Windows event forwarding to send events to Apache Kafka, those events are
ingested by Logstash, and then indexed in Elasticsearch. Defenders can then
hunt for malicious activity using Kibana, a web interface for interacting with
Elasticsearch, and Elastalert to write rules that trigger on security events
in Elasticsearch. This architecture is only one of several detection layers
that should be applied to detecting adversary activity. Additional important

technologies are user and entity behavioural analytics (UEBA), network secu-

74

rity monitoring (NSM), and anti-virus and endpoint detection and response
(EDR) products. Using these technologies, combined with regular review by
trained analysts will greatly increase the ability of defenders to detect a wide
range of malware and actors within their environments.

We do not want to minimize the challenges of defending systems against
malware. Malware can be ingenious and persistent, and the number of per-
sistence mechamisms used by malware are vast. In this thesis we examined
a subset of the different techniques malware authors use in order to gain
persistence: the ability for the malware to survive a reboot of the system.
The techniques described depend on the malware’s ability to cloak itself as
a legitimate component of the target system. In order to do so, the malware
examined makes use of Windows features and takes advantage of valida-
tion vulnerabilities, especially in the loading of Dynamically Linked Libraries

(DLLs).

75

Acknowledgments

This work was completed by the author for a masters thesis in Computer
Science at California State University at Channel Islands, under the super-
vision of Dr. Michael Soltys. We are thankful for the direction, guidance,
and classes offered by Dr. Michael Soltys that allowed us to complete this
thesis. The security class offered by Dr. Soltys provided us with a firm foot-
ing in security fundamentals and encryption mechanisms, as well as taught
code-breaking, an invaluable technique when analyzing obfuscated malware.

We would also like to thank Dr. Reza Abdolee for his course on Ethical
Hacking, during which we developed some of the ideas for this paper.

We are grateful to our colleagues at Haas Automation, Meissner Filtra-
tion, and California State University Channel Islands for discussions about
these topics. We are also grateful to Sam Decanio and Kimo Hildreth for

comments on the draft of this thesis.

76

References

1]
2]

David Bianco. The pyramid of pain, 2013.

Nick Carr. Cyber espionage is alive and well: Apt32 and the threat to

global corporations, 2017.

Satyajit Daulaguphu. A journey towards an import address table (iat)

of an executable file, 2019.

SpecterOps detection team. Capability abstraction, 2020.
Romain Dumont. Bitlocker overview, August 2016.
Romain Dumont. Apt32, December 2017.

Romain Dumont. APT32, 2017.

ESET. Oceanlotus: Old techniques, new backdoors. Technical report,
ESET, March 2018.

Brian Fehrman. How to bypass application whitelisting av, 2016.
FireEye. Mtrends 2020 insights from the front lines, 2020.
Avi Gimpel. Amsi bypass redux.

Alexander Hanel. Big game hunting with ryuk: Another lucrative tar-

geted ransomware, 2019.

77

Thomas Hungenberg. Emotet, trickbot, ryuk — ein explosiver malware-

cocktail, 2019.

Klein. Attacks on the rc4 stream cipher, 2008.

Tim Medin. Attacking kerberos: Kicking the guard dog of hades, 2014.

Adam Meyers. Meet crowdstrike’s adversary of the month for february:

Mummy spider, 2018.

Microsoft.

Microsoft.

Microsoft.

Microsoft.

Microsoft.

Microsoft.

Microsoft.

Antimalware scan interface (amsi).
Servicestartmode enum.

Applocker overview, 2017.

Command line process auditing, 2017.
Event logging, May 2018.

Auto macros, 2019.

Autoruns for windows v13.98, 2020.

MITRE. Persistence, 2020.

Raphael Mudge. Malleable command and control.

Raphael Mudge. Red team ops with cobalt strike (2 of 9): Infrastructure.

Raphael Mudge. Red team ops with cobalt strike (3 of 9): C2.

78

28]
[29]

[30]

[32]

[33]
[34]

[35]

Daniel Pany. Using real-time events in investigations, 2020.
Sean Pierce. Malicious application compatibility shims, 2015.

Vicky Ray and Kaoru Hayashi. Tracking oceanlotus’ new downloader,

kerrdown, 2019.

Peter Renals. Silverterrier: 2019 nigerian business email compromise

update, 2020.

Roberto Rodriguez. What the helk? sigma integration via elastalert,
2018.

SentinelOne. Malicious input how hackers use shellcode, 2019.
Michael Soltys. Cybersecurity in the aws cloud, March 2020.

Murugiah Souppaya Tatu Ylonen, Paul TurnerKaren Scarfone. Security
of interactive and automated access management using secure shell (ssh),

October 2015.

79

80

	Introduction
	Contributions
	Persistent malware
	Emotet
	Ocean Lotus Symantec DLL Hijacking
	TrickBot
	Ocean Lotus — Explorer-COM Hijack
	Agent Tesla
	Search Protect

	Detection Architecture
	Windows Event Logs
	Windows Event Forwarding
	Apache Kafka
	Logstash
	Elasticsearch
	Kibana
	Elastalert
	Application of Architecture

	Conclusion
	References

