

Refactoring a Web Application using

Microservices

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

Student Name:
Monica Tandel

by

Month Year

Advisor:
Dr. Michael Soltys

@ 2021
Monica Tandel
ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

08/09/2021

Advisor: Michael Soltys Date

08/09/2021

Bahareh Abbasi Date

08/09/2021

Eric Kaltman Date

APPROVED FOR THE UNIVERSITY

Interim Dean Dr. Jill Leafstedt Date

Jill Leafstedt (Aug 27, 2021 12:52 PDT)
08/27/2021

https://csuci1.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAAfMKH7Y2Je1sSNPFqxkyR2IAtYazpKmT

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Title of Item

3 to 5 keywords or phrases to describe the item

Author(s) Name (Print)

Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Refactoring a Web application using Microservices

Microservices, AWS Lambda, Refactoring Application, AWS EC2, AWS RDS

Monica Tandel

08/25/2021

Refactoring a Web Application using
Microservices

Monica Tandel

August 3, 2021

Abstract

The novel contributions in this thesis are - strategizing an effi-

cient way to refactor microservices using business functionalities; and

the challenges and migration-related issues faced during refactoring.

Another element is to provide a comparison between microservices

and monolithic architectures and if it is beneficial to refactor the ap-

plication in a microservices architecture. Refactoring code from a

monolithic architecture to microservices is a challenging process and

there is no particular way for carrying refactorization. This thesis fo-

cuses on building a strategic approach that will be beneficial in terms

of scaling, advancing, maintaining, and evolving the monolithic ap-

plication into microservices. With the help of this strategy, migra-

tion from monolithic to microservices will be easier. Considering the

above strategy, the Four Temperaments application was refactored us-

ing AWS Lambda and Amazon API Gateway, and Amazon RDS as

the database.

1

Contents

1 Introduction 1

2 Background 5

2.1 Related Work ... 5

2.2 Monolithic Architecture .. 9

2.3 Microservices .. 11

2.4 MVC in Four Temperaments: ... 13

2.5 The issues of authentication and authorization: 15

2.5.1 Authentication: .. 15

2.5.2 Authorization: .. 18

2.6 Issues of secure software engineering 19

2.7 Technologies Used: .. 21

2.7.1 AWS EC2 .. 22

2.7.2 Apache Tomcat Server .. 22

3 System Design 24

3.1 System Overview ... 24

3.2 Proposed System .. 26

3.3 Methodology ... 28

3.4 Design Details .. 31

3.4.1 Entities Involved: ... 31

2

3.4.2 Architecture: ... 33

4 Microservices: 35

4.1 Refactoring Monolithic to Microservices 35

4.2 Migration strategy ... 36

4.3 Technologies Used .. 38

5 Implementation 49

5.1 Methods: .. 49

5.1.1 JavaBeans Activation Framework:.............................. 49

5.1.2 Advanced Encryption Standard: 51

5.1.3 CanvasJS: .. 52

5.1.4 Token Generation for Events: 54

5.1.5 MAC Address Authenticaiton 54

5.2 Implementation of Microservices .. 60

5.3 System Flow: .. 63

5.3.1 Userhome page: ... 64

5.3.2 Adminhome page: .. 65

5.3.3 Create and Delete Event pages: 68

5.3.4 Send Mail: ... 70

5.3.5 Userwelcome page:... 71

5.3.6 GuestUser page: .. 73

5.3.7 User MAC Address based Authentication page: 75

3

6 Conclusion and future work 79

References 85

4

List of Figures

1 Monolithic Architecture .. 9

2 Microservices Architecture ... 11

3 MVC ... 14

4 ipconfig ... 17

5 Database of Four Temperaments System................................... 24

6 ERD of Four Temperaments System 25

7 Flowchart of the system .. 29

8 Architecture of the system .. 33

9 Lambda Function for Four Temperaments Application 39

10 Lambda function for Four Temperaments 40

11 Resources for Four Temperaments .. 42

12 application/json .. 44

13 CloudWatch logs for fourtemps Lambda function 44

14 Minimal privilages for fourtemps Lambda function 45

15 Lambda Policy for fourtemps Lambda function 46

16 Speed of Four Temperaments as Microservice Architecture 48

17 Speed of Four Temperaments as Monolithic Architecture 48

18 Hashed passwords Using AES for Four Temperaments System 52

19 Event Statistics graph for Four Temperaments using CanvasJS 53

20 Personality Type of an user graph using CanvasJS 53

21 Event Token ... 54

5

22 Mac Address .. 55

23 User login with Mac Address as the third parameter 56

24 On click of submit button submission of data to server side ... 57

25 Database entry for the user .. 57

26 Successful login of the user .. 58

27 User control panel on Admin’s side 59

28 Lambda Function for Four Temperaments Application 60

29 Routes for Four Temperaments .. 61

30 Four Temperaments Website on AWS Lambda 62

31 Four Temperaments events ... 62

32 PageFlow of the system .. 63

33 User page of the system ... 64

34 Admin page of the system .. 65

35 Create Admin page for the system 67

36 Delete Admin page for the system 67

37 Create event for the system .. 68

38 Delete event for the system ... 69

39 Send mail for the system .. 70

40 Root Admin sends Admin information 71

41 Userwelcome page of the system... 73

42 GuestUser of the system .. 74

43 MacAddressUser of the system ... 75

44 Sucessful Login of Mac Address enabled user 76

6

45 Admin User Control Panel for the system 77

46 Sucessful Login of Mac Address enabled user 77

7

List of Tables

1 Code specification for Four Temperaments 34

2 The backend files in Microservices v/s Monolithic 38

3 Code specification for Four Temperaments Lambda 1 46

4 Code specification for Four Temperaments Lambda 2 47

1

1 Introduction

Four Temperaments is a proto-psychological theory that is incorporated

into 4 fluids namely blood, yellow bile, phlegm, and black bile [5]. A Greek

physician, Galen referred to these fluids in terms of senses of humor as either

“sanguine”, “Choleric”, “melancholic” and “phlegmatic” [6]. The Four Tem-

perament test works as a pair of temperaments usually dominates the other

two and for an ideal temperament, all four senses of humor are balanced.

This temperament questionnaire can be used for both fun and to understand

one’s relationships. Once the testing user has submitted the questionnaire

with their responses, their personality is mapped to either of the 4 personal-

ities.

The implemented Four Temperament Test is developed from scratch and

not using an online template. The system is deployed on Amazon Elastic

Compute Cloud (AWS EC2), a service that provides secure and resizable

compute capacity in the cloud and MariaDB is the back-end of the system.

This questionnaire is accessible to the users who want to register themselves

to the system or can be filled as an anonymous user, i.e. in guest mode.

Several Root Admin/Admin features will be discussed later. The User and

Admin passwords are encrypted using the AES algorithm. This architecture

is a monolithic architecture, where the entire implementation is deployed

on an AWS EC2 instance. For modularity and ease of maintenance, this

2

application is refactored into ‘Microservices’.

Refactoring code from a monolithic architecture to microservices is a

challenging process. For performing the migration from monolithic to mi-

croservices, the thesis focuses on building a strategic approach. This ap-

proach involves analyzing the code functions that are developed in a mono-

lithic architecture. In this, the larger chunks of code were broken into smaller

sub-functions. The 2nd step is to search for the business capabilities in the

code. The business capabilities are defined as the series of calls to the func-

tions. The reason for using the business capabilities as a way to refactor to

microservices is that the business capabilities remain stable. The require-

ments in each business capability may change but the overall architecture

stays the same. The next step is to identify and extract the candidates from

the monolithic applications. This means considering those sections of the

code that are essential and creating functions for those which are repetitive.

The 4th step is to analyze and assign the business requirements. In this step,

the number of microservices for the application is decided based on the usage

of the business functionalities. For example, the Events functionality in Four

temperaments can be assigned a single microservice; Admins can be assigned

a single microservice; and Users, and their Responses can be assigned a sin-

gle microservice. The last step is performing all the steps practically i.e.,

creating the microservices. With the help of the strategic way of refactoring

microservices, the system can be beneficial in terms of scaling, advancing,

3

maintaining, and evolving.

Considering the above strategy, the Four Temperaments application was

refactored using AWS Lambda and Amazon API Gateway; and Amazon RDS

as the database. Some of the problems that were faced during refactoriza-

tion of the application were trying to decide for which technology to use, if

the framework of the current monolithic application will be a better option

for microservices, structuring and planning the migration to microservices

completely, and the expenses for the tools that will be used. To solve these

problems, AWS Lambda is chosen as the serverless tool, Node.js language

was chosen for coding the application instead of JSP and 2 Lambas were

created - One for frontend and other for backend.

Another contribution for this thesis is securing the authentication of

the users of the Four Temperament system using the MAC Address along

with “username” and “password”. This can be enabled/disabled by the Ad-

mins. The authentication process identifies the request that the user makes

for accessing the system. This process considers login credentials. The lo-

gin credentials most commonly include a username and a text password.

Some of the other authentication technologies include biometrics and third–

party applications. Apart from password-based authentication, there are

multi-factor authentication, certificate-based authentication, biometric au-

thentication, and token-based authentication. Authentication techniques are

always changing and it is required to consider authentication for enhancing

4

the user experience since cybercriminals improve their ways of attacking the

systems. With the current authentication methods, the user’s passwords can

be vulnerable to cyber attacks like shoulder-surf, key-log, relay, eavesdrop,

brute-force, and getting phished [20]. In this thesis, one of the ways to im-

prove the security of the authentication process is carried out by securely

preserving the MAC address of the user’s device for the implemented Four

Temperament Personality test. If the user credentials are stolen or known

to unauthorized parties, they won’t be able to use the credentials without

the authorized user’s Media Access Control (MAC) address. To login to the

Four Temperament test, the user is required to use the device with which

they have registered [13]. The reason for using MAC address was that MAC

address varies on each device, i.e. MAC address is unique and has the poten-

tial for being an authentication parameter. The MAC address authentication

is carried out on Four Temperament Personality Test.

5

2 Background

This section focuses on the background of monolithic architecture, mi-

croservices, and the problems and challenges that are faced while refactoring

the system. It gives an insight into the related study in terms of refactor-

ization of microservices. This section also provides information about the

multi-tier architecture in the system, the issues of authentication and autho-

rization, the issues of secure software engineering, the technologies, program-

ming language, and the database used for the proposed system.

2.1 Related Work

In recent years, there have been a lot of companies that are wanting to

or have already been successful in refactoring the monolithic application into

microservices. Companies like Comcast Cable, Uber, Netflix, Amazon are

an example having successfully refactored the monolith to microservices [24].

Both of the architectures have their equal share of merits and demerits leaving

an unanswered question, ‘Whether to convert or to keep the application as

is’.

There are reasons why refactoring the monolithic architecture to mi-

croservices is challenging. Choosing which tools would be suitable for the

application, structuring the monolith to work as microservices, maintaining

consistency of the databases, migrating the entire monolith, making sure

6

whether the application is working in the same manner as it was before the

refactorization was performed; are some of the challenges faced while refac-

toring. The prior work in this research includes decomposing the monolithic

applications using an architectural view. This does not provide informa-

tion on how the developer is supposed to carry out the migration of their

application.

According to Richardson [24], microservices can be decomposed using

either of the 4 decomposition strategies; business capability, domain-driven

design, verb or use case, and nouns or resources. He also mentions that a way

to refactoring microservices is to implement the functionalities as services.

In [17], the authors of the paper considered a French software vendor

editing named MGDIS SA. Addressing three questions for migration to mi-

croservices, how to determine suitable granularity, appropriate deployment,

and efficient orchestration. They proposed that the choice of granularity

must balance between the costs of Quality Assurance and that of deployment.

They used the Docker tool to containerize the application for deployment.

For orchestration, their first choice was Enterprise Service Buses, alterna-

tive to that was Business Process Management and they finally chose to use

webhooks which helped them increase the performance.

Further in [16], these authors outline the 4 crucial aspects functional ap-

proach, norms and standards, microservices granularity and their semantics,

7

and the technical and integration outcomes. Here, they consider an applica-

tion development consists of 4 layers which are the process, the functional,

software, and the hardware. Further, they claim that the splitting into gran-

ular APIs is done on the functional layer. The next step in their process was

to decide on norms and standards. Their process has tens of business norms

and hundreds of technical norms. For microservices granularity, they chose

to base the microservices slicing on functional ones[16]. Through their se-

mantics, technical and integration outcomes, it can be said that their process

of refactorization contributes to domain-driven design.

In [15], the authors mention the problems, challenges, and benefits of

refactoring the monolith to microservices. In this, the authors have taken

into consideration about 50 research papers to present the challenges, prob-

lems, and solutions. They mention that refactorization of the monolith to

microservices can be performed in various ways and there is not a single way

to carry it out.

In [18], the authors in this are using a clustering algorithm to extract the

candidates which are required for microservices architecture. The strategy

that is used in this deployment is domain-driven design.

In [14], the authors mention how refactoring to microservices scalability

can be improved. They also point out that microservices are expected to

implement business capabilities. The migration process in their paper is

8

business-driven.

In reference to the above work, this thesis uses the business capabili-

ties for restructuring the monolithic application. Similar to [14], this thesis

focuses on the business capabilities/functionalities and using the business ca-

pabilities as an important element. As mentioned by Chris Richardson, the

author of microservices patterns and quoted here, ‘A good starting point is

the Monolithic Architecture pattern and a better choice for large/complex

applications is the Microservice architecture pattern’ [24]. In this thesis, the

starting point for Four Temperaments application is a monolithic architec-

ture pattern. This thesis focuses on refactorizing this monolithic architecture

using its business capabilities into a microservices architecture. The imple-

mentation of the same is carried out successfully in this thesis.

9

2.2 Monolithic Architecture

Figure 1: Monolithic Architecture

A monolithic architecture is an architecture that contains individual

software components that are coupled in a single package and overall running

as a single service. If one component of the application is modified, then the

entire application may require rebuilding and deployment. This application

can be risky and may lead to a single process failure. Initially, monolithic

architecture was used for developing web applications. Although well-known

companies like Netflix, Amazon.com, and eBay are now using microservices

architecture, all these companies started with a monolith architecture [24].

10

The Figure 1 is an image of the Four Temperaments system as a monolithic

architecture.

If the application is not complicated then this architecture consists of

its own strengths such as being easier for the developers to develop, test,

and deploy. Considering the growth of the application, the structure of the

monolith architecture grows and becomes hard to handle.

The Four Temperaments application deployed on AWS EC2 instance

follows the monolithic architecture. The different components of the Four

Temperaments website include the user interface, the admin interface, and

the events. Its deployment as a monolithic application has all the components

in a single package.

11

2.3 Microservices

Figure 2: Microservices Architecture

Microservices consist of small, independent, self-contained services that

communicate with each other over APIs. Microservices allow the developers

to choose any programming language or framework for their software. The

developers can select the tools required for each function that the microser-

vice performs. Each microservice is easier and faster to develop, update,

scale, and easy to manage separately. The Figure 2 is an image of the Four

Temperaments system deployed as microservices architecture.

Advantages of Microservices

1. Reduces Risks and increases fault tolerance and fault isola-

12

tion:

Microservices are developed, tested, and deployed independently. Since

all the services are separate, the risk factor reduces. For example, the

remainder of the services will work independently of the service that

didn’t load. It helps the developers to perform changes or rollback for

only the service which did not load and aren’t required to deploy the

complete application again. This instance explains that loosely coupled

microservices are fault-tolerant, unlike the monolithic applications that

are closely linked. Locating the error or issues for the function that did

not load is easier in microservices.

2. Scalability and flexible Data Storage:

This architecture provides the flexibility of storing data in multiple lo-

cations in contrast to monolithic applications. The flexible data storage

approach offers developers the flexibility to decide on the storage type

that is best fitted to their services. The services can be independently

and horizontally scaled.

3. Reduces Clutter:

Refactoring the monolithic application to microservices removes the

functionalities that are not required. It reduces the code size since the

monolithic application tends to be very large.

4. Simplifying security monitoring:

Each service of the application is isolated. It makes it easier to trace the

13

service that is susceptible to security threats. The isolation of services

also prevents jeopardizing the other services from security threats.

Disadvantages of Microservices

1. Complexity:

In comparison to monolithic architecture, microservices are compli-

cated. The microservices allow developers to program in different lan-

guages that is challenging. Each service needs to be tested and mon-

itored. The currently existing microservice tools are not likely to be

compatible with the newer dependencies.

2. Expensive:

The microservices consist of autonomous services. For communicating

with the other services, remote calls are made that increase the pro-

cessing cost. Each of the isolated microservice has its CPU and runtime

environment that is, an increase in resources.

2.4 MVC in Four Temperaments:

There are three components in MVC, namely, the model, the view, and

the controller. Model - view - controller helps separate the website infor-

mation that is presented to the user from model and controller information

respectively.

14

Figure 3: MVC

The model is responsible for managing data and communicating with

the database. It contains the logic, data, and the business rules [26]. It

renders the information that the user is going to view. It interacts with the

user of the system directly and notifies the controller when the user wants to

access dynamic information. The controller initiates the interaction between

view and model. It gets the input and accordingly converts the information

into commands which are required in either model or view. The view receives

the data from the model and updates the user interface page.

15

Considering an example where the user is logging into the Four Temper-

aments system.

1. The users of the system fill in the username and the passwords and

click on submit.

2. On the clicking of submit, a signal is sent to the controller through the

handler.

3. From here, a notification is sent to the model that the user is trying to

log into the system and the users’ credentials are to be verified.

4. Once the verification is done, the model is indirectly used by the view

for allowing the user access to the system taking in the username from

the model and the system waits for the user to interact with the system.

2.5 The issues of authentication and authorization:

2.5.1 Authentication:

Authentication validates the users based on their user credentials. For

authentication, the user needs to prove their identity for accessing the system.

Traditional Authentication Process:

Whenever a user is registering for an account, they are required to create

a unique ID and key which permits them to access the system’s information

16

Frequently, the username and password are used as a unique ID and key. For

example, for accessing the Four Temperaments Test, User A only has access

to see the test and will not be allowed to see the test of User B.

The ID and key are used to confirm the user’s identity which allows the

system to authorize the user. User authentication has 3 tasks:

1. Connection between the User and the Webpage’s server.

2. Verification of the user’s identity.

3. Allowing/Disallowing access to the system.

This process requires users to input their login credentials on the login

page. The login credentials are sent to the server where information is com-

pared to the user’s credential on the Database. If a match is found, the user

is authenticated by the server, and access is granted to their account. When

a match is not found, then the user is prompted to re-enter the credentials.

However, the traditional user authentication process is not secure as

the cybercriminals can easily gain access to the system using Brute-force or

Dictionary attacks to get verified user’s login credentials.

What is MAC Address?

17

Figure 4: ipconfig

A MAC Address is primarily assigned to the device by the device man-

ufacturers. Thus, these addresses are also known as a burned-in address,

ethernet hardware address, hardware address, or physical address. This ad-

dress is stored in the hardware section of the computer. A simple way to

know the MAC address of one’s device is to type ipconfig /all for Windows

OS users on command prompt and ifconfig -a for Unix OS users on termi-

nal. Figure 4 is example of ipconfig /all, where Physical address of that

device is 74-70-FD-64-65-86.

MAC Address Based User Authentication:

MAC Address Authentication process is more secure than traditional

authentication processes. For MAC Address based authentication, the user’s

login credentials are considered along with the MAC address of the system.

MAC address Based User authentication performs the similar 3 tasks as

the traditional authentication process:

1. Connection between the User and the Webpage’s server

18

2. Verification of the user’s identity along with the MAC address as a

parameter

3. Allowing/Disallowing access to the system

This simple and secure process needs the user’s to input their user cre-

dentials on the login page. The login credentials are sent to the server where

the user’s information with MAC address of the device which user is using

while logging in is compared to the user’s credentials which user had used

while registering. If a match is found, the user is provided access to the sys-

tem else the user is prompted to re-enter the credentials. Since this is MAC

address-based authentication, the user is required to use the same device

which they had used while registering.

For the Four Temperaments system, the Admins can enable or disable

this feature for User login. Also, it allows Users to choose if they want to

remember the device which they are using while logging in for the test.

2.5.2 Authorization:

The authorization provides users the permission for accessing a resource

[9]. Authorization and authentication processes are usually carried out to-

gether providing the server some information about the client that is request-

ing access to the system. For the Four Temperaments system, authorization

of user’s registration and login credentials is carried out. For registration of

19

the users, the system verifies if the user is inputting a correct email address.

If the user inputs a correct email address, then the textbox is highlighted

in green. The system checks if the user is inputting the password as per

the requirement of the system. If the user inputs a valid password, then the

requirement points are highlighted in green. Similarly, the confirm password

textbox is highlighted in green if the password and confirm password are a

match.

2.6 Issues of secure software engineering

Secure software does what it is supposed to do and doesn’t do anything

unexpected [12]. Software engineering defines levels of maturity from 1 to

5 as individual efforts, repeatable, defined, managed, and optimized. Soft-

ware engineering practices require code to be reproducible, systematic, and

predictable. Most common issues threatening software security are:

1. Confidentiality: Software should be protected from unauthorized dis-

closure of information. It can be protected through access control,

privacy, and ethics, password, encryption, and biometrics.

2. Availability: Software should be available to everyone and should be

protected from unauthorized withholding of information. Authorized

users should be able to access information always. This can be done

through a data backup plan, business continuity, or disaster manage-

ment.

20

3. Integrity: Software should be protected from unauthorized modifica-

tion of information. It should be ensured that information is always

complete and accurate without unintentional, intentional, or accidental

processing methods tamper.

Software security can be enhanced by identifying the following security

issues at the inception phase of software development [21].

1. Issues of access control: If the event is available and the user is au-

thorized then the user will be able to access the questionnaire at all

times.

2. Accountability issue: User activity is tracked using sessions. Once the

session ends, the user will not be able to access the same questionnaire

again for that Event. Questionnaire resubmission is restricted.

3. Issues related to accuracy: This software behavior is as intended irre-

spective of time.

4. Issues related to authorization: The authorization provides the server

the information about the client who is requesting access to the sys-

tem. Only authenticated personnel is allowed to operate on the ques-

tionnaire. This is implemented using access control.

5. Issues related to availability: A proper balance is maintained between

security and availability. Authorized personnel can operate on the sys-

tem without being denied access.

21

6. Issues related to confidentiality: Unauthorized persons should not be

allowed access to the questionnaire.

7. Error handling: Errors are classified into User authorization issues,

database access issues, data unavailable errors or missing data errors,

and bad information errors.

8. Issues related to fortification: Technical details about the data are only

exposed to the concerned individual and are hidden from others.

9. Issues related to authentication: Only a legitimate user is provided

access to the system. This is implemented using passwords, MAC ad-

dresses.

10. Issues related to integrity: It prevents unauthorized users to alter in-

formation. This is implemented through sessions.

2.7 Technologies Used:

The technologies that were used for Four Temperaments questionnaire

test are: AWS EC2 for deploying the Four Temperaments website, MariaDB

was installed on AWS EC2 for the backend of the system, AWS Corretto

8 was installed on the EC2 as JAVA run time environment. AWS Code

Commit for collaborating on code and also securely storing source code. The

system is coded in HTML, JSP, CSS, and JavaScript. The Tomcat server is

used to run the Four Temps system since the system contains Java code and

22

requires a JAVA HTTP web server environment that is provided by Tomcat.

2.7.1 AWS EC2

Amazon Elastic Compute Cloud (AWS EC2) is a service that provides

users a secure, resizable compute cloud capacity in the cloud [8]. There are

two key concepts which are required for launching an instance, namely:

1. Virtual space that is dedicated to the instance

2. The software which is loaded on the instance

These are controlled by instance type and the Amazon Machine Image (AMI).

The AWS EC2 instance is backed by Amazon EBS root volume. The

Availability Zone in which the Amazon EC2 instance is required to be run can

be selected. When an EC2 instance is launched, it is secured by specifying

a key pair and security group. While connecting to the instance, the private

key of the key pair is required [8].

2.7.2 Apache Tomcat Server

Apache Tomcat server software is an open-source implementation that

is developed and maintained by Apache Software Foundation. This software

acts as a web server providing capabilities like data persistence and load

balancing. The Apache Tomcat server software yields a basic feature that

processes servlets.

23

Tomcat is a JSP container and JSP is a server-side view rendering tech-

nology [25]. Tomcat handles the routing for the JSP page. Tomcat requires

Java Runtime Enterprise Environment(JRE) to run.

Apache Tomcat application server is used to run the Four Temperaments

system since it contains Java code and requires a Java HTTP web server

environment for running which is provided by Tomcat. For establishing a

connection between Tomcat and MySQL, the MySQL Connector/J jar file is

required to be placed in the ’Tomcat Install Dir’/common/lib/ folder.

24

3 System Design

This chapter focuses on the working and authentication of users for the

Four Temperaments Test. It gives detailed information about the proposed

system, methodology, and design details.

3.1 System Overview

Figure 5: Database of Four Temperaments System

The Four Temperaments personality site deployed on AWS EC2 has

MariaDB as the back-end. Figure 5 displays the tables that are in the

FourTemps Database.

Figure 6 depicts the Entity-Relationship Diagram (ERD) for the Four

Temperaments system. There are four entities involved namely; Admin Ta-

ble, Event Table, Questionnaire Table, and the Responses Table.

25

Relation between the entities:

Figure 6: ERD of Four Temperaments System

The Admin Table is keeping a track of the Admins that are involved

in the Four Temperaments System. The attributes for this entity are ‘ad-

minid’, the ‘ausername’, the ‘apassword’, and the ‘ausertype’. The Event

Table is responsible for keeping track of the events that the Admin creates

for testing the User personality. The attributes involved for this entity are

the ‘eventid’ which is the primary key, ‘eadminid’ which is a foreign key from

Admin Table, ‘eid’, ‘ename’, ‘edate’, ‘eplace’, ‘edesc’, and ‘ecreatedby’. The

relation between Admin Table and the Event Table is that the Admin man-

ages the Events, which includes creating, deleting, and viewing the Events.

The Questionnaire Table is storing the user information. The attributes in

26

this table are ‘qid’, which is the primary key; ‘qeventid’, which is the foreign

key from the Event Table; ‘qurl’; ‘qname’; ‘qpassword’, and ‘eventid’. The

relation between the Event Table and Questionnaire Table is that the users

are accessing the Events for submitting their responses to the personality

test. If there is no event created, the users are not able to access the per-

sonality test. The Responses Table is storing the responses that the user has

submitted for the questionnaire. For this entity, the attributes are, ‘reven-

tid’, ‘ruserid’ which are the composite primary keys and foreign keys from

the Event Table and Questionnaire Table; ‘TOK’; and the personality char-

acteristics namely ‘animated’, ‘adventurous’, ‘analytical’, and so on. The

relation between the Responses Table and the Questionnaire Table is that

the users provide questionnaire responses which are stored in the Responses

Table. The relation between the Responses Table and Event Table is for

Admin viewing the Event statistics data which also includes the responses

that the users had provided for the test.

3.2 Proposed System

The Four Temperaments Test is a personality test. This test is used

for fun and to know the personalities of the testing users.

The Four Temperament website consists of 3 main entities: the Root

Admin, Admin, and Applicant/Users. The summary of all the running pro-

cesses is as follows:

27

1. Root Admin creates Admins to create events for testing temperaments

of ‘Users’.

2. The Rood Admin/Admin creates the required event for ‘Users’ and

sends the link to Users for completing their tests.

3. After receiving the Event link from the Root Admin/Admin, ‘Users’

can log into the system

4. The ‘Users’ is allowed to log in as a new user or existing user or anony-

mously as a guest user

5. After logging into the system, the User answers the questionnaire for

the test and submits their responses.

6. Based on the User’s data, the Root Admin and Admin can view sta-

tistical results for ‘Users’ as well as the events.

7. After the Event is completed, the Root Admin, as well as the Admin,

can delete the Event.

8. If the Root Admin wishes to delete the Admin, the Root Admin is

capable to do the same.

9. The Root Admin, as well as the Admin, can enable and disable the

MAC address authentication for the ‘Users’.

28

3.3 Methodology

Figure 7 depicts the systematic steps followed in developing the system.

The process starts with the Root Admin logging into the Four Temperaments

system. The Root Admin is responsible for creating either an Event or an

Admin. If the Root Admin creates an Event then the Root Admin sends the

Event information to the participants. Root Admins can also Delete an Event

and an Admin. If the Root Admin creates an Admin, then the Root Admin

sends the Admin information to the respective Admin. This completes the

Root Admin process. Considering that the system has Admin logging into

the system, then an Admin is allowed to create and delete Events and send

Event information to the participants. This completes the process for an

Admin. The only difference between an Admin and Root Admin is that the

Root Admin creates and deletes Admins whereas Admins can’t create/delete

Admins.

29

Figure 7: Flowchart of the system

Provided that the Admins have created an Event, the User can log into

the system. The user can be either a registering user/existing user or an

anonymous user. If the user is registering for the first time, the user is

required to create their account and then log into the system and fill the

questionnaire with their responses. The user can then either save or submit

30

the questionnaire response. If the user chooses to save the questionnaire then

the user is allowed to return to the testing website to complete their question-

naire and submit once they have completed responses for all the questions.

If the user chooses to submit the questionnaire, the system generates a graph

for the users which displays their personality type. This completes the pro-

cess for registering users. If the user is an existing user then they can directly

log into the system if an event is created, either submit the questionnaire or

save the questionnaire for later submission and the process is completed for

an existing user. Considering that the user is an anonymous user i.e. a guest

user logs in to the system, then the guest user can directly fill in the question-

naire with their responses. They can either submit or save the questionnaire

responses. If the guest user is saving the questionnaire, then the guest user is

required to register themselves to the system. If the guest user is submitting

the questionnaire, then the system generates a graph displaying the guest

user’s personality type and brief information about what their personality

type is. This completes the process for guest users.

31

3.4 Design Details

3.4.1 Entities Involved:

1. Root Admin:

There is only 1 Root Admin for the system. A Root Admin can create

other Admins as well as delete them. The Root Admin is responsible

for creating new Events for Users to check their temperaments. The

Root Admin can also delete the Event. They are capable to view sta-

tistical data of the results received after the Users perform the test for

an Event. They are capable to view User statistics as well as Event

statistics. The Root Admin can enable/disable the MAC address-based

authentication for the Users.

2. Admin:

Similar to Root Admin, an Admin is also responsible to create and

delete Events, view statistical data of the User performance and Event,

and enable/disable MAC address-based authentication for the Users.

The duties of Root Admin and Admin remain similar except for Root

Admin being able to create multiple Admins.

3. User:

Users have the role of filling out the questionnaire for an Event and

32

submitting the same. They can be anonymous or if they wish to have

a username, they are provided the option of the same. They can submit

the questionnaire at that time or are allowed to return later to finish

their incomplete questionnaire for that Event. If the MAC address-

based authentication is enabled for the User, then the MAC of the

User’s device is also considered as one of the parameters of authentica-

tion.

33

3.4.2 Architecture:

Figure 8: Architecture of the system

Figure 8 displays the architecture of the system. The architecture guides

through the process of launching an AWS EC2 instance which is backed by

34

Amazon EBS. For running AWS EC2 instance backed with EBS, both are

required to be in the same Availability Zones. In the launched AWS EC2

instance, Tomcat Server is used with MariaDB as its backend for storing the

data for running the Four Temperaments system. The transfer of data from

the server-side to the client-side is done using the JDBC connection. The

process of the Fourtemps Application starts with the first entity i.e. the Root

Admin creating either an Event or an Admin. If the Root Admin creates an-

other Admin, this Admin has access only to create events, send event details

to the Applicants, and delete events. Once an Event is created and is sent by

email service for the Applicants to fill. On receiving the Email from the Root

Admin/Admin, the Applicant can complete the questionnaire and submit it

immediately or is given an option to save the questionnaire and return it

later to complete it. Once the filled questionnaire is submitted, the Root

Admin/Admin can view the Event and User statistics. Code specification

for Monolithic Four Temperaments is displayed in the table 1.

Table 1: Code specification for Four Temperaments

Application Four Temperaments
Programming language JSP

Number of files 56

Data Type of Information

35

4 Microservices:

A microservice application can solve some issues that are present in

a monolithic architecture. Microservices are connected through an external

Request Handling unified entry points called API Gateways.

4.1 Refactoring Monolithic to Microservices

Monolithic Four Temperaments application was developed using JSP.

It is refactored to microservices. The application program is in Node.js -

an interpreted language. Sequelize ORM is used for accessing the MySQL

database. The application is coded in Node.js as the initial invocation time

is faster when compared to using JSP which is compiled language. Also,

Node.js can process multiple requests in parallel. Moreover, a Node.js ap-

plication is single-threaded i.e it processes many requests simultaneously. It

also consumes less memory than JSP and is more productive than JSP.

In order to refactor the application to microservices AWS technologies

like AWS Lambda, AWS API Gateway, AWS RDS, and AWS Cloud Watch

were used. AWS Lambda is used for running individual components of Four

Temperaments. The Lambda function used connects to RDS for database

connection. It uses Amazon API Gateway for making HTTP requests and

Cloud watch for log tracing. AWS Code Commit is used for version control

and will be used to rolling back to previous versions if required.

36

4.2 Migration strategy

The following strategy was implemented on Four Temperaments mono-

lithic application for converting into microservices:

1. Analyzing the functions in Monolithic architecture:

In this step, the functions in the monolithic architecture are checked. If

there are large functions, then those functions can be split into smaller

ones. Similarly, if there is an option for merging some functions then

it is carried out in this step.

2. Identifying the Business functionalities:

In this step, the business functionalities of the monolithic application

are identified. For the development of the monolithic application, cer-

tain business functionalities are followed. These business functionali-

ties are defined as the steps of calls to the functions. Identification of

business functionalities is not an easy task and is not always possible.

One of the approaches to learning about the business functionalities is

asking the developer who had developed the monolith application and

others can be using the machine learning process.

Since Four Temperaments was implemented in monolithic architecture

and is now being converted to microservices, its business functionalities

are easily available and are as follows:

(a) The Admin functionalities.

37

(b) The Event functionalities.

(c) The users using the system and their responses.

3. Identifying and extracting the candidates from the Mono- lithic

applications:

In this step, the unwanted and repeated code is restructured and re-

duced. Although the entire Four Temperaments application running in

monolithic architecture contributes to importance, there are a few ele-

ments that can be considered as most important from the Monolithic

application.

4. Analyzing and assigning the business functionalities:

For analyzing the business functionalities, it is required to acquire sta-

tistical information such as the usage of the data. This statistical data

provides information about which business functionality is used often

compared to the others. After getting this information, the single mi-

croservice can be assigned to those business functionalities that are

frequently used. The smaller business functionalities can be assigned

to a single microservice. Since the four temperaments test is still in the

development stage and there are no users currently using the system,

there are only 2 services created for the system.

5. Converting to Microservices:

The above steps are carried out practically in this step. The functions

that are related to the business functionalities are developed in the mi-

38

index.js
adminUser.js

events.js
eventusers.js

questionnaire.js
response.js

adminchangepass.jsp
admindetailsmail.jsp

adminusercontroljsp.jsp
aesencryptdecrypt.jsp
createadminjsp.jsp
createeventjsp.jsp

deleteadjsp.jsp
deleteeventjsp.jsp

forgotpasswordad.jsp
macadd.jsp

rootadminregjsp.jsp
checkbox.jsp

checkboxguest.jsp
usererror.jsp
userloginn.jsp

userreg.jsp
userrlogout.jsp

Files in Microservices Files in Monolithic

croservices. The routes or the endpoints that are required to deploy the

application are created and the service is now ready to be deployed and

tested. The Table 2 provides the information on reduction of backend

code files after using microservices:

Table 2: The backend files in Microservices v/s Monolithic

4.3 Technologies Used

AWS Lambda

AWS Lambda is being used to deploy microservices for this thesis. This

AWS service offers a pay per request cost structure. This structure allows de-

39

velopers to write individual functions that will implement each microservice

before deploying it on AWS Lambda. AWS Lambda is a serverless compute

service [4]. It allows developers to run their code and a simple way to receive

responses to their code. This service can make HTTP requests through Ama-

zon API Gateway. The function which runs the code in Lambda is called a

Lambda function. The steps for creating the Lambda function and uploading

data for the fourtemps application are as follow:

1. For creating a Lambda function, the Function Name is ‘fourtemps’,

Node.js 14.x language is chosen, and a new IAM role ’fourtemps-role-

2uemuuk2’ is created.

2. The zip file of the Four Temperaments application is uploaded to Lambda.

The Figure 28 is an image of the Lambda function for FourTemps.

Figure 9: Lambda Function for Four Temperaments Application

40

Figure 10: Lambda function for Four Temperaments

Figure 10 is an image of successful running of the Lamdba function

‘fourtemps’.

Amazon RDS

Amazon Relational Database Service (Amazon RDS) is a web service

for handling a relational database in the AWS Cloud [3]. RDS is a highly

available Data Store service. It provides database scalability i.e both verti-

cally and horizontally. It provides faster Input/Output performance. It can

41

// connection . js

var d B Connection = new Sequelize(database , dbUser , dbPass

, {

host: dbHost ,

port: 3306 ,

dialect: ’ mysql ’

});

d B Connection . authenticate ()

. then (function () { console. log ("

CONNECTED ! ");

})

. catch (function (err) { console. log

(" NOT CONNECTED !");

})

. done ();

automatically back up a snapshot of the database’s data. Amazon RDS for

Fourtemps is using MySQL database. The lambda function is connected to

Amazon RDS using the code in Listing 1. In this code, the dbHost is the

RDS DB identifier for db-instancefourtemps, the database is fourtemps and

the dbUser and dbPass are the credentials for the RDS instance. Amazon

RDS database db-instancefourtemps and AWS Lambda function fourtemps

are in the same availability zone us-east-2 and have the same VPC.

Listing 1: DB connection

42

Amazon API Gateway

Figure 11: Resources for Four Temperaments

Amazon API Gateway presents an entry point between the client and the

backend services [1]. The resources for FourTemps are displayed in Figure 11

43

image with the methods for these resources.

The ‘/id’ in the ‘/deleteadmin’ is the parameter that is passed to the

route deleteadmin path. For the integration of Lambda function and Amazon

API Gateway, ‘Restful API’ was selected. The following steps were carried

out for creating the routes:[22, 23]

1. GET Method is created by selecting the Create Method option from

the Actions tab

2. The integration type chosen is Lambda function and the Lambda func-

tion selected is fourtemps

3. From Get Method Execution pane, integration request is selected. ‘ap-

plication/json’ mapping Template is created. Figure 12 displays the

path for the landing page.

4. In the Method Response, the content type is selected as text/html.

5. Similar process is carried for rest of the routes.

44

Figure 12: application/json

AWS CloudWatch

Figure 13: CloudWatch logs for fourtemps Lambda function

45

AWS CloudWatch, a metrics repository monitors the logs for the appli-

cations that are running on AWS [2]. The logs and changes in the fourtemps

Lambda function are collected and tracked in the AWS CloudWatch.

IAM

AWS Identity and Access Management provide secure access to AWS

services [7]. AWS IAM is used for managing roles and permissions for the

roles.

Minimal privileges paradigm for fourtemps lambda function are as follows:

Figure 14: Minimal privilages for fourtemps Lambda function

The permissions in AWS Lambda functions have 2 important policies,

the resource-based policy, and the execution role policy. For invoking the

46

Lambda function the event source uses the resource-based policy. The Lambda

function then uses the execution role policy to check the roles that are allowed

to the function.

Figure 15: Lambda Policy for fourtemps Lambda function

After creating the Fourtemps Lambda function and a new IAM role

fourtemps-role-2uemuuk2 is created only for the Fourtemps Lambda function.

The fourtemps-role-2uemuuk2 role is having full access to RDS and is having

access to AWSLambdaVPCAccessExecutionRole. The AWSLambdaVPCAccessExecutionRole

role has permissions for connecting to AWS EC2 and for generating AWS

CloudWatch log group.

Table 3: Code specification for Four Temperaments Lambda 1

Application Four Temperaments
Programming language Node.js

Number of files 5

Data Type of Information

47

Table 4: Code specification for Four Temperaments Lambda 2

After creating the Lambdas the code specification of Lambda 1 is pro-

vided in Table 3 and code specification of Lambda 2 is provided in Table 4.

This provides an information that converting Four Temperaments to mi-

croservices reduced the amount of code significantly and was a better option

than monolithic. For testing the speed of the application, Pingdom was

used. The response speed of the Four Temperaments application, when de-

ployed to microservices, has increased compared to that of the monolithic

application deployed on the AWS EC2 instance. The Figure 16 and Fig-

ure 17 are the images displaying the speed of Four Temperament deployed

on monolithic and microservices architectures respectively.

Application Four Temperaments
Programming language Node.js

Number of files 22

Data Type of Information

48

Figure 16: Speed of Four Temperaments as Microservice Architecture

Figure 17: Speed of Four Temperaments as Monolithic Architecture

49

5 Implementation

This section provides information about the methods that were used in

the system. The following are the methods that were implemented in the

system:

1. JavaBeans Activation Framework and Mail

2. Advanced Encryption Standard

3. CanvasJS

4. Token generation for Events

5. MAC Address based Authentication

It also provides the details about the system flow, that is the pages consisting

of the Four Temperaments system.

5.1 Methods:

5.1.1 JavaBeans Activation Framework:

Jakarta Activation (JAF) is also known as JavaBeans Activation Frame-

work enables developers to:

1. determines the type of arbitrary piece of data,

2. encapsulate access to it,

50

3. discover the operations available on it and

4. to instantiate the appropriate bean to perform the operations [11].

JAF can be operated with external data types. The external data types

can be media retrieved from files and streams. It contains classes that wrap

arbitrary data sources that provide access to the data as streams or objects,

identifying the Multipurpose Internet Mail Extensions (MIME) type of data,

and enumerating a registered set of “commands” for operating on the data.

In the Four Temperaments system, JAF(activation.1.1.1.jar) with JavaMail

API is used for sending mails to the Users as well as the Admins. JavaMail

API consists of classes that are essential for designing the mail system. The

javax.mail.internet package contains the classes which are related to Internet

mail systems. This package specifies the mail systems based on internet

standard MIME and simple mail transfer protocol (SMTP).

For sending emails to the users, the sender’s email id and password

credentials are required. The host used for sending mails is needed to be

defined. For example, in the Four Temperaments system, the Gmail host

was defined. The host properties like the hostname, the transport protocol,

authorization, StartTLS, username, password, and the port number are de-

fined before creating a session for the sender using javax.mail.Authenticator()

from javax.mail.internet.

51

The javax.mail.Authenticator checks if the sender’s credentials are legiti-

mate. A default MIMEMessage object is created setting the from, to, subject,

and message field, and the email is sent using Transport.send(). For the Four

Temperament System, the to field email id is taken from the database.

5.1.2 Advanced Encryption Standard:

Advanced Encryption Standard (AES) is based on a substitution - per-

mutation network which, unlike DES, AES doesn’t make use of the Fiestal

network. It is a cryptographic algorithm that is used for protecting electronic

sensitive data. It uses a block cipher algorithm for ensuring that the data

can be stored securely. AES consists of three sizes of ciphers 128, 192, and

256-bit sizes that represent AES-128, AES-192, and AES-256, respectively.

Encryption of data is carried out on each block basis in AES. Since it is the

symmetric block (secret key) cipher, AES encrypts and decrypts data using

the same secret key. The Encryption of data converts data to an unreadable

text called ciphertext and decryption converts the data back to its original

form called the plaintext. For converting the plaintext to ciphertext, the key

size is used in this encryption method which specifies the number of rounds

or repetitions the plaintext is put in the cipher block. The number of rounds

or repetition can be 10, 12, and 14 rounds corresponding to 128, 192, and

256 - bit keys respectively [19]. For hashing passwords of Admin user and

the testing user of the Four Temperament System, AES with 128 bit size i.e.

AES-128 is being used. The Figure 18 is the image displaying the hashed

52

passwords for the Testing User.

Figure 18: Hashed passwords Using AES for Four Temperaments System

5.1.3 CanvasJS:

CanvasJS is a JavaScript Charting Library. It allows the creation of

rich Dashboards and does not compromise on maintainability or functionality

[10]. It is built with the help of the Canvas element. In a minuscule moment,

this charting library renders thousands of Data Points. CanvasJS is used

for displaying the User Statistics graph on the Admin side. Figure 19 is an

example of User Statistic graph on the Admin side.

53

Figure 19: Event Statistics graph for Four Temperaments using CanvasJS

It is also used for displaying the personality Type of an user. Figure 20

is an example of the personality type of an user.

Figure 20: Personality Type of an user graph using CanvasJS

54

5.1.4 Token Generation for Events:

Figure 21: Event Token

The ‘eventid’ for an Event is randomly generated when an Event is

created. The ‘eventid’ is of string length 20 and can contain numbers or

uppercase/lowercase characters. This ‘eventid’ is used as a token in the

URL. Thus, the URL generated for each Event is different. Figure 21 is an

example of the event token generated for that Event.

This token is also sent to the ‘send event information to the users’ page

as a subject line.

A User is given access to the system only when the Event token exists.

If there is no event token in the URL that means the Event is not created

and the User is supposed to wait till the Event is created by either of the

Admins.

5.1.5 MAC Address Authenticaiton

The MAC Address Authentication uses the MAC address of the device

the User is using while registering themselves to the system. While registering

themselves to the Four Temperaments system, a call is made from the client-

side to the server-side where the Java code for extracting MAC address is

55

run. For knowing the MAC Address of the user’s device, it is necessary to

know the localhost address from where the Internet Protocol (IP) Address is

read. With the help of an IP address, the MAC address is stored in a byte

array.

The MAC address-based authentication makes the system secure by

not allowing unauthorized users, who have authorized user’s login creden-

tials, the permission to access the system. This authentication is resistant to

Dictionary attacks. Figure 22 is the example of getting the MAC from the

server-side using the above code.

Figure 22: Mac Address

The following process takes place for allowing a user to login successfully:

inetAddress = InetAddress . getLocalHost ();

Network Interface network = Network Interface .

getBy InetAddress (inetAddress);

byte [] hw = network . getHard wareAddress ();

56

1. The user when logging into the system has clicked on the checkbox for

the system to remember their device.

Figure 23: User login with Mac Address as the third parameter

2. When the user clicks Submit, the code on the server side which calls

the method for extracting the MAC address of the user.

57

Figure 24: On click of submit button submission of data to server side

3. Figure 25 is the entry of user’s credentials in the database. This MAC

address entry is hashed using AES encryption.

Figure 25: Database entry for the user

4. When user logs into the system, the method above is called for getting

the MAC address of the user and comparing that with the entry in the

database.

58

Figure 26: Successful login of the user

5. The user control panel from Admin’s side which shows that MAC

address authentication is enabled for the user.

59

Figure 27: User control panel on Admin’s side

60

5.2 Implementation of Microservices

Figure 28: Lambda Function for Four Temperaments Application

The Figure 28 displays the Lambda function for the Four Temperaments

Application.

61

Figure 29: Routes for Four Temperaments

The Figure 29 displays the routes that are created for the Four Temper-

aments Application.

62

Figure 30: Four Temperaments Website on AWS Lambda

The Figure 30 displays the Four Temperaments application deployed

using AWS Lambda. The Figure 31 displays the details of events in Four

Temperaments application connected to Amazon RDS.

Figure 31: Four Temperaments events

63

5.3 System Flow:

Figure 32: PageFlow of the system

The webpages for this system are designed using HTML and CSS design-

ing languages. The system’s design is original and is not using any template

of some other system or those available online. The PageFlow of the system

gives an overview of how the pages are linked. The process for the system

starts with the Userhome page which gives 3 user options to choose Guest

User, User registration/User login, or Admin. The next step is to have an

event created which is done by Admin or Root Admin. On the selection of

64

Admin from the Userhome page, the system is redirected to the Admin login

page.

5.3.1 Userhome page:

Figure 33: User page of the system

The Userhome page consists of user registration, which allows users to

create a new account and user login. For user registration, the user is required

to enter their email address, password and confirm their password. The sys-

tem validates if the user has entered a proper email address. The system

highlights the textbox border to green if the password and confirmed pass-

word match. ‘User’ password is stored in encrypted format in the database

using the AES algorithm. While logging into the system, if the user has for-

65

gotten the password, the system asks for the user to enter their mail address

and a randomly generated password is sent to the user via mail for the user

to log in. If the user has not correctly entered their credentials, then the

system throws an error regarding the same and redirects the ‘User’ to the

home page with the error message asking the user to try logging into the

system or use Forgot Password instead. Users can also login anonymously as

guest users which can be accessed from the Userhome page. The Userhome

page also provides a link that directs to the Admin login page. Figure 33

shows the Userhome page.

5.3.2 Adminhome page:

Figure 34: Admin page of the system

66

Adminhome page consists of admin login and the Root Admin registra-

tion link. Admins can log in from the Adminhome page where the admin

inputs the ‘username’, ‘password’, and the ‘admintype’ i.e. either RootAd-

min or Admin. Also, the system allows only one RootAdmin to be registered.

New Admins are created by the RootAdmin with CreateAdmin page and the

Admin information is sent to the Admin via their emails. Figure 35 is the

page for Creating a new Admin. The RootAdmin can also delete an Admin

if they want by using the DeleteAdmin page. Figure 36 is the DeleteAdmin

page. For the Admin, the system provides an Admin profile where Admin

can change the username or password if they want. Similar to the user

password, even the Admin passwords are stored in encrypted format in the

database. For a registered Admin, while logging into the system, if they have

forgotten their password, the system asks for the username and their email

address. A randomly generated password is sent to the Admin for logging

into the system via Gmail, details of sending the mail from the system are

explained in section Send Mail. Similar to Userhome, if the admin has not

entered their credentials properly, then they receive an error message and are

asked to reenter their credentials or use Forgot Password to log in. Figure 34

displays Adminhome page.

67

Figure 35: Create Admin page for the system

Figure 36: Delete Admin page for the system

68

5.3.3 Create and Delete Event pages:

Figure 37: Create event for the system

69

Figure 38: Delete event for the system

RootAdmin and Admin after logging into the system can create new

events. The ‘eventid’ is randomly generated. For a new event to be cre-

ated, the Admin needs to enter ‘Event Name’, ‘Date’, ‘Place’, ‘Address’, and

‘Description’. The event ‘Created By’ text is filled by the system itself. Af-

ter creating the event, the event id is passed to the URL link. This event

questionnaire link is then sent to the users to fill the questionnaire and sub-

mit their responses. Both the Admins have permission to delete the Event.

Figure 37 and Figure 38 displays images for Create Event and Delete Event

respectively.

70

5.3.4 Send Mail:

Currently, the Admins can send the event information to the users who

have already registered in the system. Send Mail takes three arguments, the

recipient, subject, and the message. The recipient information is currently

being taken from the database, event id information is added to both subject

and the message text area of the system. Figure 39 is an image for Send Mail

page.

Figure 39: Send mail for the system

The email sending function is also used while sending email by the

Root Admin to the Admin when Root Admin creates a new Admin. Figure 40

is an example of Root Admin sending information to Admin.

71

Figure 40: Root Admin sends Admin information

5.3.5 Userwelcome page:

When the user clicks on the event questionnaire link sent to them by

the admin, the user can either register themself as a new user or login to the

system or be anonymous i.e. login as a guest. For a registering or already

registered user, the user can fill the questionnaire -and either ‘Submit’ or

‘Save’ their questionnaire data to the system. Submit button saves the user’s

response to the questionnaire in the Four Temperaments system and the

user won’t be able to change that information. For any particular event, the

user is allowed to submit only one questionnaire response. The save button

allows user to save their information into the system but does not submit

a response. Since this user has clicked on the save button, so the user is

72

allowed to return to the event for completing their incomplete submission

and submit the questionnaire response once completed.

If the user wishes to change their password, the Userwelcome page

also provides the user with an option to change their password which requires

the ‘current password’, ‘new password’, and ‘confirm password’ as the input.

73

Figure 41: Userwelcome page of the system

5.3.6 GuestUser page:

If the ‘User’ chooses to be anonymous, then the ‘User’ can log in as a

guest user. The guest user is allowed to submit the questionnaire for the

74

event. If the user clicks on ‘save’, then the user is provided an option to

either register or, go back and click on submit instead.

Figure 42: GuestUser of the system

The guest user can register themselves into the system at any given time

by clicking on the register button provided to them on the page

75

5.3.7 User MAC Address based Authentication page:

Figure 43: MacAddressUser of the system

76

Figure 44: Sucessful Login of Mac Address enabled user

If the ‘User’ wants the system to remember the device, they can click

on the checkbox after inputting the login credentials for the system. If the

checkbox is selected, the MAC address of their device is considered as the

third parameter for authentication. Figure 43 is the User login page where the

user can select enabling MAC Address Authentication. Figure 44 is the image

with successful login for user: ’monicatandel25mt@gmail.com’ and password:

’Monica25MT’ whose device MAC address is used for authentication.

mailto:monicatandel25mt@gmail.com

77

Figure 45: Admin User Control Panel for the system

Figure 46: Sucessful Login of Mac Address enabled user

78

The MAC address authentication for users can also be enabled/disabled

by the ‘Admins’. Figure 45 is the page for Admin enabling MAC authentica-

tion for the user. Figure 46 is the page of the ‘User’ logging in successfully.

Considering that the cyber attacker is already knowing the user’s login

credentials whose MAC address authentication is turned on. The cyber at-

tacker would not be able to log in since the cyber attacker’s MAC address

won’t match the verified user’s. Thus the login attempt will not be successful.

79

6 Conclusion and future work

The thesis focuses on providing a strategic method for refactoring the

Four Temperament Test system to microservices. This strategic method in-

volves the business functionalities concept while performing the refactoriza-

tion. From the analysis, it can be seen that refactoring Four Temperaments

into microservices architecture from monolithic was helpful as it lowered the

code files and response rate. The reason for choosing business functionalities

as an important key for refactorization is that the business functionalities do

not change. In future work, the 4th step from the strategy i.e. the analysis

of the business functionality can be carried out using machine learning or

human interaction.

For securing the system, the ‘User’ and ‘Admin’ passwords are encrypted

using the AES algorithm. Another way for securing the system was to add

MAC address as the third parameter for authentication. This application

is designed using Microservices to make the application more modular and

easier to maintain.

The Four Temperaments system follows MVC that is the Model - View

- Controller architecture. The system handles the software-related issues,

namely, the issues related to access control, accuracy, authorization, availabil-

ity, confidentiality, fortification, authentication and integrity; accountability

80

issues; and error handling.

The system consists of 3 main entities, namely, the testing ‘User’, the

‘Root Admin’, and the ‘Admin’. The ‘Root Admin’ and ‘Admin’ can create

an Event for ‘Users’ to attempt the questionnaire. The Event link informa-

tion is sent to the ‘Users’.

The system provides ‘Users’ a simple interface for answering the ques-

tionnaire. The ‘Users’ are provided with a facility to save the questionnaire

if they wish or submit it directly. On submission of the questionnaire re-

sponses, a graphical representation of the User’s personality temperament,

a brief description of their personality, their strengths, weaknesses, and ca-

reer options respective to their temperament along with some solutions to

overcome their weaknesses are provided to the ‘User’.

The ‘Admins’ of the system are capable to create and delete events. They

are also able to check the Event statistics. The Event statistics consists of

a graph that displays the number of registered users and anonymous users

registered for the system. The ‘Admins’ are currently sending the emails to

the registered users of the system. For future work, the implementation of

sending emails for unregistered users can be performed.

The test helps during screening applicants for employment and job train-

ing by measuring the characteristics of a person like their attitude, emotional

81

adjustment, interest, and motivation determining if the person is a good fit.

These tests also help understand one’s relationship with their coworkers,

screening applicants for employment and job training, criminal cases, cus-

tody battles, and accessing psychological disorders

82

References

[1] Amazon api gateway — amazon web services. https://aws.amazon.

com/api-gateway/.

[2] Amazon cloudwatch - application and infrastructure monitoring. https:

//aws.amazon.com/cloudwatch/.

[3] Amazon rds — cloud relational database — amazon web services.

https://aws.amazon.com/rds/.

[4] Aws lambda – serverless compute - amazon web services. https://aws.

amazon.com/lambda/.

[5] The four temperaments - menu. http://temperaments.fighunter.

com/.

[6] Guide: Four temperaments and humors — personal-

ity psychology. https://personality-psychology.com/ four-

temperaments-and-humors/.

[7] Iam role - aws identity and access management. https://docs.aws.

amazon.com/IAM/latest/UserGuide/id_roles.html.

[8] Tutorial: Getting started with amazon ec2 windows instances - ama-

zon elastic compute cloud. https://docs.aws.amazon.com/AWSEC2/

latest/WindowsGuide/EC2_GetStarted.html.

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/rds/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
http://temperaments.fighunter.com/
http://temperaments.fighunter.com/
http://temperaments.fighunter.com/
https://personality-psychology.com/four-temperaments-and-humors/
https://personality-psychology.com/four-temperaments-and-humors/
https://personality-psychology.com/four-temperaments-and-humors/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html

83

[9] Authentication vs authorization. https://www.okta.com/

identity-101/authentication-vs-authorization/, 2021.

[10] Html5 charts and graphs. https://canvasjs.com/, 2021.

[11] the java ee 6 tutorial. https://docs.oracle.com/cd/E19798-01/ 821-

1841/bnactindex.html, 2021.

[12] What is secure software engineering? https://www.cerias.purdue.

edu/site/blog/post/what-is-secure-software-engineering/,

2021.

[13] Bintang Maulana Prasetya Pagar Alam, Rycka Septiasari, and Amirud-

din Amiruddin. Applying mac address-based access control for securing

admin’s login page. Proceeding of the Electrical Engineering Computer

Science and Informatics, 6(0), 2019.

[14] Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan T.

Larsen, and Manuel Mazzara. From monolithic to microservices: An

experience report from the banking domain. IEEE Software, 35(3):50–

55, 2018.

[15] Pamela Flores and Victor Velepucha. Monoliths to microservices - mi-

gration problems and challenges: A sms. Second International Confer-

ence on Information Systems and Software Technologies, 2021.

https://www.okta.com/identity-101/authentication-vs-authorization/
https://www.okta.com/identity-101/authentication-vs-authorization/
https://www.okta.com/identity-101/authentication-vs-authorization/
https://canvasjs.com/
https://docs.oracle.com/cd/E19798-01/821-1841/bnactindex.html
https://docs.oracle.com/cd/E19798-01/821-1841/bnactindex.html
https://docs.oracle.com/cd/E19798-01/821-1841/bnactindex.html
https://www.cerias.purdue.edu/site/blog/post/what-is-secure-software-engineering/
https://www.cerias.purdue.edu/site/blog/post/what-is-secure-software-engineering/
https://www.cerias.purdue.edu/site/blog/post/what-is-secure-software-engineering/

84

[16] Jean-Philippe Gouigoux and Dalila Tamzalit. ”functional-first” recom-

mendations for beneficial microservices migration and integration. IEEE

International Conference on Software Architecture (ICSA-C), 2019.

[17] Jean-Phillipe Gouigoux and Dailia Tamzalit. From monolith to mi-

croservices lessons learned on an industrial migration to web oriented

architecture. IEEE International Conference on Software Architecture

Workshops, 2017.

[18] Manabu Kamimura, Keisuke Yano, Tomomi Hatano, and Akihiko Mat-

suo. Extracting candidates of microservices from monolithic application

code. Asia-Pacific Software Engineering Conference (APSEC), 2018.

[19] Rob Mardisalu. What is advanced encryption stan-

dard (aes): Beginner’s guide. https://thebestvpn.com/ advanced-

encryption-standard-aes/what, May 2019.

[20] Kostantinos Papadamou, Steven Gevers, Christos Xenakis, Michael

Sirivianos, Savvas Zannettou, Bogdan Chifor, Sorin Teican, George

Gugulea, Alberto Caponi, and Annamaria et al. Recupero. Killing the

password and preserving privacy with device-centric and attribute-based

authentication. IEEE Transactions on Information Forensics and Secu-

rity, 15:2183–2193, 2020.

[21] Nikhat Parveen, Md. Rizwan Beg, and M. H. Khan. Software security

issues: Requirement perspectives. 2014.

https://thebestvpn.com/advanced-encryption-standard-aes/what
https://thebestvpn.com/advanced-encryption-standard-aes/what
https://thebestvpn.com/advanced-encryption-standard-aes/what

85

[22] Danilo Poccia. Aws lambda: Calling functions

from a web browser. https://medium.com/@danilop/ aws-

lambda-calling-functions-from-a-web-browser-338fbcb6a44d, Aug

2016.

[23] Danilo Poccia. AWS Lambda in action: event-driven serverless applica-

tions. Manning Publications, 2017.

[24] Chris Richardson. Microservices patterns: with examples in Java. Simon

and Schuster, 2018.

[25] What is: Java By Matthew Tyson and Matthew

Tyson. What is tomcat? the original java servlet con-

tainer. https://www.infoworld.com/article/3510460/

what-is-apache-tomcat-the-original-java-servlet-container.

html, Dec 2019.

[26] Afzaal Ahmad Zeeshan. Programming in java using the mvc

architecture. https://www.codeproject.com/Articles/879896/

Programming-in-Java-using-the-MVC-Architecture, Feb 2015.

https://medium.com/%40danilop/aws-lambda-calling-functions-from-a-web-browser-338fbcb6a44d
https://medium.com/%40danilop/aws-lambda-calling-functions-from-a-web-browser-338fbcb6a44d
https://medium.com/%40danilop/aws-lambda-calling-functions-from-a-web-browser-338fbcb6a44d
https://www.infoworld.com/article/3510460/what-is-apache-tomcat-the-original-java-servlet-container.html
https://www.infoworld.com/article/3510460/what-is-apache-tomcat-the-original-java-servlet-container.html
https://www.infoworld.com/article/3510460/what-is-apache-tomcat-the-original-java-servlet-container.html
https://www.infoworld.com/article/3510460/what-is-apache-tomcat-the-original-java-servlet-container.html
https://www.infoworld.com/article/3510460/what-is-apache-tomcat-the-original-java-servlet-container.html
https://www.codeproject.com/Articles/879896/Programming-in-Java-using-the-MVC-Architecture
https://www.codeproject.com/Articles/879896/Programming-in-Java-using-the-MVC-Architecture
https://www.codeproject.com/Articles/879896/Programming-in-Java-using-the-MVC-Architecture

