Channel Islands

CALIFORNIA STATE UNIVERSITY

AWS NoAuto Scaling Group

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment
of the Requirements for the Degree

Masters of Science in Computer Science

by

Student Name: Aduvisor:
Kaveh ARASHVAND Dr. MICHAEL SOLTYS

May 2021

© Year

Kaveh Arashvand
ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

V\AXV&\WO 05/27/2021

Advisor: Dr. Michael Soltys Date
Z F//% May 27, 2021
Dr. Brian Thoms Date

/M’”’f 05/26/2021
Dr. Bahareh Abbasi Date

APPROVED FOR THE UNIVERSITY

Jill Leafstedt Date

Michael Soltys
05/27/2021

Michael Soltys

Michael Soltys
Jill Leafstedt

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Title of ltem

3 to 5 keywords or phrases to describe the item

Author(s) Name (Print)

Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

AWS NoAuto Scaling Group

Kaveh Arashvand
May 25, 2021

Abstract

Amazon Web Services (AWS) is one the most popular on demand
cloud computing services providers, currently offering over 175 fully
featured services globally. One of these services, which is highly on
demand by various clients all around the world, is Amazon Elastic
Compute Cloud (EC2): a commercial web service which allows cus-
tomers to rent their computing resources. Amazon Elastic Compute
Cloud (EC2) provides storage, processing, and other services to its
customers. In this thesis, [propose an approach to minimize the costs
of performing automatic scaling over Auto Scaling groups: a collection

of EC2 instances, by introduction of NoAuto Scaling groups.

Contents

1 Introduction 1
1.1 ‘Amazon Auto ScalingGroup. » «» v v v v w o s s 54 5 4 42 % & 4
1.2 Scaling Auto Scaling Groups 5

1.2.1 Manual Scaling: 5
1232 Peheduled Sealingg « v vwmecwmsws 2 5 2 2 2 2 2 a 6
1.2.3 Dynamic Scaling: 6
1.3 Amazon CloudWatch Service. 7
1:4. Dyvamic Sealing Policles « « s v s s mssmr sz 5 2 % s 2 5 3 & 9
1.4.1 Target Tracking Scaling Policy 9
1.4.2 Step Scaling Policy 10
14.83 Siwple SealimpePoliey « v e wmeews e 2 s 2 2 2 3 2 » 10
1.5 AWS Billing Methods 11
1.6 My Contributions L0 12

2 Background 14

2.1 EC2 Instances Life-cycle Components 14
2.L]1 Lilocycle EMTanee = oo v s ma v 55 2 8 5 2 5 & 3 16
2.1.2 Pending State L. 18
2.1.3 InService State 18
214 lilccyele Hiok s s e s n s v s v s 5 6.5.5.8 5 5 2 8 5 & 19
2.1.5 Exiting from Inservice State 20
2.1.6 Standby State 22

22 Hipoocalng Politied s s e p v e s s s e ve 6.2 5 5 2 5 2 3 23
2.2.1 Target Tracking Policy: 24
2.2.2 Step Scaling Policy: 24
223 omiplebealme Poliey: «cvssssepmesesessss 25

2.3 Billing Plam o o o mwmm o mm s smmme s 8 8 2 2 58 8 5 2 & 25

2.4 Demonstration of the Problem 25

2.5 Predictive Scaling and Hybrid Auto Scaling 29

286 Some Possible Approaches « =« oo wwmmme s ss 5 5 « = 5 & 30
2.6.1 Suspending Scale in Service 30
267 BEcape-Galt s s e p e s BB E S S R B2 E 5 B L 2 2B 47
2.6.3 Using Standby State instead of Terminating Wait State 49

2.7 Introduction of NoAuto Scaling Group 52

28 TwoObstacles: s« w v s s w ew s 4 4 & % 0b 5.8 5 5 5 55 5 5 & 53

2.8.1 Renewal Time Tracking Issue 53

2.8.2 Standby EC2 Instances Termination Issue b4
2.9 Lambda Functions 5H
2.10 SNS Topics o v o 55

3 Algorithm of the Solution with its Implementation Source
Code 56
3.1 NoAuto Scaling Group Life-cycle 57
32 Algorthm: . cvwwvvevswrerrssees e s sas s 3 58
3.3 NoAuto Scaling Group vs Auto Scaling Group 59
3.4 Source CodeinBoto3. 63
4 Conclusion and Future Works 70

5 References 72

i

List of Figures

=] O Ut = W

EC2 Auto Scaling Life-cycle 15
EC2 Life-cycle Hook Diagram 20
Life-cycle of Standby EC2 Instances 23
EC2 Life-cycle Dead-End 47
EC2 Life-cycle with Escape-Gate 49
NeoAnteSealing Group Elowehart - -« vmme s sz 2 5 « = 5« o7

NoAuto Scaling Group vs Auto Scaling Group Outcomes . . . 61

il

List of Tables

1 Auto Scaling Default Behavior 28
2 Auto Scaling Behavior with Terminate Micros Service Suspended 33
3 NoAuto Scaling Group vs Auto Scaling Group Simulation Data 60

v

1 Introduction

Amazon Web Services (AWS) is one of the pioneers of cloud computing ser-
vices providers in the world, which has been offering IT infrastructure services
to companies and individuals in the form of web services since 2006 and in
over 190 countries [1|. There are many benefits using cloud computing, some

of them are [2]:

e Agility: Quick and easy access to a vast variety of technologies and

solutions.

e Reliability: The ability of performing tasks and functions correctly and

constantly when they are expected to.

e Elasticity: Clients can utilize resources in regards to their real demands
with no need of resources’ over-provisioning to handle unforeseen peak

levels of business needs in the future.

e Cost Efficiency: Maintenance of data centers at any size (from small
ones consisting of a few number of servers to enterprise level data cen-
ters) would cost a lot of money and time. However, the Amazon Web
Services allows customers to only pay for their services as they consume

it.

There are also different types of cloud computing policies provided by AWS

which can be directly compared. The mutual aim of these services is “giving

customers the ability to focus on what matters most and avoid undifferenti-
ated work like procurement, maintenance, and capacity planning” [3]. The

main three policy types are as follows:

e Infrastructure as a Service (IaaS): It contains the building blocks of
cloud IT with the provision of sufficient amount of computing and

networking features.

e Platform as a Service (PaaS): Eliminates the need of being concerned
about the infrastructures, instead directing attention to a focus on
customers and developers that would be mostly operating via their

applications frameworks.

e Software as a Service (SaaS): A completed product that clients can take

advantages of while it is being run and managed by AWS [3].

As it is mentioned earlier, Amazon Web Services provides more than 175
various services to over 190 countries globally, one of them which is on high
demanded by clients at the current time is the Amazon Elastic Compute
Cloud(EC2). Amazon Elastic Compute Cloud provides scalable computing
capacity in the Amazon Web Services Cloud and it is categorized as IaaS.
Scalability means the ability of adding or removing EC2 instances anytime
and from anywhere based on the needs of the clients. This is a huge advantage
which not only eliminates some costs (cost efficiency), but also it provides

agility and reliability.

For a better understanding of what scalability means, let’s imagine we
require two EC2 instances (servers) for keeping our online market up and
running. During most days of the year, those two instances have sufficient
resources to keep our online market responsive enough for incoming shopping
requests like searching among items, add and remove items to/from shopping
carts, getting invoices, managing payments and so forth; however, either ran-
domly or at very specific days or weeks (scheduled), the number of shopping
requests increases nationally and consequently more shoppers would reach
to our online market to check and buy from. If those two EC2 instances
(servers) would not be able to process all incoming requests in an appropri-
ate response time due to a lack of resources, we might lose our customers,
reputation and also revenue; however, because of the EC2 scalability feature,
adding new EC2 instances to the servers’ farm quickly in direct response to
load changes is possible. After that, when the load on the systems have been
degraded to its normal value, it is also possible to terminate extra instances
and continue with our original two desired EC2 instances for avoiding extra
costs of over provisioning resources. During the aforementioned example, not
only the significance of having EC2 scalability feature for handling unfore-
seen load changes on systems is shown, but it also provides a recognizable
example of cost efficiency.

Adding or removing Amazon EC2 instances can be done manually where
customers are able to add and remove EC2 instances directly from portal,

CLI, APIs or even available SDKs or automatically with no live contribution

of customers. Manual scaling is a very direct way to manage the number of
in service EC2 instances and there is no need for other AWS service’s contri-
butions for accomplishing scaling task. On the other hand with automatic
scaling, the process of adding or removing EC2 instances would be done
through taking advantage of other AWS services like Amazon Auto Scaling
service with correlation of Amazon CloudWatch service which makes is more

advanced approach.

1.1 Amazon Auto Scaling Group

Amazon Auto Scaling group(ASG) is a collection of EC2 instances and it
is the core component of Amazon EC2 Auto Scaling service. In addition
to automatic scaling, Auto Scaling group also provides some other features
such as unhealthy EC2 instances replacement or load balancing based upon
availability zones [4].

Any Auto Scaling group has some attributes which need to be defined
during the process of the creation. One of these attributes is the size or
the capacity boundaries of the group. This attribute defines the upper and
lower boundaries of the Auto Scaling group. In other words, this represents
the maximum and the minimum number of allowed in service EC2 instances
within a group. Amazon EC2 Auto Scaling ensures the clients that the num-
ber of in service EC2 instances within any Auto Scaling group never goes
under the defined minimum and also would never go above the predefined

maximum boundaries. It is worth noting that this agreement has some excep-

tions as when weighed instances are being used within Auto Scaling groups
[4]. Another attribute for any Auto Scaling group which should be defined
during the creation is the desired capacity of in service EC2 instances within
the Auto Scaling group, this number should sit between the defined minimum
and the maximum capacity boundaries.

Scaling the size of any Auto Scaling groups is the process of adjusting
the desired capacity of the group in accordance with variable changes on
the loads. This process can be either adding more EC2 instances to the
Auto Scaling group which is referred as Scale out process or the process of
removing and terminating extra EC2 instances from the Auto Scaling group

which is referred to as Scale in process.

1.2 Scaling Auto Scaling Groups

Scaling the size of any Auto Scaling group can be done via three general ways

as follows: manual scaling, scheduled scaling and dynamic scaling.

1.2.1 Manual Scaling:

Any changes on the amount of the minimum, maximum or the desired ca-
pacity of any Auto Scaling group can lead to launch or termination of EC2
instances. In addition to the aforementioned generic way, the other approach
for manually scaling the size of any Auto Scaling group is to attach or detach
in service EC2 instances to or from the Auto Scaling group if they pass all

the required prerequisites.

The mutual characteristic shared among both aforementioned approaches
for scaling the size of the Auto Scaling group manually is that they can
be done independently, with no contribution of other AWS services, also
both will be performed in an active manner, upon direct commands of the

customers.

1.2.2 Scheduled Scaling:

Scheduled scaling is a time based approach for scaling the number of in ser-
vice EC2 instances within the Auto Scaling group based on some predefined
conditions. These conditions are generally a tuple consisits of exact time and
date of the changes with their size of desired changes. The main difference
between scheduled scaling and manual scaling is where scheduled scaling will
be done passively, there is no need for presence of the client during the scaling

process.

1.2.3 Dynamic Scaling:

In contrast with both aforementioned approaches, the most advanced way
to scaling the number of in service EC2 instances within any Auto Scaling
group is to adjust them adaptive to live performance changes. In other
words, if there are any needs for more EC2 instances at a given moment,
the Auto Scaling service has the ability to initiate the Scale out process
to add extra EC2 instances to the group, and if there be any number of

idle EC2 instances within the Auto Scaling group, also it has the ability to

trigger Scale in process in order to terminate idle EC2 instances to stop extra
charges. The aim of having dynamic scaling is to provide scaling based on the
live changes on systems’ performance vectors in the absence of administrators
(customers). This is the key feature that makes dynamic scaling very popular
among AWS Auto Scaling service users.

The deployment of dynamic scaling on any Auto Scaling groups would be
done by defining some scaling policies which are some predefined rules use to
instruct the Auto Scaling service on how to manage and adjust the number of
in service EC2 instances within the Auto Scaling group. In other words, for
having Amazon Auto Scaling service being able to perform dynamic scaling
or scaling based on the demand changes automatically, Scaling policies are
required to be defined and configured; otherwise, a fix number of in service
EC2 instances would be kept as the configured desired capacity with no live
responses to real time performance vectors changes.

As it is mentioned earlier, dynamic scaling is able to adjust the number
of in service EC2 instances based on the performance changes; hence, a
live performance monitoring service is required in order to track changes on
one or more desired systems’ performance metrics, this is where Amazon

CloudWatch service comes to the scene.

1.3 Amazon CloudWatch Service

Amazon CloudWatch service is AWS’ monitoring service responsible for col-

lecting logs and events from other Amazon resources and services, one of

them which sends live (near to real time) logs and events to Amazon Cloud-
Watch service is amazon EC2. In fact, Amazon CloudWatch service acts like
an application which not only stores logs and any metric changes of EC2 in-
stances within its repository, but also would be able to call and trigger other
Amazon Services as required in response to those metrics’ changes. Metric is
the desired computing resource which projects the performance vector of any
EC2 instances. Some of the available performance metrics for EC2 instances

to choose between are as follows [5]:

CPUUtilization

DiskReadOps

DiskWriteOps NetworkIn

NetworkQut

NetworkPacketsIn

NetworkPacketsOut

Through utilization of Amazon CloudWatch service and by defining the de-
sired metrics to be monitored, Amazon CloudWatch service is able to track
live changes over the desired performance vectors for any number of EC2
instances. If those changes were above or below any of the predefined thresh-
olds, Amazon CloudWatch service is also able to call for other AWS services

for giving the best responses in accordance to the changes. It is worth noting

that by default, Amazon CloudWatch service gathers information from each
EC2 instance every five minutes with no extra cost; however, by enabling
detailed monitoring this interval can be set to less amounts such as every

minutes. Detailed monitoring has extra costs[6].

1.4 Dynamic Scaling Policies

In order to scale any Auto Scaling group based on live changes on their Cloud-
Watch metrics (dynamic scaling), defining Auto Scaling policies is required.
In fact, Auto Scaling policies bound desired responses to each defined Cloud-
Watch alarms. Auto Scaling policies are as follows: target tracking policies,

step scaling policies and simple scaling policies [7].

1.4.1 Target Tracking Scaling Policy

With this kind of scaling policy, the desired metric and its value would be
defined by customers. Then, Amazon EC2 Auto Scaling service creates and
manages the corresponding CloudWatch alarms based on those selections.
The Auto-Created CloudWatch alarms are responsible for triggering the Auto
Scaling processes when any CloudWatch alarm breaches (when a ClondWatch
alarm breaches, the CloudWatch service moves into in-alarm state, notifying
the Auto Scaling service to perform the desired actions).

Amazon Auto Scaling service with target tracking policy in place tries
to keep the value of the selected CloudWatch metric as close as possible to

its predefined desired number with launch or termination of EC2 instances

accordingly very similar the way that thermostat maintain the temperature
of a home. Please note that Auto Scaling service still follows the predefined
Auto Scaling group’s capacity boundaries to not passing predefined maximum
capacity of the Auto Scaling group by launching extra EC2 instances or
also to not pass the predefined minimum capacity by terminating extra EC2

instances from the Auto Scaling group.

1.4.2 Step Scaling Policy

With step scaling, client has more granular control over the behavior of the
Auto Scaling service by being able to define various steps with the desired
actions based on the selected CloudWatch metrics. In fact, each step is a tu-
ple consists of a threshold for the selected CloudWatch metric with its exact

corresponding action.

1.4.3 Simple Scaling Policy

Simple scaling policy is very similar to step scaling policy but instead of being
able to define multiple Steps and actions; here, customers can select just one
step. Please note simple scaling policy has some built-in limitations which
need to be considered, one of them is as follows: while new EC2 instances
are being launched as a response to any Scale out alarm and they are still
in their pending time (time taken by EC2 instances before getting ready

to enter into InService state, where they start servicing like another Auto

10

Scaling group members), Auto Scaling service would not respond back to
any new CloudWatch alarms, like its service is being suspended temporary,
which means slower convergence in comparison with the two other approaches
[7].

Although, dynamic scaling provides reliability and availability for any
Auto Scaling groups, it is also intended to provide cost efficiency to its cus-
tomers with preventing excess resource allocation, dynamic scaling might
lead to some hidden costs for its customers in unpredictable load changing
environments which made for the basis of my thesis framework, but first,

let’s have a look at various charging models available for EC2 instances.

1.5 AWS Billing Methods

Amazon Web Services (AWS) charges EC2 users either on per hour or per
second, dependent upon type, size, operating system, and the AWS region
where the instances are launched. In an hourly basis, instances are billed for
following 60 minutes even a portion of that paid 60 minutes get used by them.

Let’s look at some examples coming directly from the Amazon documents:

e “Instance for 30 minutes and then terminate the instance, IT is billed

for one instance-hour”.

e “One instance for 10 minutes, stop the instance, and then start the

instance again, it is billed for two instance-hours”.

11

e “Two EC2 instances of the same type for 30 minutes each, it is billed

for two instance-hours” [8].

The last example, elaborates a very specific behavior of Auto Scaling service
which can lead to extra costs for customers in some scenarios, for instance
where an already paid EC2 instance get removed from the Auto Scaling group
in response to a Scale in CloudWatch alarm, then within the same billing
period one or more new EC2 instances get launched based on new scaling

out alarms.

1.6 My Contributions

After a full explanation of how Auto Scaling groups can be scaled in or out
automatically via dynamic scaling policies, the default behavior of dynamic
scaling over a simulated case study will be examined and it will be shown
how it can lead to extra costs pushed onto customers in similar ways.

After acknowledging the possibility of dynamic scaling policies hidden
costs due to unpredictable load changes on Auto Scaling groups when dy-
namic scaling is setup to manage its scaling processes, a couple of workarounds
done by Amazon Web Services (AWS) or independent scholars for making
dynamic scaling more cost efficient will be reviewed. Then some of my exam-
ined approaches within another case study alongside with full explanation of
their restrictions will be studied and among them the best one which made

the foundation of my final approach will be discussed. Finally, a practical

12

approach for minimizing hidden costs problem through the introduction of
NoAuto Scaling group will be introduced, implemented and its results ver-
sus the outcomes of default Auto Scaling service behavior over a simulated

scenario will be examined.

13

2 Background

Amazon Web Services(AWS)introduced Auto Scaling service in 2009 (three
years after first introduction of Elastic Compute Cloud (EC2) instances in
2006) in order to make EC2 instances possible to respond quickly to demands
changes [9]. One of the main reasons for having Auto Scaling service over
Auto Scaling groups (ASG) is to manage the number of in service EC2 in-
stances dynamically based on the real needs for allocated resources. In this
regard, terminating unwanted EC2 instances to prevent resources over provi-
sioning which causes extra costs for clients is also included into Auto Scaling
service. For being able to enhance Auto Scaling service behavior over any
Auto Scaing groups, having a solid understanding of EC2 instances life-cycle
(from the moment a new EC2 instance is launched to the moment of its ter-

mination) is inevitable.

2.1 EC2 Instances Life-cycle Components

The Life-cycle of any EC2 instances within any Auto Scaling groups (ASG)
would be like Figure 1 [10] which differs from EC2 instances outside of the
Auto Scaling groups. An EC2 instance life-cycle starts when the EC2 in-
stance is launched, either by manual scaling, scheduled scaling or dynamic
scaling in response to any Scale out requests, and it finishes with instance

termination: when the instance would be taken out of the Auto Scaling group

14

either by terminating process or EC2 detachment process.

EC2 instances life-cycle consists of various states which any EC2 instance
can experience during its existence, some of them are optional like life-cycle
hooks or Standby states and some of them are mandatory like pending or

InService states.

Auto Scaling
group

l

Scale out

Pending { Pending: Wait j
Attachinstances

!

—(Pending:Proceed)

EC2 Instance

Detaching

Detachinstances
EC2_INSTANCE_LAUNCHING
check
l EnterStandby EnteringStandby

(Terminating: Wait } Terminating l

l (Standby] ExitStandby

(Terminlting: I’rnctedj—

EC2_INSTANCE_TERMINATING
lifecycle hook

Figure 1: EC2 Auto Scaling Life-cycle

For a better understanding of what happens to any EC2 instances within
any Auto Scaling groups from the beginning to the moment of termination,

let’s take a closer look at the EC2 life-cycle’s components.

15

2.1.1 Life-cycle Entrance

Increasing the size of any Auto Scaling group (Scale out) can be done in var-

ious ways including manual scaling, scheduled scaling and dynamic scaling.

2.1.1.1 Manual scaling: This is a very direct way to increase (Scale
out) or decrease (Scale in) the number of in service EC2 instances within
any Auto Scaling groups where changes on Auto Scaling group’s boundaries
or its number of desired capacity of in service EC2 instances can lead to the
launch or termination of EC2 instances consequently. These changes can be
done with direct command of the customers (administrators) via AWS man-
agement Portal, CLI, APIs or even SDKs. In addition to the aforementioned
way, another approach which can consider in the same category as manual
scaling is to attach already running EC2 instances to the Auto Scaling group
since this approach would also require a direct live contribution of customers
to be done. Prior to be able to attach any running EC2 instances to any

Auto Scaling groups, some criteria need to be checked as follows [11]:
e EC2 instances should be in running state.

e Amazon Machine Image (AMI) of the desired instances should be still

available.

® Desired EC2 instances should not be a member of other Auto Scaling

groups.

16

e Desired EC2 instances must be launched in one of the supported avail-

ability zones by the Auto Scaling group.

By attaching new EC2 instances to an Auto Scaling group, the desired capac-
ity of the group increases accordingly, If this number exceeds the predefined

maximum capacity size, then the request will be dropped [11].

2.1.1.2 Scheduled scaling: The process of launching new EC2 instances
can be done based on a set of predefined dates and time. Schedule scaling
is a tuple consists of an exact time and date as its first variable in addition
to the amount of changes over the number of in service EC2 instances as its

second variable.

2.1.1.3 Dynamic scaling: With taking advantages of dynamic scaling,
customers are not required to launch or terminate EC2 instances directly.
Instead, Auto Scaling Service is responsible for performing both aforemen-
tioned tasks. For dynamic scaling being able to perform its tasks, having
dynamic scaling policies are required; otherwise, Auto Scaling service will
not respond back to any CloudWatch alarms requesting Scale out or Scale
in processes. In other words, having an Auto Scaling group with dynamic
scaling while there are no scaling policies defined, is like to seize the abil-
ity of automatic scaling from Auto scaling Service over that particular Auto

Scaling group.

17

2.1.2 Pending State

Regardless of the way uses to scale an Auto Scaling group out, prior to
put any EC2 instances into the InService state, where they start servicing
like other InSerivce EC2 instances, some preparation processes are required.
Some processes including installing operating systems, patching or updating
them, installation and configuration of required applications and so forth.
These processes are time consuming ones; hence, these kind of tasks would
be completed in the Pending state. It is worth noting that although cus-
tomers will be charged for their EC2 instances in Pending state, it assures
EC2 instances will not start servicing while they are not completely ready
for it yet. In addition to Pending time, clients also might setup Warm-Up
value for their EC2 instances, which is extra time needed for newly launched
instances prior to become an Auto Scaling group’s member and start ser-
vicing [12]. After the Pending state, there are two paths available for EC2
instances to proceed as follows: moving to either InService state or life-cycle

hook.

2.1.3 InService State

InService state is where EC2 instances start servicing as a member of an Auto
Scaling group and their performance’s parameters start being monitored by

Amazon CloudWatch Service.

18

2.1.4 Life-cycle Hook

Life-cycle hook is an optional step, providing more control over EC2 instances
before having them added into the Auto Scaling groups or prior to termi-
nating EC2 instances and removing them from the groups. Amazon Auto
Scaling life-cycle hook introduces two new states during Scale out process as
Pending:Wait and Pending:Proceed states, also two new states for Scale in
process which are the Terminating:Wait and Terminating:Proceed states as
it is shown in Figure 2 [13]. In general, life-cycle hook is known as an extra
option for performing desired changes or taking required logs and backup
before adding or removing instances. This is worth noting again EC2 in-
stance can wait in life-cycle hooks for 48 hours without customers get billed
for them. EC2 instances can stay in this step for 48 hours at maximum and
after that time they automatically continue with moving into Inservice state
or be terminated. Also instances within the life-cycle hook are not billed;
however, please note that some AWS resources, such as Amazon EBS vol-

umes and Elastic IP Addresses incur charges regardless of the instance state

13].

19

i
L

o mena
v

(et)

EC2_INSTANCE_LAUNCHING
Iifecycle hook

1
= ey

e

EC2_INSTANCE_TERMINATING
lifecycle hook

Figure 2: EC2 Life-cycle Hook Diagram

2.1.5 Exiting from Inservice State

Four events can change the state of any EC2 instances from InService to oth-
ers as follows: detaching instances, terminating them, failing periodic health

checks and going to Standby state.

20

2.1.5.1 Detaching Instances: Detaching process on any EC2 instances
from the Auto Scaling group moves them outside of the group while they are
still up and running to be managed independently like other stand alone EC2
instances. When we choose to detach any EC2 instances, we can decrease
the number of desired capacity size of the group to prevent launching any

new EC2 instances as the replacement by Auto Scaling service[14].

2.1.5.2 Termination phase: Another way to exit from InService state is
to move EC2 instances to the Termination phase which would be done either
via Scale in process or with direct commands of the clients. As it is mentioned
earlier, designated EC2 instances can also get moved into the Termination
life-cycle hook optionally in order to perform more custom actions on, like
gathering logs and data from, or simply stopping and removing them from

the Auto Scaling group.

2.1.5.3 Failing Periodic Health Check: Auto Scaling service monitors
and evaluates EC2 instances health status within the Auto Scaling groups
periodically and if it detects any defected EC2 instances, it will replace those

instances with healthy new EC2 instances.

2.1.5.4 Moving into the Standby State: The last way to exit from
InService state is to move EC2 instances to the Standby state. Since moving

into Standby state and exiting from that would be a part of my final ap-

21

proach, I would discuss Standby state with more details is a separate section

as follows.

2.1.6 Standby State

Standby state is designed for providing some maintenance over in service
EC2 instances if required. Some maintenance like system updates, soft-
ware changes or doing some troubleshooting while those EC2 instances are
still considered as an Auto Scaling group’s member but not in the InService
state. By default, putting any allowed number of in service EC2 instances
into Standby state would not lead to launch any new EC2 instances since the
number of desired capacity of the Auto Scaling group would be decremented
by the number of Standby EC2 instances. This is designed to prevent the
Launch of any new EC2 instances as the replacement of Standby EC2 in-
stances within the Auto Scaling group. Please note, customers are billed for
their Standby EC2 instances, hence this default behavior of Auto Scaling
service can save clients from extra charges. After moving any Standby in-
stances back into InService state, the desired capacity would be incremented
by the number of returned instances. The aforementioned behavior can be
modified in a way to not decrease or increase the amount of desired capacity
size while moving EC2 instance to or from Standby mode [15].

Now, let’s have a closer look at how Standby state works, as it is shown
in Figure 3 [15], entering into Standby state from Inservice state is a very

straightforward process with absence of any intermediary steps; however,

22

moving any Standby EC2 instances to the Inservice state, first entering into

Pending state is required.

ExitStandby———

(T >
mm.nm—{ EnteringStandby j

Figure 3: Life-cycle of Standby EC2 Instances

2.2 Auto Scaling Policies:

In order to be able to scale the size of any Auto Scaling group dynamically
based on near to real time changes on the load of the desired performance

metrics, some predefined rules are required, these rules are referred to as scal-

23

ing policies which dictate the desired responses to the CloudWatch alarms.
A scaling policy instructs Amazon EC2 Auto Scaling service to track a spec-
ified CloudWatch metric as its monitoring parameter, also it defines what
action should be taken as the desired response when that CloudWatch met-
ric exceeds its predefined thresholds or technically goes into in-alarm state.

Auto Scaling policies are as follows [16]:

2.2.1 Target Tracking Policy:

This is the recommended way by Amazon Web Services for most of clients
since it is very straightforward and easy to maintenance, customer defines a
desired scaling metric with its target value, then Auto Scaling service takes
care of the rest of works with trying to keep the value of selected performance
metric as close as possible to the desired target value. This process consists of
creation of corresponding CloudWatch alarms and management of required

Scale in or out processes.

2.2.2 Step Scaling Policy:

This approach, which provides more granular control over the Auto Scaling
groups, requires customers to define their CloudWatch alarms themselves,
also defining the corresponding actions in the form of various steps. Hence,
customers can dictate their willing over the behavior of their Auto Scaling
groups in a more detailed manner; however, it requires more works to have

the scaling policies setup and tuned.

24

2.2.3 Simple Scaling Policy:

This one is very similar to step scaling policy; however, with simple scaling
policy customers can define just one step or action instead of having multiple

steps like what step scaling is made for.

2.3 Billing Plans

Amazon EC2 instances are billed either in a hourly basis or for some Linux
instances based on used seconds. In my thesis, I considered the hourly based
charging plan which covers more range of the scenarios. Based on hourly
billing plan, each EC2 instance is billed for the next 60 minutes repetitively
once it is launched until it gets terminated completely or enters into the

life-cycle hooks as discussed earlier [17].

2.4 Demonstration of the Problem

In the following section, within a simulated scenario, one situation that dy-
namic scaling would cause extra charges will be demonstrated. In this thesis,
these kind of costs are referred to as hidden costs. Let’s assume we have an

Auto Scaling group with the following capacity size settings:
e Minimum Capacity: 1
e Desired Capacity: 4
e Maximum Capacity: 10

25

Also, let’s assume we have the following step scaling policy as desired dynamic
scaling policy. This policy tracks the average CPU usage of all in service EC2
instances within this Auto Scaling group and has the following reactions in
response to any breached CloudWatch alarm once the average CPU usage

exceeds above or below the defined thresholds.

e CPU usage 50%: Number of desired in service instances: 4
e CPU usage 35% : Scale in 2 EC2 instances.

e CPU usage 75% : Scale out 2 EC2 instances.

For simplicity, also let’s assume all four initial EC2 instances are launched
at the exact same time; thereby, their billing time also would be at the exact
same time since in this thesis, hourly billing basis would be studied.

Let’s imagine after a short time during the first billing hour, the average
CPU usage of in service EC2 instances within this Auto Scaling group drops
to 35%, as expected: a Scale in alarm breaches and based on defined scal-
ing policies, two EC2 instances would be selected for getting terminated. In
this regard, two EC2 instances from the Auto Scaling group enter into the
termination phase and after a short time the number of in service instances
will be degraded to two instances.

So far, we paid for 4 instances; however, we have two in service EC2 in-
stances. let’s continue with assuming the average CPU usage boosts up again
and reaches to 50%; consequently, two new EC2 instances as a response to

the breached Scale out alarm will be launched and here is where hidden costs

26

are shown up as demonstrated in Table 1 (Auto Scaling Default Behavior),
although the number of in service EC2 instances in this Auto Scaling group
is still four, it is billed for six EC2 instances so far within the first billing
hour.

We can even go further and imagine based on some loads on the group, the
average CPU usage increases to 75% and in respond to this change, two more
new EC2 instances launch (Scale out).

Again, if the average CPU usage drops to 50%, two EC2 instances would
be terminated in response to an emerged Scale in alarm aligning the size of

desired capacity to four instances one more time.

e Number of in service EC2 instances at the end of very first billing hour:

4

e Number of billed EC2 instances during that period: 8

27

Table 1: Auto Scaling Default Behavior

CPU usage In service in- | Paid instances Description
stances

50% 4 4 Desired numbers as 4 when the average CPU
usage is at 50%

35% 2 4 Scale in alarm: Terminating two instances

50% 4 6 The average CPU usage went back to Nor-
mal (50%); therefore, a new scaling out alarm
breaches: adding two more instances to the
Auto Scaling group.

75% 6 8 The average CPU usage boosted, scaling out
process adds two more instances to the Auto
Scaling group, the total number of paid in-
stances would be 8

50% 4 8 The average CPU usage went back to Nor-

mal (50%); Therefore, another Scale in alarm
breaches: Terminating two EC2 instances from

the Auto Scaling group.

As it is demonstrated above, fluctuations on the selected CloudWatch

metrics (in our example: The average CPU usage) can cause extra costs

depending on the number of launched or terminated EC2 instances. The

aim of my work in this thesis is to find a way to minimize the costs of having

dynamic scaling in place for managing the size of Auto Scaling groups based

on the demands. In this regard, we need to find a way to maximize the

amount of time when already paid EC2 instances can be accessible to any

time closer to their renewal time based on the hourly paid basis.

28

2.5 Predictive Scaling and Hybrid Auto Scaling

lets start with a short review on some works have already been done to make
Auto Scaling groups more cost efficient. In 2018, Amazon Web Services
introduced a new feature named predictive scaling available for its clients.
AWS predictive scaling uses trained Machine Learning models to predict
future load changes in daily or weekly patterns. As AWS says once the initial
set. of predictions were ready, it can forecast the loads on EC2 instances for
next following two days. Predictive scaling supports clients’ dynamic scaling
target tracking policies and in this case predictive scaling sets the minimum
capacity and target tracking adjusts the desired capacity dynamically [9].
Although, in case of unpredictable load vector changes, still the chance of
facing hidden costs is high since predictive scaling is designed to provide
capacity before the load changes and not after that; However, since it can
predict future load decreases as well, it can reduce the chance of resource
over provisioning with a better adjustment of dynamic scaling plans.
Another approach which has common ideas with my work in this thesis
is a hybrid auto-scaling technique, a novel approach proposed by Biswas
et al, 2017 [18]. In their work they proposed how an intermediary firm
can act like a broker between AWS and clients by providing idle already
paid resources to another client while still following all SLA (Service Level
Agreements) policies. In other words, with their approach, scaling in process

for a particular client would not terminate EC2 instances in fact, it just stop

29

that client from being billed for that specific EC2 instance, on the other
hand, that specific EC2 instance can now be assigned to another client who
needs more resources. With this idea, they are also trying to make most
profit from the already paid EC2 instances very similar to my goal in this

thesis.

2.6 Some Possible Approaches

After the review which is done at last section over both predictive scaling
and aslo Hyberid auto-scaling technique (two workaround already have been
done by AWS and also some scholars to minimizing the costs of Auto Scal-
ing services), lets continue with my first approach for resolving hidden cost’s
problem and also acknowledging its restriction within another simulated sce-
nario. After that, my second approach will be proposed and why it is not
practical at the moment will be discussed. The aim of bringing both unsuc-
cessful approaches here is because all lesson learned from both approaches

helped me to draw up the fundamentals of my final proposed approach.

2.6.1 Suspending Scale in Service

With Auto Scaling policies in place, both scaling out (the process of adding
new EC2 instances to the Auto Scaling group) and scaling in (Terminating
EC2 instances and removing them from the Auto Scaling group) processes
are triggered as soon as their corresponding CloudWatch alarms breaches.

In order to force an Auto Scaling group to keep its EC2 instances for the

30

entire current billing hour, while dynamic scaling policies are in place, we
need to find a way to change the default behavior of Scale in process; instead
of terminating EC2 instances once any Scale in alarm breaches, postponing
EC2 instances termination process to any time closer to their renewal time
might be a solution. To do so, Terminate micro service we be suspended over
any Auto Scaling groups.

Amazon Auto Scaling service itself consists of some micro services as follows:

e Launch

Terminate

Health Check

Replace Unhealthy
e AZ Rebalance (AZ stands for Availability Zones)

Alarm Notification

Scheduled Actions

Add To Load Balancer

Instance Refresh

Each one of the aforementioned services is responsible for handling a spe-
cific task over any Auto Scaling groups. For instance, Launch micro service

handles Scale out processes while Terminate micro service handles Scale in

31

processes [19]. This is possible to suspend any number of these micro ser-
vices as needed and still take advantage of other micro services on any Auto
Scaling groups. In addition, these changes are domestic for selected Auto

Scaling group and will not impact other Auto Scaling groups.

2.6.1.1 Evaluation of the Approach During the First Billing Hour
As it is mentioned earlier, one potential solution for changing the default be-
havior of Auto Scaling service to not terminate EC2 instances in response to
Scale in alarms is to suspend the Terminate micro service over an Auto Scal-
ing group, therefore, if any EC2 instances are launched and are in InServive
state, Auto Scaling service would not terminate them automatically, guar-
antees the maximum usage of any paid EC2 instances . With this approach,
Auto Scaling service handles only Scaling out processes. Table 2 (Auto Scal-
ing Behavior with Terminate Micros Service Suspended) evaluates the results

of this approach over our original scenario:

32

Table 2: Auto Scaling Behavior with Terminate Micros Service Suspended

CPU usage in service in- | paid instances Description

stances

50% 4 4 Desired numbers as 4 when the average CPU
usage is at 50%

35% 4 4 No Scale in Progress will be triggered since
Terminate micro service 1s suspended!

50% 4 4 The average CPU usage went back to Normal
(50%), no scaling out process needed. The
number of paid instance and in service in-
stances are still the same which means we
could save money here

75% 6 6 The average CPU usage boosted, scale out pol-
icy adds two more instances to our Auto Scal-
ing group, the total number of paid instances
would be 6

50% 6 6 The average CPU usage went back to Normal

(50%), however no Scale in process would be

triggered since its micro service is suspended.

As it is shown above, with suspending Terminate micro service over ex-
ampled Auto Scaling group, we could save money: instead of finishing with
8 paid instances and 4 in service instances at the end of the very first billing

hour, we ended with 6 paid instances and 6 in service instances.

2.6.1.2 Evaluation of the Approach During Next Billing Hours
In both aforementioned scenarios, and seeing changes with the very first
billing period, it is shown that during that time, having the Scale in process
suspended could lead to costs efficiency. However, we need to evaluate this

approach and its outcomes over a longer period of time. This is done by

33

the following detailed case study which is another simulated scenario where
both aforementioned approaches (with or without Terminate micro service
suspension) are modeled for more than one hour billing period.Let’s start

with some definitions:

e Time-Stamp: a list consists of the pairs as follows: [z, 22| where x; rep-
resents Time and x, represents the number of required EC2 instances.
In fact, each pair within Time-Stamp list represents a CloudWatch
alarm, it has Time when the CloudWatch alarm breaches and also its
requested tuning number as zo value.

In order to differentiate between Scale in and Scale out alarms , pos-
itive numbers indicate Scale out alarms while negative numbers indi-
cate Scale in requests. For instance, [3:30, +2| indicates one scaling
out alarm asking for the launch of two new EC2 instances at 3:30 AM.
On the other hand. [16:10, -3] means there was a Scale in alarm at 4:10
PM. asking for termination of three EC2 instances within our Auto

Scaling group.

e Event-List: a list consists of the pairs as follows: [z, 23] where x; rep-
resents Time and x5 represents the number of in service EC2 instances.

Event-List represents the actual outcomes of our approaches.

e Renewal-List: a list consists of the pairs as follows: [z, 3] where x;
represents Time for next charge and x5 represents the number of EC2

instances. Due to the fact that in my thesis [am assuming all EC2

34

instances are billed based on hourly basis, keeping the amount of min-
utes for z; will be sufficient. For instance, instead of keeping 2:30 AM.
as X1, we are going to keep 30 since it does not matter if time is 3:30 in
the morning or 6:30 afternoon; as far as this instance is up and running

it would be charged exactly 30 minutes after each hour repetitively.

waiting-List: an Integer! for a better understanding why it is not re-
quired to have a list of pairs like other variables and keeping an Integer
as the type of this variable is sufficient, let’s assume waiting-List was
a pair as [y, r2]; x1 same as all other variables was representing Time:
when a Scale in alarm breaches and x; was representing the number of
requested EC2 instances to scale in.

Here is a very important default rule while applying multiple Ama-
zon Auto Scaling policies over any Auto Scaling groups: Auto Scaling
service tends to keep the largest possible number of InService EC2 in-
stances (largest capacity) if there are multiple policies in place[17]. For
example, if there are two Scale in alarms at the same time, one of which
asks for three EC2 instances termination while the other one asks for
terminating two EC2 instances, the Auto Scaling Service would select
the later one as the winner and consequently discards the former re-
quest asking for termination of three instances.

Same behavior is also valid for Scale out process, in competition be-
tween two concurrent scaling out alarms, the winner would be the one

which leads to a larger Auto Scaling group capacity. For instance, if

35

one Scaling out alarm asks for launching two new EC2 instances while
the other one is asking for launching three new EC2 instances, the
Auto Scaling service would pick the later request and will add three
new EC2 instances to the Auto Scaling group and the former request
would be discarded [17]. Thereby; regardless of the number of Scale in
alarms within a billing period, the selection of the winner request is a
competitive task, the winner is the one that reduces the number of in
service instances the least, or in other words, keeps the capacity of the
group at the max.

In addition, keeping the time that Scaling in alarm breaches as the
value of this variable is not critical since our goal is to postpone scal-
ing in processes to the first arrived EC2 instance renewal time; hence,
keeping an Integer as the number of nominated EC2 instances for being

terminated is sufficient.

Now, let’s create our ordered Time-Stamp for our example with assuming

we have already created an Auto Scaling group as follows:
e Desired Capacity: 4
e Minimum Capacity Size: 1
e Maximum Capacity Size: 10

And average CPU usage is selected as the desired ClouldWatch metric for

implemented dynamic scaling policy.

36

Amazon Auto Scaling service supports multiple Scale in policies in order
to provide more control over designated EC2 instances to be terminated by
Amazon Auto Scaling service. In other words, by customizing Scale in poli-
cies, customers are able to apply their will through selection of one of the

following available policies[20].

Oldest LaunchTemplate

OldestLaunchConfiguration

Closest ToNextInstanceHour

NewestInstance

OldestInstance

In this example, let’s assume the Scale in policy is set as OldestInstance
policy. Hence, the oldest EC2 instances will be nominate for being removed
from the Auto Scaling group by the Scale in process.Also for simplicity, let’s
assume all four EC2 instances have been launched at the exact same time:
8:30 AM.

In addition to all of the aforementioned assumptions, we also can assume
Pending time for all Auto Scaling’s processes is equal to zero. Although in
real world this amount can be anything more than zero depending on various

factors, assuming The Pending time equal to zero does not break the logic

37

of my works in this thesis. Let’s list our current variables as follows:

e Time: 8:30 AM
e Time-Stamp: [[8:30,4]]
e Event-List: [[8:30 ,4]]

If everything remains the same in regards to our selected CloudWatch met-
ric (The average CPU usage), the next billing time for these four instances

would be at 9:30 AM. and after that 10:30 AM. and so on. Thereby, the first

entry for our Renewal-List would be as the follows:

e Renewal-List: [[30,4]]

Now, let’s assume at 10:45 AM., a Scale out alarm breaches, requesting for

the addition of one new EC2 instances in response to a CloudWatch alarm.

e Time: 10:45 AM

e Time-Stamp: [[8:30,4], [10:45,1]]

Here, based on Auto Scaling service default behavior and in respond to the re-
cently breached Scale out alarm, two new EC2 instances would get launched
immediately; consequently, Event-List and Renewal-List will be changed as

the follows:

38

Event-List: [[8:30,4], [10:45,1]]

Renewal-List: [[30,4], [45,1]]

Number of in service instances: 5

e Number of paid instances: 5

The most close renewal time: 11:30 AM. for four instances

e Time remained to the most close renewal time: 45 minutes

Now, let’s assume this is 10:55 AM. and a Scale in alarm for terminating two

EC2 instances breaches. We have two different approaches to compare:

1. With the default Auto Scaling service behavior.
2. While Terminate micro service is suspended.

Let’s list our variables in these two cases:
With the Amazon Auto Scaling service’s default approach, we would have

the following variables:
e Time: 10:55 AM.
e Time-Stamp: [[8:30,4], [10:45,1], [10:55,-2]]

e Event-List: [[8:30,4], [10:45,1], [10:55,-2]]

39

The Auto Scaling service immediately selects two EC2 instances from our
Auto Scaling group based on its termination policy to get terminated. Based
on our assumption, oldest instances would be selected by Auto Scaling service
in response to the Scale in alarm, in our case: EC2 instances which had been
launched at 8:30 AM and renewing at 11:30 AM.

Please note that here in this example and at the current step, even having
ClosestToNextInstanceHour as our selected termination policy would lead to
the same result and same EC2 instances would be terminated in response to

the current scale in alarm.
e Renewal-List: [[30,2], [45,1]]
e Number of in service instances: 3
e Number of paid instances: 5

e The most close renewal time: 11:30 AM for 2 EC2 instance (two are

already terminated)
e Time remained to the most close renewal time: 35 minutes

Now, let’s list what would be in action if we have Terminate micro service

suspended over the Auto Scaling group.

e Time: 10:55 AM.

e Time-Stamp: [[8:30.4], [10:45,1], [10:55.,-2]]

40

e Event-List: [[8:30,4], [10:45,1]]

Auto Scaling service would not respond back to this request. Hence, the last
entry inside of Time-Stamp would not be moved into the event-List. Also

for the fist time, our Waiting-List variable gets a value equal to two.
e waiting-List: 2
e Renewal-List: [[30,4], [45,1]]
e Number of in service instances: 5
e Number of paid instances: 5
e The most close renewal time: 11:30 AM. for 4 instances
e Time remained to the most close renewal time: 35 minutes

Let’s continue our scenario with assuming this is 11:10 AM, another Scale
out alarm breaches, this time for the addition of three new EC2 instances to
our Auto Scaling group while the Terminate micro service is enabled, so the
desired capacity of the group would be 6 instances.

Again we have two scenarios to compare as follows: when Amazon Auto

Scaling service uses its default approaches:
e Time: 11:10 AM.
e Time-Stamp: [[8:30,4], [10:45,1], [10:55,-2], [11:10,3]]

41

e Event-List: [[8:30,3], [10:45,2], [10:55,-2], [11:10,3]]
Auto Scaling service immediately launches three EC2 instances.
e Renewal-List: [[10,3], [30,2], [45,1]] (Sorted)
e Number of in service instances: 6
e Number of paid instances: 8
e The most close renewal time: 11:30 AM for two instance
e Time remained to the most close renewal time: 20 minutes

Now, let’s list outcomes of having Terminate micro service suspended.

e Time: 11:10 AM.

e Time-Stamp: [[8:30.4], [10:45,1], [10:55.-2], [11:10,1]]

Please note that prior to the time when the most recent Scale out alarm is
breached, the number of in service instances within the Auto Scaling group
was five, and the desired capacity number of in service instances based on the
current scaling out alarm would be six. Hence, adding just one EC2 instance

to the Auto Scaling group is sufficient.
e Event-List: [[8:30,4], [10:45,1],[11:10,1]]
Auto Scaling service immediately launches just one new EC2 instance.

42

Renewal-List: [[10,1], [30,4], [45,1]] (Sorted)

Number of in service instances: 6

Number of paid instances: 6
e The most close renewal time: 11:30 AM for 4 instances
® Time remained to the most close renewal time: 20 minutes

So far and for one more time, Auto Scaling hidden costs are being demon-
strated. Also, it is shown suspending Auto Scaling process can be a potential
solution for preventing extra charges. However, in the following, the main
weakness of this approach will be discussed.

Let’s assume this is 11:20 AM and another Scale in alarm breaches, this time
for termination of three EC2 instances. The followings are the outcomes of
two approaches:

With Amazon Auto Scaling service’s default approach, we would have the

following results:
e Time: 11:20 AM.

e Time-Stamp: [[8:30,4], [10:45,1], [10:55,-2], [11:10,3], [11:20,-3]]

e Event-List: [[8:30,4], [10:45,1], [10:55,-2], [11:10,3], [11:20,-3]]

43

Auto Scaling service immediately selects two EC2 instances from Auto Scal-
ing group based on its termination policy to get terminated. In our case, two
of them would be the only remaining instance which had been launched at
8:30 AM, the other one though would be selected from the next elder EC2

instances, the ones which have been triggered at 10:45 AM.

Renewal-List: [[10,3], [45,1] (Sorted)

waiting-List: 0

Number of in service instances: 4

e Number of paid instances: 8

The most close renewal time :11:45 for 1 instance

e Time remained to the most close renewal time: 25 minutes

Now, let’s list what would be in action if we suspend Terminate micro

service over our Auto Scaling group.

e Time: 11:20 AM.

44

e Time-Stamp: [[8:30.4], [10:45,1], [10:55.-2], [11:10,1], [11:20,-3]] Auto

Scaling service would not respond to this request.

e Event-List: [[8:30,4], [10:45,1], [11:10,3]]

e waiting-List: 2

Please note that the waiting-List’s size, still would remain as two and will not
alter to three! This is because we also prefer to have most in service instances
in our Auto Scaling group, in fact here we are following Auto Scaling service

behavior in the regards of Service Level Agreements.
e Renewal-List: [[10,1], [30,34], [45,1]] (Sorted)
e Number of in service instances: 6
e Number of paid instances: 6
e The most close renewal time: 11:30 AM for 4 instances
e Time remained to the most close renewal time: 10 minutes

Now, let’s compare two Renewal-Lists together as follows:

e where Terminate micro service was enabled: [[45,1], [10,3]

e where Terminate micro service was suspended: [[10,1], [30,3], [45.2]]

45

Here is where the weakness of having Terminate micro service suspended
pops up. If the load over the Auto Scaling group stays stable in regards to
its CloudWatch metric, starting from next billing hour, we are billed just for
four in service EC2 instances with default Auto Scaling approach while with
suspending Terminate micro service this number would be six for all upcom-
ing billing periods which is not good. The main issue with the proposed
approach is where Amazon Auto Scaling service does not deal with Scale in

processes as we wished for with performing two following steps:

1. To postpone EC2 instances termination time to anytime closer to their

renewal time arrival, guarantees the maximum usage of EC2 instances.

2. To terminate existing Standby EC2 instances (the ones in waiting-List)

at their very first Renewal time arrival.

Not being able to perform the second step is the actual weakness of this
approach where with suspending Terminate micro service, Auto Scaling ser-
vice would not be able to remove extra EC2 instances from the Auto Scaling
group which leads to extra costs over customers due to the fact that Amazon
Web Service will charge customers for their standby instances. During the
remaining parts, first, a promising solution for enhancing Scale in process
will be proposed, then its restriction will be discussed. At the end, the final

solution with its implementations will be provided.

46

2.6.2 Escape-Gate

By having a closer look at Figure 4, it is obvious that the red line section is

a Dead-End for any EC2 instances. By default, if any EC2 instances enter

into the Terminating phase, there is no way to exit and returning back into

the InService state.

EC2 Instance

A 4

Auto Scaling
group

Scale out

!

M

Detaching
Detachinstances

health Scalein
—(Detached j P

Fail

Pending
Attachinstances

{ Pending: Wait]

!

—(Pending:Proceed j

EC2_INSTANCE_LAUNCHING

P

Y

EnterSta

(rorminacingwaie fet—{ terminatng |

[’l‘erminnﬂng: Proceed }—

EC2_INSTANCE_TERMINATING
lifecycle hook

.

.

by

lifecycle hook
{ EnteringStandby
(Standby ExitStandby

Figure 4: EC2 Life-cycle Dead-End

Perhaps, the Escape-Gate as it is shown in Figure 5 would be another

potential solution for hidden cost problem where in services instances could

47

get moved into Terminating:Wait state in response to any Scale in alarms
and waiting there even for 48 hours at maximum without even get billed
for them [13]. Then, during that available 48 hours and in response to any
brached Scale out alarm, instead of launching new EC2 instances, moving
Terminantin:Wait instances to Panding state like what Escape-Gate does.
Otherwise, at the arrival of the last renewal time (48th one), move designated
EC2 instances from Terminating:Wait state into Terminating:Proceed state
to complete termination process for avoiding extra costs. This would be
the best solution of maximizing customers’ benefit while using Auto Scaling
groups with dynamic scaling in place. However, there are no available means

to implement the Escape-Gate solution.

48

4

EC2 Instance

Attachinstances

Detaching
Detachinstances

A 4

—' Detached |

Pending

Fail

health | scale in
check

I’endlng Wait j

{
r

Pending:Proceed j

EC2_INSTANCE_LAUNCHING

lifecycle hook

of

g

(Terminating: Wait }
(‘l‘crminaling:?rocecd)—

EC2_INSTANCE_TERMINATING
lifecycle hook

&

Emeﬁtaﬁ*&w 1

Terminating

4

2.6.3 Using Standby State instead of Terminating Wait State

EnteringStandby j

(

Standby

] ExitStandby

Figure 5: EC2 Life-cycle with Escape-Gate

As discussed in previous section, perhaps being able to implement any similar

logic as Escape-Gate solution would be promising; hence, the following ap-

proach is proposed: instead of putting EC2 instances into Termination:Wait

state when any Scale in alarm breaches, moving them into Standby state,

then until their renewal time arrive, if any Scale out alarm breached, first

move standby instances into InService state, otherwise terminating them at

their renewal time arrival. However, prior to move forward with evaluating

49

the cons and pros of the proposed approach, lets check whether the suspen-
sion of Terminate and launch micro services over the Auto Scaling group is
required or not and also what are the consequences of suspending Launch

and Termination micro services.

The behavior of scaling in process is already educated, and it is shown
that for having dynamic scaling configured over the Auto Scaling group,
Terminate micro service needs to be suspended; otherwise, it will directly
put any EC2 instances into the Terminating phase in response to any Scale
in alarms. Please note that the above statement even can be altered to not
disabling Terminate micro service while we are not going to use any built in
Auto Scaling policies in the near future! This will be discussed at the end of
my works while the last comprehensive solution will be proposed. By then,
let’s say: with having Auto Scaling policies in place, we need to suspend
Terminate micro service over our Auto Scaling group.

The very exact same reason is also valid for Launch micro service while
either one of the target tracking policy, step scaling policy or simple scaling
policy is selected as the Auto Scaling group’s scaling policies. By default,
once any Scale out alarm breaches, Launch micro service, instead of working
with already Standby instances first (the ones in the Waiting-list), trying to
turn them back into the InService state, by default it launches new EC2
instances directly from its predefined Launch templates. Hence, already

Standby EC2 instances would never get the chance to exit from Standby

50

state by Launch micro service default behavior. Although, this behavior of
Launch micro service might encourage us to suspend it as well; however, by
doing that, the function of making changes on the size of the Auto Scaling

group would be disabled and two main issues emerge consequently:

1. would not be able to attach new EC2 instances to the Auto Scaling

group anymore.

2. would not be able to move Standby instances to InService state any-

more.

According to both aforementioned points, we need to have Launch micro
service always running on our scaling groups; however, if we want to have
scaling policies in place for performing dynamic scaling processes over the
Auto Scaling groups, finding a way to change the default behavior of launch
micro service is also inevitable. In this regard, keeping the size of desired
capacity of running EC2 instances always equal to the size of Auto Scaling
group’s maximum boundary would be sufficient since as it is mentioned ear-
lier, by design the number of running EC2 instances within any Auto Scaling
groups will not go beyond of defined boundaries. Hence, if the current max-
imum boundary size be equal to the desired capacity of the group, any scale
out alarm would be discarded. Finally, for performing scaling out processes,
changing the maximum boundary of the Auto Scaling group adaptive to the

desired changes would be necessary.

ol

To put all in a shell, with having Auto Scaling policies in place, Termi-
nate Micro service needs to be suspended while having Launch micro service
running. For both Scale in and out processes, we can-not rely on default
Auto Scaling group behaviors and we need to implementing and performing
both manually. Manually here means by utilization of other Amazon Web
Services like Amazon Lambda functions and Amazon Simple Notification
Services (SNS)as it will be explained during remained parts. Although the
aforementioned approach is practical, if we are going to perform both Scale
in and Scale out processes manually, there is no need for having any Auto
Scaling policies in place for scaling the size of the Auto Scaling groups dy-

namically.

2.7 Introduction of NoAuto Scaling Group

Let’s define a NoAuto Scaling group attributes as follows:

e An Auto Scaling group with no need of dynamic scaling policies.

e An Auto Scaling group whose dynamic scaling processes would be han-

dled by the help of Lambda functions, Amazon SNS service.

e An Auto Scaling group where the number of its desired capacity always

will be kept equal to its defined maximum capacity size, and vice versa.

In fact, for minimizing Auto Scaling service hidden costs, I propose utiliza-

tion of NoAuto Scaling groups with aforementioned characteristics, where

52

dynamic scaling can reduce hidden costs. The proposed approach is dynamic
since it will track the real time performance changes by use of CloudWatch
alarms, it is also Automatic since there is no need for any active contributions
of customers, once it gets configured, it handles scaling processes over the
NoAuto Scaling group automatically and finally, it can be more cost efficient

since it maximized the use of already paid EC2 instances within the group.

2.8 Two Obstacles

In the following section, two obstacles for implementing AWS NoAuto Scal-
ing groups will be discussed and solutions for them will be provided. The
first issue describes how to track renewal time arrival of any Standby EC2
instances within the NoAuto Scaling groups and the second one explains how

to terminate already Standby instances at their renewal time arrival.

2.8.1 Renewal Time Tracking Issue

Due to the fact that Scale in processes would not terminate EC2 instances
any more and instead, we are going to put those termination designated EC2
instances into the Standby state on our NoAuto Scaling groups once a Scale
in alarm breaches, tracking EC2 instances’ Up-Time calculation should also
be done manually in order to terminating them prior to their renewal time
arrival. To do so, CloudWatch scheduled tasks in the forms of CloudWatch
Cron expressions or CloudWatch Rate expressions can be used. In fact, with

Cron expression or Rate expression, the creation of Self-Triggered Cloud-

53

Watch alarms is doable [21]. The goal is to define an acceptable missing
time (the number of minutes that we can ignore from each 60 minutes paid
period). For instance having missing time equal to five means that we want
to use our EC2 instances at least for 55 minutes and being terminated at any
time less than five minutes is acceptable for us.

With having the definition of acceptable missing time, we use this amount
as the desired scheduled interval time for running a Lambda function which
calculates each EC2 instances UP-Time. Then, if the remaining time to
the instance renewal time (which simply can be calculated by having the
instance UP-Time since the renewal interval is each 60 minutes) was less
than the accepted missing time and the instance was in Standby mode, we
can terminate the instance from our Auto Scaling group in order to avoiding
extra costs with having idle EC2 instances transferred to the next billing

hour.

2.8.2 Standby EC2 Instances Termination Issue

The process of Terminating Standby EC2 instances directly within any NoAuto
Scaling groups, or even Auto Scaling groups is not a direct approach which
can be done directly via commands. Generally because EC2 Auto Scaling
Service does not perform health checks over Standby EC2 instances, Auto
Scaling Service would not provide any executable command over Standby
EC2 instances and for being able to terminate Standby EC2 instances at

their renewal time arrival, performing the following steps is required:

54

1. First, move Standby EC2 instances into the InService state.
2. Then, detaching them from our NoAuto Scaling group.

3. Finally, terminating them out of the Auto Scaling group to avoid any

extra costs.

2.9 Lambda Functions

In order to deploy a NoAuto Scaling group, AWS Lambda functions are
the main components where all the logic will be implemented by them. In
fact, with having Lambda functions joined with our CloudWatch alarms, the
desired responses to any breached CloudWatch alarms would be given via
the corresponding Lambda Functions. In other words, Amazon CloudWatch
events reflect changes on their status, once they entered into the in Alarm
state, this state change invokes AWS Lambda functions to take the desired
actions over. AWS Lambda lets clients run code without provisioning or

managing servers. they pay only for the compute time they consume [22].

2.10 SNS Topics

In order to invoke Lambda function by CloudWatch alarms, implementation
of Amazon Simple Notification Service or in short SNS is required. In fact,
whenever a CloudWatch alarm breaches, this status changes can be delivered

to AWS Lambda service by SNS topics [23].

95

3 Algorithm of the Solution with its Imple-
mentation Source Code
The following section consists of:
1. Providing the flowchart of a NoAuto Scaling group life-cycle.
2. Providing detailed algorithm of a NoAuto Scaling group.

3. Comparing Auto scaling group with NoAuto Scaling group behavior on

a simulated scenario
4. Pseudo-code of required Lambda functions

5. Implemented code in Python with using Boto3: Amazon Web Service’s

SDK in Python)

56

3.1 NoAuto Scaling Group Life-cycle

Figure 6 is the flowchart of how EC2 instances life-cycle inside of a NoSuto

Scaling group looks like.

InService State

l

CloudWatch Alarm Breaches

Lunch New EC2 ilstances

ere any need
Launch More EC2

Move EC2 instances into
Standby Mode & Check FOR |
Renewal Time Arrival For |
Each Of These Instances

Desired
Missing-Time
Arrived

Move Standby EC2
instance from
Standby to Inservice|

Detach it form the
NoAuto Scaling
group once it was
InService

Figure 6: NoAuto Scaling Group Flowchart

£
S

Scale In

-

3

Yes

to,

this Scaling Out
Request

No
Scale Out Is Any
cale In o i y \ Yes
out? T\ Instances
vailable,
e =
Terminate it |
—

57

Move instances Form
Standby to Inservice State

3.2 Algorithm:

Pseudocode for how to scale a NoAuto scaling group in or out would be as

follows:

Algorithm 1 NoAuto Scaling Group Pseudocode

1: MT + Desired Missing Time

2: RT + Time remainded to Renewal Time

3: if (RT < MT) and (State = Standby) then

4: move Standby instance to Inservice state
Wait until it goes to Inservice state
Detach it from NoAuto Scaling group
Terminate it

end if

if Scale in alarm breached then

10: x + number of requested instances

11: move x number of Inservice instances into Standby state

12: end if

13: if Scale out alarm breached then

14: z + number of requested instances

15: y < number of standby instances

16: if r <y then

17: move z number of standby EC2 instances to Inservice state
18: else

19: Z—IT—Y

20: move z number of standby EC2 instances to Inservice state
21: launch z number new EC2 instances

22: end if

23: end if

58

3.3 NoAuto Scaling Group vs Auto Scaling Group

In the following section, over a simulated case study with randomly generated
scaling events (Figure 7), the outcomes of NoAuto Scaling group behavior
versus the ones driven from Auto Scaling group are compared. This simu-
lated case study modeled an environment with maximum ten EC2 instances
with desired capacity of four as its start point. Various randomly created
load changes, causing random scaling requests during 24 hours (1 day) has
been recorded and finally the number of newly launched EC2 based on both
NoAuto Scaling group and Auto Scaling group approaches are compared

together in Table 3.

59

Table 3: NoAuto Scaling Group vs Auto Scaling Group Simulation Data

Time

In Service In-

stance

New Instances Launched by

Auto Scaling Group

New Instances Launched by

NoAuto Scaling Group

12:29 AM
1:09 AM
1:34 AM
2:01 AM
2:48 AM
3:15 AM
3:49 AM
4:06 AM
6:16 AM
7:10 AM
7:18 AM
8:57 AM
11:22 AM
11:40 AM
12:09 PM
12:56 PM
1:20 PM
1:45 PM
3:34 PM
4:28 PM
4:37 PM
6:30 PM
8:28 PM
10:38 PM

S N e o © e Ot =1 e W

4

[l -~ B]

O O O W O e WO =W O WN D = NN O N O

o o o = O = O o = W o o W o o =MBH O O = N W kA

60

@
o
o
€
o
2
7]
£
~N
]
o
k-]
o
=
c
=
3
i
-
5]
o
£
3

Time of breached Scaling out alarm

Figure 7: NoAuto Scaling Group vs Auto Scaling Group Outcomes

As it is demonstrated in Figure 7, the number of newly lunched EC2
instances based on NoAuto Scaling group approach (blue line) will never
go above the orange line which presents the outcomes driven from the Auto
Scaling group in responding to exact same scaling requests. This study shows
how using NoAuto Scaling groups can maximize the usage of already paid
EC2 instances in comparison to default Auto scaling group. Please note,
even in the worst case scenario, the number of newly launched EC2 instances
within a NoAuto Scaling group would be equal to the results driven from
its counterpart (Auto Scaling group) and no more. This is the significance
of using NoAuto Scaling groups in huge unpredictable environments where
maximizing the utilization time of each paid EC2 instances would be im-

portant. This difference in number of launched EC2 instances between two

61

approaches would be even more recognizable during a longer period of time

as per month when AWS charges its customers for their used services.

62

3.4 Source Code in Boto3

Boto3 is AWS SDK for Python and it can be used for creating, configuring
and managing AWS services. Main lambda functions for scaling a NoAuto

Scaling group in and out are as follows:

e scale-out function

find-standby function

terminate-instances function

detach-ins function

e time-remained function

scale-in function

For being able to maximize the usage of in service EC2 instances, as it is men-
tioned earlier, different termination policies can be used with Auto Scaling
service to select the termination nominated EC2 instance. Among them, us-
ing Closest ToNextInstanceHour termination policy is the one that maximize
the usage of already paid EC2 instances since it selects instances which are
closest to the next billing hour [20]. To implement same idea over a NoAuto
Scaling group when Scale-in function is looking for moving InService EC2
instances into Stnadby state, time-remained function helps scale-in function
with looking after EC2 instances with less than 5 minutes remained to their

renewal time first. If more instances were required, it checks instances with

63

less than 10 minutes and then less than 15 minutes remained to their renewal
time so it assures moving InService EC2 instances into Standby state is sim-
ilar enough to built-in AWS Closest ToNextInstanceHour termination policy.
At the end, if there were any needs for scaling in more EC2 instances, Scale-
in function selects among remained InService instances based on its internal

algorithm.

64

import boto3

import datetime

ec?2 boto3.resource(’ec2’)

asg boto3.client (’autoscaling’)
asgname = ’'EC2_T2Micro_Test’

max_boundary = 10

def scale_out (num_of_inc):
current_size=response[’AutoScalingGroups’] [0] [’MaxSize’]
new_size = current_size + num_of_inc
If new_size <= max_boundary:
start_num = 0
for j in range (0 , num_of_inc):
instance_id = find_standby ()
if instance_id is not None:
asg.exit_standby (
Instancelds=[instance_id],
AutoScalingGroupName= ’'EC2_T2Micro_Test’
)
instance = ec2.Instance(id=instance_id)
instance.wait_until_running ()
current_size+=1
asg.update_auto_scaling_group(
AutoScalingGroupName=asgname ,

MaxSize=current_size

)

65

continue
else:
ins_id =(launch_new())
instance = ec2.Instance(id=ins_id)
instance.wait_until_running ()
add_to_asg(ins_id)
current_size+=1
asg.update_auto_scaling_group(
AutoScalingGroupName=asgname ,
MaxSize=current_size
)
asg.update_auto_scaling_group (AutoScalingGroupName=asgname,
DesiredCapacity =,

current_size)

def find_standby():
for i in instances:
stat= i.get(’LifecycleState’)
instance_id = i.get(’Instanceld’)
if (stat ==’Standby’):

return(instance_id)

def terminate_instances (id):
ins_id = [id]
ec2_client = boto3.resource(’ec2’,’us-east-17)

ec2_client.instances.filter(Instancelds = ins_id) .terminate

66

O

def detach_ins (num_of_dec):
current_size=response[’AutoScalingGroups’] [0] [?MaxSize’]
new_size = current_size - num_of_dec
for i in range (num_of_dec):
instance_id = find_standby ()
asg.exit_standby(InstanceIds=[instance_id],
AutoScalingGroupName="’
EC2_T2Micro_Test?)
instance.wait_until_running ()
asg.detach_instances(Instancelds=[str (instance_id)],
AutoScalingGroupName=’EC2_T2Micro_Test’,
ShouldDecrementDesiredCapacity
=TRUE)
terminate_instances (str(instance_id))
asg.update_auto_scaling_group(AutoScalingGroupName=

asgname,MaxSize=new,size)

def time_remained(desired_min):
for i in instances:
launchtime=ec2.Instance(i.get (’Instanceld’)).launch_time
current_time = datetime.datetime.now(launchtime.tzinfo)
running_time = current_time - launchtime
running_time_minutes = running_time.seconds//60
meanutes_inthisPerioed = running_time_minutes60

remaining_time2Bill = 60 - meanutes_inthisPerioed

67

instance_id = i.get(’Instanceld’)
if remaining_time2Bill <= desired_min:

return (instance_id)

def scale_in (num_of_dec):
while num_of_dec != 0:
ins_id_less5= time_remained(5)
if ins_id_lessb5 is not None:
asg.enter_standby (
Instancelds=[ins_id_less5],
AutoScalingGroupName= ’*EC2_T2Micro_Test’,
ShouldDecrementDesiredCapacity= True)
num_of_dec -=1
continue
ins_id_less10= time_remained (10)
if ins_id_less10 is not None:
asg.enter_standby (
Instancelds=[ins_id_less10],
AutoScalingGroupName= ’EC2_T2Micro_Test’,
ShouldDecrementDesiredCapacity= TRUE)
num_of_dec —-=1
continue
ins_id_less15= time_remained(15)
if ins_id_lessl1l5 is not None:
asg.enter_standby (
Instancelds=[ins_id_less15],

AutoScalingGroupName= ’EC2_T2Micro_Test’,

63

ShouldDecrementDesiredCapacity= TRUE)
num_of_dec -=1
continue
for i in instances:
stat= i.get(’LifecycleState’)
instance_id = i.get(’Instanceld’)
if (stat ==’InService’):
asg.enter_standby (
Instancelds=[instance_id],
AutoScalingGroupName= ’'EC2_T2Micro_Test’,
ShouldDecrementDesiredCapacity= TRUE)
num_of_dec -=1
new_size = response[’AutoScalingGroups’][0] [’
DesiredCapacity’])
asg.update_auto_scaling_group (AutoScalingGroupName=asgname,

MaxSize=new_size)

69

4 Conclusion and Future Works

In this thesis, an approach to enhance built-in AWS dynamic Scaling over
any Auto Scaling group is proposed by introduction of NoAuto Scaling group
as my final solution to minimize customers’ costs for having and maintaining
their Auto Scaling groups. The amount of benefit would be increased as the
number of EC2 instances and their Metrics fluctuation do, so the proposed
approach can be useful for Enterprise level firms and customers with large
numbers of EC2 instances with unpredictable significant load changes, like

Stock Markets, Trade Markets and so on.

Although I tried to demonstrate each obstacle, examine and explain var-
ious approaches to resolve them, there are still some fields left for future
works as follows:

Find a solution for renewal time tracking issue. In best scenario, each in-
stances in Standby mode should be able to track its own renewal time, so
any time near to its renewal time triggers a CloudWatch alarm to initiate the
Termination phase. This can be done through deployment of some service
agents for EC2 instances.

Another work left for future is to aind a solution to implement the Escape-
Gate. As it is discussed earlier this can be the most optimum approach for
minimizing dynamic scaling hidden costs. This approach might be doable

with a Third Party Cloud Services Provider which acts like an intermediary

70

step between customers and Amazon Web Services.

L

5 References

[1] https://aws.amazon. com/about-aws/

[2] https://aws.amazon. com/what-is-cloud-computing/

[3] https://aws.amazon. com/types-of-cloud-computing/

[4] https://docs.aws.amazon.

html

[5] https://docs.aws.amazon.

with_cloudwatch.html

[6] https://docs.aws.amazon.

html

[7] https://docs.aws.amazon.

html

com/autoscaling/ec2/userguide/AutoScalingGroup.

com/AWSEC2/latest/UserGuide/viewing_metrics_

com/AWSEC2/latest/UserGuide/using-cloudwatch-new.

com/autoscaling/ec2/userguide/as-scale-based-on-demand.

[8] https://aws.amazon.com/premiumsupport/knowledge-center/ec2-instance-hour-billir

9] https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-macl

72

[10] https://docs.aws.amazon. com/autoscaling/ec2/userguide/AutoScalingGroupLifecycl

html

[11] https://docs.aws.amazon.com/autoscaling/ec2/userguide/attach-instance-asg.

html

[12] https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.

html#as-step-scaling-warmup

[13] https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroupLifecycl

html#as-lifecycle-hooks

[14]| https://docs.aws.amazon. com/autoscaling/ec2/userguide/detach-instance-asg.

html

(15| https://docs.aws.amazon. com/autoscaling/ec2/userguide/as-enter-exit-standby.

html

[16] https://docs.aws.amazon. com/autoscaling/ec2/userguide/as-scale-based-on-demand

html

[17] https://aws.amazon.com/ec2/pricing/on-demand/

73

[18] Biswas.A, Majumdar.S, and Haraki.A.E, 2017. A hybrid auto-scaling
technique for clouds processing applications with service level agreements.
Journal of Cloud Computing: Advances, Systems and Applications. DOI
10.1186/s13677-017-0100-5

[19] https://docs.aws.amazon. com/autoscaling/ec2/userguide/as-suspend-resume-proces

html?icmpid=docs_ec2as_help_panel

[20] https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.

html

[21] https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.

html

[22] https://aws.amazon.com/lambda/

[23] https://docs.aws.amazon. com/sns/latest/dg/sns-1lambda-as-subscriber.

html

74

