
Toward Efficient Clustering of Time Series

Automotive Signal Data

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Student Name:
Kyle Robert Crockett

Advisor:
Dr. Michael Soltys

September 2021

© 2021

Kyle Robert Crockett

ALL RIGHTS RESERVED

APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Dr. Michael Soltys Date

Dr. Reza Abdolee Date

Dr. Jason Isaacs Date

APPROVED FOR THE UNIVERSITY

Dr. Jill Leafstedt Date

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Title of Item

3 to 5 keywords or phrases to describe the item

Author(s) Name (Print)

Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Toward Efficient Clustering of Time Series

Automotive Signal Data

Kyle Robert Crockett

September 7, 2021

Abstract

As the demands on automotive communications systems have in-

creased, so have the amount of data and the complexity. Connected

vehicles pose a unique challenge due to the fact that they have be-

come mobile embedded networks that directly impact the physical

well being of people in and around the vehicle. Reverse engineer-

ing of automotive communications has become an area of interest for

researchers hoping to develop supervisory security systems that are

able to learn normal operation characteristics and detect anomalies.

This paper focuses on time series analysis and first surveys existing

methods, proposes a new method of sample rate reduction, and finally

analyzes the real-time processing feasibility of each method. This pa-

per also provides a counter argument to the widely held assumptions

that DTW is both necessary or even useful to automotive time series

analysis.

Contents

1 Introduction 1

1.1 Contributions . 3

2 Background 4

2.1 Cybersecurity and Connected Vehicles 4

2.1.1 Evolution of Automotive Electronics 4

2.1.2 Intra-Vehicle Communication Systems 5

2.1.3 Telematics, V2V and V2I 6

2.1.4 Cyber Threats and Risks 7

2.1.5 Fleet Management . 8

2.2 Time Series Data Analysis . 9

2.2.1 Classifying VS Clustering 9

2.2.2 Basic Methods for Time Series Analysis 9

2.2.3 Dynamic Time Warping 11

2.2.4 Shapelets and Motifs 15

2.2.5 Matrix Profile Distance (MPdist) 17

2.2.6 Symbolic Aggregate approXimation (SAX) 17

2.2.7 Online versus Offline Analysis 19

2.2.8 Sample Rate Reduction 20

2.2.9 Time Series Research in Automotive 20

i

3 Implementation 25

3.1 Methodology . 25

3.2 Data Set Generation . 26

3.3 Time Series Sample Rate Reduction 27

3.4 Impulse (Sparse) Time Series 43

3.5 Meandering Time Series . 46

3.6 Algorithms . 48

3.7 Viability . 51

3.8 DTW Sample Rate . 52

3.9 Scoring . 53

4 Conclusion and Future Work 54

4.1 Conclusion . 54

4.1.1 Euclidean Distance for Automotive Time Series Clus-

tering . 54

4.1.2 Self Distance and DTW 55

4.1.3 RDP for Clustering . 56

4.1.4 Real-time Implementation 57

4.2 Future Work . 58

References 67

ii

List of Figures

1 Euclidean distance of two time series 10

2 DTW distance of two time series 12

3 Cost Matrix Diagram . 12

4 FastDTW Diagram . 14

5 SAX Diagram . 19

6 CAN Bit Field Diagram . 22

7 Wheel Speed Data at Decreasing Sample Rate 30

8 Brake Force Data at Decreasing Sample Rate 31

9 DTW on Original Signal at Decreasing Sample Rate 34

10 50 Cycles of Sine Wave at Decreasing Sample Rate 35

11 Single Cycle of Sine Wave at Decreasing Sample Rate 35

12 Ramer–Douglas–Peucker Algorithm 36

13 DTW Comparison Run Times 37

14 DTW on Original Signal at Decreasing Sample Rate 39

15 DTW on Original Signal at Decreasing Sample Rate 40

16 Meandering vs. Impulse Signal Types 42

17 Impulse Masking . 43

18 RDP Points . 44

19 RDP Point Spacing . 45

20 RDP Points . 47

21 RDP Point Spacing . 48

iii

22 Python vs Cython RDP Run Times 52

23 Python vs Cython DTW Run Times 52

24 Euclidean Distance and DTW 55

25 Self-distance and DTW . 56

26 Self-distance and DTW . 58

27 Future Work - Classifying and Clustering with VAE 59

iv

1 Introduction

We are currently living in an age of unfathomable complexity. Whereas it

was once possible to design customs systems for every use it is now highly

desirable to employ systems that can adapt and optimize for their specific

use case. With the growth of the Internet of things (IoT), the connected

automobile has grown with it. The connected car poses a unique security

risk since it is a combination of both information and physical systems. With

the connected car it is possible for not only the owner’s information to be

stolen but also physical harm can be inflicted upon them. Because of the large

risks associated with connected cars it is of great interest to the automotive

industry to cost effectively monitor and detect any malicious incursion.

The available information streaming from a modern vehicle’s sensors has

increased several orders of magnitude from what was available just a few

years prior. Whit a focus on clustering, this thesis provides insight into a

viable method of sample rate reduction for use with automotive time series

sensor data. Many of the most widely used tools for the analysis of time se-

ries data have quadratic time and space complexity [1][2][3][4][5]. Most of the

prior research has been focused on dimension reduction by generalized opti-

mization or approximation of the algorithms without much focus on the end

use case [6][7]. This Thesis provides a new method of sample rate reduction

by analyzing the full resolution signal first and then removing data samples

while maintaining enough information to successfully perform clustering.

1

In the last 10 years the field of automotive data analysis and reverse engi-

neering has gained a lot of attention. The need for automotive cybersecurity

research has been demonstrated by security researches and met with interest

from the academic community [8][9][10]. Most of the prior work has been

centered around the reverse engineering of the controller area network bus or

classifying signals [11][12][10]. Many of the methods used employ Dynamic

Time Warping to perform their comparisons [11]. There have been many

efforts to optimize Dynamic Time Warping but they have remained limited

to modifying the algorithm choosing a subset of data to analyze [?][6][13][13].

The optimizations and windowing have been unfortunately discovered to be

of limited use [5][14]. In the world of time series analysis however, Dynamic

Time Warping is only one of many techniques currently employed. UC River-

side has developed several techniques such as Symbolic Aggregate approX-

imation, Shapelets, and MPdist [15][16][17]. There have been some efforts

to employ clustering on automotive data but they have been relatively few

in number and performed with labeled data to cluster attributes like driving

styles [18][19].

2

1.1 Contributions

This thesis refutes a widespread assumption within the automotive research

community as to the importance of dynamic time warping in signal clustering.

This thesis provides evidence that Euclidean distance is not only faster to

perform but just as accurate as dynamic time warping in the vast majority

of situations.

The concept of the time series Self Distance for measuring signal degra-

dation at various sample rates is introduced in this Thesis. It is proposed as

a relative measure and alternative to more complex methods of sample rate

optimization.

This thesis argues that due to the longer sample times required for ef-

fective capture of signal data, the definition of real-time or online analysis

allows for a surprisingly large amount of analysis time. Measurements are

first made on a one-to-one comparison to determine if the industry favored

DTW algorithm can process a series of signals in less time than it took to

capture them [20]. The experiments were run on a Nvidia Jetson Nano to

simulate the type of embeddable hardware used in automotive applications.

DTW is not likely to be able to meet this criterion in real use, but it is

proposed that DTW can still be considered real-time if it is able to be cal-

culated faster than the data is received. This for example, would be 300%

of the sample time for an 8 hour driving day and a full 24 hours in which to

process the signals.

3

2 Background

2.1 Cybersecurity and Connected Vehicles

2.1.1 Evolution of Automotive Electronics

In the early days of the automobile the electrical systems were remarkably

simple, and every single component added its own dedicated wiring. Most of

the early uses of electrical systems were used to run lighting and functions

such as the starter motor and in some cases power windows. As technology

progressed the complexity of the electrical system did as well. Soon because

of ever tightening emissions requirements, computerization took hold of key

functions. An example of this shift towards computer control is demonstrated

by systems such as electronic fuel injection (EFI).

By the mid 1980s computers were now being fully integrated within the

vehicle performing many different tasks the obvious next step was to have

these systems log and report data for diagnostics purposes [21]. In 1987 BMW

brought to market the first car with diagnostics capabilities [21]. Meanwhile,

car manufacturers were searching for a solution to an ever-increasing bulk of

wiring within the vehicles. The growth in volume of wiring within vehicles

was not only an economic drawback because of the cost of the wiring itself

but also due to the added mass caused a decline in fuel efficiency [21].

4

2.1.2 Intra-Vehicle Communication Systems

In 1983 the major automotive component supplier Bosch began an internal

project to find a solution for the industries wiring problem. The solution that

Bosch devised was to be known as Controller Area Network [21]. Controller

Area Network allowed for communications between hundreds of nodes on

a single twisted-pair of wire. During this time, many proprietary solutions

were developed by each manufacturer such as or Diagnosis Bus and I/K Bus

by BMW in 1987 and 1991 respectively [21]. The following year, in 1992

Daimler introduced the first production vehicle incorporating controller area

network [21]. The CAN bus ultimately won out over all of the proprietary

solutions due to its open standard. The controller area network bus facili-

tated complex interactions between components within the car. Command

and control signals could be sent to enable or disable door locks and control

lighting. In addition to command-and-control signals, nodes were able to

give status reports such as whether a light bulb was out or the position of a

switch. Analog signals were also transmitted across the bus in the form of

temperature sensors or engine speed data. The early diagnostic systems were

relatively simple in nature consisting of minimum or maximum threshold val-

ues to toggle an alarm. In modern vehicles the diagnostic systems are far

more complex and use many statistical techniques to predict long term prob-

lems before they result in the failure of a component. In the years since then,

many other solutions have been developed for intra-vehicle communication

5

but CAN remains the most widely used today.

2.1.3 Telematics, V2V and V2I

As high-speed cellular network coverage has become more ubiquitous, man-

ufacturers have been able to make use of telematics units that are connected

to the internet and continually transmit vehicle sensor data in real-time. At

the present time, a wide variety of vehicles can be purchased with real-time

information streamed directly to and from the vehicle. The data to be con-

sumed by the vehicles occupants includes real-time traffic data, music and

weather reports. Vehicles will send information to manufacturers such as on-

board diagnostics data. This diagnostics data is then used by manufacturers

to recommend maintenance before they become more costly repairs.

Still only in its infant stages, the technology of vehicle to vehicle and ve-

hicle to infrastructure communication is the industry solution to many of the

challenges faced by autonomous driving. Vehicle to vehicle communication

would enable vehicles to give positional data to one another to avoid colli-

sions and a vehicle could transmit road hazard information, such as objects

obstructing the road, to the vehicles behind it [22]. Vehicle to infrastructure

communication would assist vehicles in localization by referencing the posi-

tions of infrastructure nodes relative to the vehicles position [22]. Another

use of vehicles infrastructure would be traffic lights telling vehicles their sta-

tus ahead of time which would reduce and autonomous vehicles reliance on

camera data.

6

2.1.4 Cyber Threats and Risks

For all the benefits that we have discussed there is a dark side which must

be considered. Every mode of communication enabled within a vehicle and

from a vehicle to the outside world is a potential path for exploit by a bad

actor. Because of the ever increasing complexity of on-board systems, the au-

tomotive industry has enacted stringent protocols for ensuring the safety and

reliability of their products. Up until recently the internal networks within a

vehicle were only accessible by directly and physically accessing the network

cables. Generally speaking it would be extremely difficult for a threat to

compromise a moving vehicle in this manner. Security researchers, Charlie

Miller and Chris Valasek demonstrated the vulnerability of the internal ve-

hicle buses in a technical white paper published in 2014 [8]. While the pair

did go on to publish other papers related to remote exploits, most of their

work demonstrating safety critical vulnerabilities required hands-on access to

the vehicles. In the years since Miller and Valasek’s research it has become

increasingly common to find vehicles with permanent internet connectivity

and this trend is expected to continue [23].

A modern connected car is vulnerable from theft of the data contained

within such as GPS locations and credentials for subscription services as well

as the vulnerability of safety critical systems that ensure the well-being of

its occupants. Just as diagnostic systems were implemented to predict the

need for repair or replacement of mechanical components within the vehicle

7

there is now a need for supervisory systems that will predict or detect a

potential exploitation. The main use of having such on-board systems is as a

last line of defense in the event of cyber attack. Security best practices such

as rotating security certificates and enforcing least privilege are among the

first lines of defense in securing the data centers and vehicles against attack.

If those countermeasures fail it is not acceptable to a allow a threat to go

undetected especially in a cyber physical system carrying humans traveling

at a high rate of speed.

2.1.5 Fleet Management

It is highly desirable for both manufacturers and owners of large fleets to

make use of telematics to maintain their vehicles. It is currently common

for fleet maintenance technicians to be required to spend countless hours

performing diagnosis of failed vehicles. By only detecting the need for re-

pair after catastrophic failure, additional downtime is incurred. By utilizing

telemetry to predict potential failures it is possible to perform the repairs

during scheduled maintenance, thus reducing downtime. If an on-board di-

agnostics system detects an error or potential cyber threat it is possible for

the proper teams to be notified within the organization.

8

2.2 Time Series Data Analysis

2.2.1 Classifying VS Clustering

In the fields of data science and machine learning both classifying and clus-

tering are use to make sense of data. Classifying is when unknown data is

labeled with predefined groups. Classifying is useful when the data is well

understood and it is possible to list all of potential labels for the data. Clus-

tering is grouping unknown or unlabeled data by similarities. Clustering is

most useful when trying to make sense of unknown or unlabeled data. By

grouping the data by its similarities it is then possible to attempt to reverse

engineer or suss out the labels and meaning of the data.

2.2.2 Basic Methods for Time Series Analysis

One of the simplest methods of analyzing to time series data sets is through

Euclidean distance. Euclidean distance measures the difference in value be-

tween each data point on a one-to-one mapping. A visualization of this

mapping is shown in Figure 1. It can be seen that both time series seg-

ments are similar however not exactly the same. Euclidean distance has

been demonstrated to not be very effective with certain data sets [24][?][13].

k Nearest Neighbors (KNN) can be used for time series classification and

has been shown to perform as well as Dynamic Time Warping (DTW) with

some data sets [24]. The KNN algorithm works by comparing a data point

to a specified k number of previously classified neighboring data points. The

9

data point in question will be labeled with the predominant neighboring

point’s class. For time series, the KNN algorithm is performed for every

point in the data set and then the series data will be classified with the

most closely correlated label. Both Euclidean distance and DTW are spe-

cific implementations of one nearest neighbor (1-NN) [24]. k-means is similar

to KNN but is used in time series clustering by taking the moving average

of each data series in a group and then clustering each series’ moving aver-

age with that of the most similar other moving averages [2]. The k-means

clustering algorithm works on data that has been minimally prepossessed,

unlike KNN which requires previously classified sample data to compare the

unclassified data series to [2].

Figure 1: Euclidean distance of two time series

10

2.2.3 Dynamic Time Warping

Basic DTW: Dynamic Time Warping (DTW) attempts to solve the issues

present when using Euclidean distance [25]. DTW will allow for warping in

the time series along a cost matrix to try to find the best fit. This warping

is demonstrated in Figure 2. The algorithm attempts to take the two similar

time series and explain the differences in offset. Figure 3 illustrates the

warping path taken across the cost matrix. The path is defined by the

dark black region traversing the matrix. The varying cost of each element

is illustrated by the shaded grey area with longer distances, or higher cost,

being darker. The warping path in Figure 3 shows a warping bias towards the

shorter (lighter) regions of the matrix. The cost matrix in Figure 3 has been

constrained by the Itakura parallelogram where the warping path is allowed

a maximum slope defined by the constraints of the parallelogram [26]. This

is one of the many attempts to optimize and speed up DTW execution. The

well known algorithm that computes the similarity of two strings known as

the Levenshtein Distance is an implementation of DTW. The Levenshtein

Distance is an invaluable tool used in search recommendations and spell

checking [27].

11

Figure 2: DTW distance of two time series

Figure 3: Cost Matrix Diagram

12

Derivative DTW: One issue with DTW is the tendency for certain fea-

tures in the data to lead to pathological warping around a singularity [?].

One solution proposed by Keogh et al. is through the use of what they

call Derivative Dynamic Time Warping (DDTW) [?]. In DDTW the DTW

is performed on the derivative of the data. The use of the derivatives has

good performance on reducing the number of singularities and pathological

warping. DDTW is compared by Keogh et al. against some more common

DTW constraining methods like Windowing, Slope Weighting and Step Pat-

terns. The process of Windowing takes a subset of the data and performs

DTW on it. To address the complete data set the window is then slid along

the data with DTW being performed at each step. Windowing is able to

limit the effect of singularities on data but not eliminate their presence all

together [?]. Slope Weighting applies a penalty of increasing weight as the

warping path diverges further from the diagonal on the cost matrix [?]. The

weights can be tuned to increase or decrease the bias towards the diagonal

path. Step Patterns attempt to control singularities and pathological warp-

ing by creating an absolute outer bounds to the cost matrix warping path.

This is often accomplished by assigning infinite cost to elements outside of

the Step Pattern. Many different Step Pattern geometries have been devised

but come at the peril of choosing the correct one for the data [?]. Other

attempts at solving the pathological warping problem have been developed

such as EventDTW proposed by Jaing et al.[28]. EventDTW attempts to

limit warping by matching the data trends (upward and downward slopes)

13

to one another in a pre-processing step.

Figure 4: FastDTW Diagram

FastDTW: Because of the utility of DTW it has been applied quite often

in research involving time series data. A major drawback to utilizing DTW

however, is its large time and space complexity of O(N2). This complexity

limits the maximum size of any data series to a few thousand data points

[6]. It should then be no surprise that there has been much effort directed

at increasing the efficiency of the DTW algorithm. FastDTW is one of the

most widely implemented instances of these efforts with over one thousand

citations [5]. The fast data algorithm works by reducing the resolution of

the initial cost matrix to determine an approximate warping path and then

gradually increasing resolution within the previously defined approximate

warping path [6]. Figure 4 illustrates the initial low resolution warping path

14

shown by the grey shaded region of the cost matrix. As with Figure 3, the

shaded area in Figure 4 corresponds to shorter distance (lower cost) as lighter

in color. This region is then the bounds for the final pass of the full resolution

DTW shown in Figure 4 by the black path along the cost matrix. In spite

of its wide use, FastDTW is not without its critics. In a paper published in

2020, Wu et al. argues that the approximation provided by the FastDTW

algorithm and it’s repetitious nature is not as useful and is ultimately slower

than just performing full DTW one time [5]. They argue that for all of the

times that FastDTW was used in research, it would have been better to just

use standard DTW and that the approximation provided by FastDTW is not

worth the minimal time savings [5].

2.2.4 Shapelets and Motifs

Shapelets: As a solution the drawback of KNN requiring a full analysis

of the time series data a new primitive called the ”Shapelet” was devised.

Time series Shapelets are defined as ”subsequences which are in some sense

maximally representative of a class” [16]. When using the nearest neighbors

approach to time series classification it is only possible to determine how the

data should be classified and will not provide any further information about

why the data should belong to a particular class [16]. By using KNN it is

not possible to create smarter or more highly optimized ways of extracting

meaning from data. The first method for identifying Shapelets for a given

class is using a brute force method. Given a number of time series of a given

15

class, each series is broken into sub-series and each sub series is compared

along a sliding window to the whole data series. The distance between each

Shapelet candidate and each whole time series are used to determine how

useful the Shapelet candidate is at representing the class as a whole [16].

The large amount of research devoted to the efficient discovery of Shapelets

in time series is testimony to their utility.

The python tslearn [29] library is an alternative to pyts [30] that imple-

ments many of the advances in time series shapelets. One algorithm of note

is Learning Time-Series Shapelets Josif by Graboka et al. [31] that proposes

a novel method of Shapelet discovery capable of outperforming all previous

methods.

The ”Fast Shapelets” algorithm proposed by Rakthanmanon and Keogh

attempts to make use of symbolic representation to identify the most likely

candidates and prune away any regions where no Shapelet candidates are

likely to be found [32].

Motifs: The next data series primitive of interest is known as a Motif. A

motif is defined as ”pairs of individual time series, or subsequences of a longer

time series, which are very similar to each other” [33]. A Motif differs from

a Shapelet in both complexity and frequency of occurrence. One or more

different Shapelts must only appear once to classify a data series and are

generally used on shorter data series. Motifs are more complex subregions of a

large data series and must appear multiple times. Also further simplifying the

16

difference, it can be stated that a Motif may contain Shapelets, but a Shapelet

cannot contain any number of Motifs. The process of Motif discovery works

by selecting a subset of a data series and then ordering all other regions

by their distance from that test subset. Then the best-so-far matches are

returned as the top Motif candidates [33].

2.2.5 Matrix Profile Distance (MPdist)

Matrix Profile Distance attempts to provide a solution to a fundamental

weakness in both the Euclidean and DTW time series measures. When at-

tempting to measure the similarity of time series data with the Eclidean or

DTW measure, not only is all of the data used in the measurement but also

the order in which it arrives [17]. Leveraging the lessons learned from the

Shapelet, namely the fact that the correct sub-sequence of data can be used

to provide insight into the greater time series as a whole, MPdist attempts

to cluster signals based on similarities without the limitations of Euclidian or

DTW measures [17]. The power of MPdist is that it is capable of clustering

data based on the number of similar sub-sequences regardless of their order.

2.2.6 Symbolic Aggregate approXimation (SAX)

The Symbolic Aggregate approXimation (SAX) algorithm attempts to im-

prove the performance of other analysis methods by creating a high level,

reduced dimension symbolic representation of a data series [15]. SAX differs

from other symbolic representation schemes because it makes use of Piece-

17

wise Aggregate Approximation (PAA) representation as a interim step. PAA

provides a time tested means of reducing the sample rate of time series data.

PAA works by segmenting the source data with a sliding window and then

taking the mean value in each window [15]. The values generated by PAA

are then mapped on the alphabet. The size of the alphabet is of concern be-

cause if it is too small then the resolution will be to low to properly represent

the data. Too large of an alphabet however, will lead to diminishing returns

since the computational complexity increases as well. SAX is shown to be

most effective with an alphabet size between 5 and 8 letters [15]. Then, just

as in written language the alphabets are combined into words that represent

the time series data. The words are subsets of the time series data that are

representative of specific features or defining characteristics. By transform-

ing time series data into a symbolic format it opens the door for many new

toolsets such as natural language processing that were incompatible with

time series data in its raw form.

18

Figure 5: SAX Diagram

2.2.7 Online versus Offline Analysis

It is of importance to discuss the benefits and drawbacks of online and of-

fline analysis techniques. The use case for off-line analysis is when data has

already been collected and there is time available. Offline analysis has the

benefit of being able to query the data set in its entirety, that is there is no

future data that needs to be accounted for since all data is present. Another

benefit of offline analysis is that since all of the data is static it is possible

to optimize hardware and algorithms for the specific task. The advantage of

offline analysis is the ability to perform very complex and accurate analysis.

This contrast with online analysis in a number of ways. When analyzing data

online the stream is often unknown and must be dealt with and analyzed in

19

a timely fashion. This time constraint puts strict limitations on the types

and complexity of analysis that can be performed. Another difficulty with

online analysis is that it is often performed in less than ideal circumstances

such as on mobile hardware or other power constrained devices. A major

advantage to online analysis is that the data collection and analysis phases

are combined and the results of the analysis are delivered far quicker.

2.2.8 Sample Rate Reduction

The easiest way to reduce the compute time of any algorithm is the reduce

the number of elements for which it must be run. In other words, we must

seek to process the minimum number of data points in a time series that will

still maintain enough information to accomplish our goal.

A method for maintaining the maximum information with the minimum

number of data points was first introduced by Douglas and Peucker that

would vary the sample rate of a time series based on the localized information

content [34]. A drawback to Douglas and Peucker’s method is that one must

now contend with a variable sample rate and also store the ∆t information

of each data point.

2.2.9 Time Series Research in Automotive

In the world of automotive security research, the internal vehicle commu-

nications busses are a large area of interest. The most commonly found in

modern vehicles and thus the most commonly researched topic is the Con-

20

troller Area Network bus, commonly called the CAN Bus for short. Research

on the CAN bus almost exclusively centers around the extraction of the data

from the individual data frames. While the canned protocol is standardized,

the messages contained within each data frame are not. The standard CAN

message fame is outlined in Figure 6. For the sake or brevity, only the most

critical bytes of the CAN frame will be explained here. The ID field contains

the Message Identifier that is used by other nodes on the bus to determine

values contained within the data field [35]. The data field size is is deter-

mined by the Data Length Code (DLC) and can be anywhere between 1 and

8 bytes in length [35]. The signal data contained within the data field is

often aligned to the byte boundaries, for example signal A is in bytes 0-1

and signals B and C are in bytes 2 and 3 respectively. but this is not always

the case. Manufacturers are allowed to define the message content and bit

offsets as they see fit.

21

0 1 12 13 14 15 18

S
O
F

ID

R
T
R

ID
E

r0 DLC

19 27 34

Data 0 Data 1

35 43 50

Data 2 Data 3

51 59 66

Data 4 Data 5

67 75 82

Data 6 Data 7

83 97 98 99 100 101 107

CRC D
lm

A
K
S

A
K
D

EOF

Figure 6: CAN Bit Field Diagram

The “Reverse Engineering of Automotive Data Frames” or READ algo-

rithm works on the principle that the frequency of bit flips is directly related

to their position within a numerical bit field [12]. By looking at a histogram

of the frequency of bit flips the signal bit boundaries will be visible with the

most flips occurring at the least significant bit (LSB) and a gradual decrease

in bit flips up to the most significant bit (MSB). What is interesting to note is

that this correlation is only present in time series data. Information such as

actuator positions or other Boolean data, while represented in the bit fields,

22

will not be easily detected by READ. In expanding on the READ algorithm

the work of Pesé et al. also takes into account externally available data to use

as a reference for comparison to the extracted READ signals [9]. The first set

of external reference signals comes from an On-board Diagnostics interface

(OBD). The OBD interface is a standardized protocol for obtaining basic

data used in diagnosing vehicle faults. OBD provides access to information

such as error codes and faults as well as basic parameters like engine speed,

vehicle speed, and coolant temperature [9]. The second set of reference pa-

rameters is from an Inertial Measurement Unit (IMU) from within a mobile

phone [9]. The IMU provides information on acceleration and rotation in

the X, Y and Z axis. The reference data is not only useful for comparing

directly to the extracted signals but can also give insight into the classifica-

tion of signals with similarities between two other signals. The automotive

signal classification research efforts described thus far have all been focused

on off-line analysis, that is, analyzing log files generated by a vehicle after

the fact. By analyzing the logs off-line there is a benefit of being able to use

more powerful hardware at the cost of receiving timely results. The work of

de Hoog at al. focuses on a solution to the online problem by proposing the

use of an LSTM neural network to generate the expected reference signals

and compare them with the extracted signals using FastDTW [36][5]. The

work presented attempts to ultimately solve a similar automotive data re-

verse engineering problem proposed by other researchers but offers the use

of clustering as a first step towards the goal of classification. To keep a nar-

23

row scope the work presented applies only to the first step (clustering) in

this process. The reason for focusing on clustering before classification is to

be able to rule out data that is drastically different and not applicable to a

particular label. Through the process of clustering the number of candidates

for a given label is reduced.

24

3 Implementation

The goals of this thesis are to be able to effectively reduce the number of

samples in a time series data set without sacrificing the ability to effectively

cluster the data and explore other options counter to the assumption that

dynamic time warping is useful in clustering automotive data. The ultimate

goal in the reduction in data set size is to enable faster processing without

modification of existing algorithms or to find algorithms with faster execution

times that are comparable or superior to dynamic time warping.

3.1 Methodology

With the aim being to implement a real-time clustering algorithm comparable

to MPdist it is useful to first get a baseline for what MPdist is capable of doing

when given a large, complete data set. A nonprofit called the Matrix Profile

Foundation [37] was formed to implement the work of Dr. Eamon Keogh et.

al. the body of research known as the matrix profile includes the previous

discussed shapelets, motifs and other time series toolsets developed at UC

Riverside. The Matrix Profile Foundation implementations of these tools are

in Python and while easy to use they are not the fastest implementations. In

order to approach real-time processing a leaner and more efficient language

must be utilized. Google’s go language chosen for this task, because go is a

modern language with simple readable syntax that compiles efficiently and

has runtime efficiency orders of magnitude better than Python while not as

25

fast as C/C++. In the spirit of the theme of implementing a real-time system

that can be used in the real world, all of the algorithms will be benchmarked

on an Nvidia Jetson nano embedded computing device. The Jetson nano

was chosen because it is one of the higher performing embedded computing

platforms that are still compact enough to be installed within a development

vehicle in the hypothetical real-world use case. Because the signals to be

analyzed were generated through simulation the Jetson nano will not be

installed in a vehicle and will only be used as a way to demonstrate efficiency

on resource constrained platforms.

3.2 Data Set Generation

The data set used was generated with IPG Automotive GmbH. CarMaker

simulation software. CarMaker allows for the execution of complex simula-

tions that allow for the logging of parameters at a far higher rate than would

be possible in real life. Four hours of driving in the real world can be simu-

lated in approximately 10 minutes. The software also allows for a variation in

vehicle types and has parameters for physical attributes such as vehicle mass

and vehicle power. There is the ability to simulate different driving styles

including slow reaction times and very aggressive driving styles. It was im-

portant to be able to generate a wide variety of data from various situations

in order to be able to test out a solution that is generalized enough to be

applicable to real-world scenarios. By varying small attributes such as cruis-

ing speed and driving style it was possible to create a vastly different data

26

sample even when using the same vehicle and driving course. The dataset

consists of 1.5TB of data from more than 20 different roads and 12 vehicles.

The driving style attributes were varied from leisurely to a highly aggressive

driving style.

3.3 Time Series Sample Rate Reduction

Critique of current methods: One of the largest issues that arises when

dealing with analysis of time series data is that many of the algorithms have

extremely large time and space complexities. DTW for example, has a com-

plexity of O(n2) for both time and space. The previously discussed FastDTW

attempts to initially reduce the sample rate of the data and then increase

resolution as the DTW warping path is established [6]. The efficacy of the

approximated approach of FastDTW while disputed by Wu et. al [5] has

one obvious hole in both Salvador’s and Wu’s assumptions about resolution

and compute complexity reduction. The first assumption relates to the need

to use the maximum possible resolution of the time series. It is not neces-

sary to use the maximum possible resolution to get useful information when

clustering automotive sensor data. In an extreme example, when compar-

ing the decreasing resolution progressions between Wheel Speed in Figure 7

and Brake Force in Figure 8 it is quite apparent that the two signals will

be discernibly different at any resolution. The question then is, what is the

minimum viable resolution for two similar signals? This leads to the second

assumption, that you must use the highest resolution required by the two sig-

27

nals to be compared. It shouldn’t be assumed that the original sample rate

of the time series is what is required to accurately perform clustering. For

the purposes of clustering it will be shown that only the minimum resolution

of the signal of interest is required to adequately perform clustering.

FFT and Frequency analysis: When attempting to reduce the sample

rate of a time series the obvious choice is to attempt using Fourier Transforms

and frequency spectral analysis. Automotive sensor data presents a unique

challenge in that the signal frequency content to sample length are dispro-

portionate. That is to say there is not a lot of frequency information given a

dataset. Often much of the useful data is marked with large periods of little

to no change such as when a vehicle is sitting at a stoplight or when cruising

on a highway. The vehicle speed may increase or decrease by 5 miles an hour

but the frequency of this oscillation is so slow that it is almost impossible to

detect. Regardless, the information contained within a given signal is still

subject to the limitations of the Nyquist Rate shown in Equation 1. Given a

continuous function x(t) sampled at a rate of fs Hertz, the Fourier transform

of any frequency X(f) that is greater than or equal to 1
2
fs will be zero:

X(f) = 0 ∀ |f | ≥ 1

2
fs (1)

Because the usual methods for determining frequency content and thus

minimum sample rate are not useful in this application another method must

28

be determined. Figure 7 shows that quite a bit of information can be removed

from the signal without much obvious distortion. On the other hand, Fig-

ure 8 demonstrates that almost the maximum resolution is necessary before

all information is lost. What is interesting to note is that Figure 7 contains

information throughout the entirety of the data set while Figure 8 only con-

tains small amounts of information at very specific points. While Figure 7’s

data set sample rate can be reduced evenly throughout it might still be pos-

sible to remove much of the useless data in Figure 8’s set by removing the

large sections of zero value data.

29

Figure 7: Wheel Speed Data at Decreasing Sample Rate

30

Figure 8: Brake Force Data at Decreasing Sample Rate

31

Self Distance: The concept of time series Self Distance is designed to give

a sense of how much data can be removed before a time series loses most

of its meaning. Self Distance is intended to be utilized as a preprocessing

step, before further analysis between different signals, that will optimize a

data set’s sample rate to the lower resolution, while still yielding the same

performance as the original sample rate. When implementing Self-Distance,

a benefit of measuring a signal against itself is that there will be no time

shift and so Euclidean distance is acceptable and removes the need for the

quadratic complexity of Dynamic Time Warping. The previous statement

refers to DTW as a step within the determination of Self-Distance only and

not any further comparison of different signals. Self Distance has the benefit

of having mO(n) time complexity, where n is the length of the data set and

m is the number of iterations required to reach the desired de-resolution per-

centage, d%max. Equation 2 defines m as the maximum number of iterations

where dm is less than dmax. The percentage, d%max is selected by the user

based on the performance required for the application and is somewhat arbi-

trary. The lowered resolution signal’s Euclidean distance is measured against

the full resolution signal and the distance is observed. In Equation 3 the Full

Self Distance is defined as the sum of the Euclidean distances from a straight

line along the x axis at y = 0.

m := bd%c = d%max (2)

32

dfull =
n∑

t=0

|St| (3)

Equation 4 defines the Self Distance at iteration m as the absolute value of

the euclidean distance between time series S and it’s lower resolution version,

M .

dm =
n∑

t=0

|St −Mt| (4)

Equation 5 defines the distance percentage, d%, as the full resolution

distance, dfull, over the distance at the current iteration, dm.

d% =
dfull
dm

(5)

Figure 9 demonstrates that the Euclidean and DTW Self Distances are

comparable for a given resolution. Due to DTW’s ability to warp it does

demonstrate pathological warping and thus the greater distance given a res-

olution but the trends are similar. While the example shown in Figure 9

demonstrates an exponential curve which is to be expected given that the

reduction in resolution also follows an exponential curve of 2n, many of the

33

signals do not follow such a curve. One such example is that shown in

Figure 8. As can be seen by the almost immediate loss of information the

distance increases and tops out almost immediately.

Figure 9: DTW on Original Signal at Decreasing Sample Rate

The effect of the same analysis performed in Figure 9 is shown in Figure 10

and Figure 11. The analysis was however, performed on a sine wave with

varying cycles. The Nyquist rate is illustrated by a vertical black bar. It is

interesting to note that on a pure sine wave the Euclidean distance oscillates

around a fairly linear increase in distance as the resolution decreases. The

wild oscillations of the Euclidean distance are in stark contrast to the smooth

exponential curve of DTW.

34

Figure 10: 50 Cycles of Sine Wave at Decreasing Sample Rate

Figure 11: Single Cycle of Sine Wave at Decreasing Sample Rate

Ramer–Douglas–Peucker Algorithm: Another method is to use the

Ramer–Douglas–Peucker (RDP) Algorithm for reducing the sample rate of

the signals in question. Figure 12 demonstrates just how much of the original

time series profile can be preserved using RDP as samples are removed. RDP

35

works by first drawing a straight line between the first and last points. Next,

the point furthest from the line is found and a new line is drawn from the first

point to the furthest point. Any points along this new line that fall within

a defined distance, ε, will be removed. The process then repeats recursively

using the unprocessed portion of the time series [34].

Figure 12: Ramer–Douglas–Peucker Algorithm

36

Initial Findings: When running preliminary exploration it was unsurpris-

ing to find that the time required to compare the DTW distance of one wheel

speed sensor to the other 762 signals was reduced quadratically as shown in

Figure 13. But what was surprising was the results of the DTW distance

measurements. The DTW distances of the reduced resolution samples were

lower but this was a product of less elements being summed. When four

different resolutions were compared to one another they all show the same

approximate ratios between one another. Using the DTW distance in this

fashion does not work as an absolute measure but it will work in a relative

measure such as clustering.

Primary: 2x

Primary ran in 2656.1244 seconds

Primary: 16x

Primary ran in 22.7270 seconds

Reduction: 64x

Reduction ran in 0.6780 seconds

Reduction: 512x

Reduction ran in 0.0967 seconds

Figure 13: DTW Comparison Run Times

37

After reading so many papers focused on the use of dynamic time warp-

ing and optimizing its use in automotive applications it is apparent from this

basic exercise that the need for high resolution, highly optimized implemen-

tations is dubious at best. Because most of the signals available on a vehicle

move at such a slow rate the need for extremely high resolution sampling

may not be as important as others have implied. Impulse (Sparse) signals

are some of the few that will require a higher resolution mainly due to their

higher frequency content.

38

Figure 14: DTW on Original Signal at Decreasing Sample Rate

39

Figure 15: DTW on Original Signal at Decreasing Sample Rate

Discovered Signal Types: Upon analysis automotive sensor signal data

can be divided within one of two basic types. The first type will be called

meandering time series data. This meandering data is provided by sources

such as engine speed, vehicle speed, and torque requests. There is a constant

flow of continuous values and the entirety of the data set must be considered.

40

The second type of data is what will be known as impulse data. Impulse data

can be provided by sources such as binary switch position, or by very high

speed continuous values like that found in steering wheel position. The reason

that signals like steering wheel position are included in the impulse category

is because the vast majority of time the steering wheel is either roughly

centered or making very minor adjustments. It is only when encountering a

corner that the rate of rotation of the steering wheel increases rapidly and

then moves back to a centered position.

41

Figure 16: Meandering vs. Impulse Signal Types

By observing the signals in Figure 16 we can see that the top three signals

(PT.WFL.rotv_rad/s, DM.Gas, PT.Engine.rotv_rad/s) are considered to

be of the meandering type because they do not consistently settle at a cen-

tral value. The next two, (Car.YawRate_rad/s, VC.Steer.Ang_rad) are

an in-between case that can be treated as either meandering or impulse. Fi-

nally the last two signals (Driver.Steer.AngAcc_rad/s^2, Brake.Pedal)

are treated as impulse signals because they settle on a singular or very narrow

42

range of values for a large percentage of the time.

3.4 Impulse (Sparse) Time Series

In the case of Impulse or Sparse time series data it can be assumed that the

regions with constant values will fall into one of two categories when measured

against other signals. In the first case, the second signal will also exhibit

identical stable characteristics and thus the distance will be 0 or extremely

small. In contrast to other methods of analyzing Sparse time series such as

AWarp developed by Mueen et al.[38] it is not necessary warp the Impulse

events much beyond their position in time since most related automotive

signals will appear in approximately the same time as one another. In the

second case, the second signal will not follow the first and the distance will be

large. By using only the dynamic regions and discarding the stable regions

within an Impulse signal adequate correlation for use in clustering can be

obtained. After each sub-region is extracted from the larger data set it is

then treated as continuous or what we will call meandering data.

Figure 17: Impulse Masking

43

One place where RDP shines is in the case of sparse data. RDP is able

to remove all points that fall within a specified distance, σ, of two other

points. Figure 18 shows a prake pedal position signal. In this figure the

large regions of inactivity, where the driver is not applying any brake force,

would normally still contain data points. The remaining RDP data points

are denoted by the “X”s in Figure 18 and it can be observed that the regions

where no brake is applied are in fact devoid of points. The distance between

points in the RDP processed signal are shown in Figure 19 and show how

there are large spikes of removed data points that correspond to the regions

of no applied braking.

Figure 18: RDP Points

44

Figure 19: RDP Point Spacing

Figure 17 illustrates the masking concept on the Brake Position signal.

The common time series definition is given in Equation 6 where T is the index

set based on time, Y the time series data, and t is an individual time point.

Equation 7 describes the logic behind masking these regions. For a time

series Y any continuous sub-series, Xmask, of Y greater than the minimum

length lmin where the sum, Σ, of the absolute value of each element is less

than a given threshold value, yth will be masked off from further analysis.

Y = (Yt : t ∈ T) (6)

45

Xmask ∈ Y :
∑
|Xmask| ≤ yth (7)

3.5 Meandering Time Series

The meandering data is either defined as an entire time series that does not

contain any static regions subject to being masked or as the individual sub-

regions that are the product of masking a larger time series. The data is

then reduced in resolution and measured against the original full resolution

signal. The resolution is continually reduced until the Euclidean self distance

exceeds a specified value. At this point all other signals are reduced to the

same resolution as our test signal.

46

Figure 20: RDP Points

47

Figure 21: RDP Point Spacing

In contrast to Figure 18 and Figure 19, Figure 20 shows the points selected

by the RDP algorithm along a meandering signal type and that they are more

evenly spaced when compared to that of the impulse data. Figure 21 backs

up this observation with the lack of isolated massive spikes.

3.6 Algorithms

The segmentation algorithm, first introduced in Figure 17, responsible for

removing large areas devoid of information is described in Algorithm 1. Al-

gorithm 1 is not revolutionary by any means but it is new to the processing of

impulse automotive signals. The first step shown in line 8 of Algorithm 1, is

48

processing the incoming signal data is to mask the regions of the signals that

are uninteresting or otherwise devoid of useful data. The next step shown in

line 5 of Algorithm 1 describes the algorithm used to segment the regions of

interest.

Algorithm 1 Segmentation and Masking
Input:

Time series T of length n
Minimum mask length, l
Mask threshold value, v

Output:
Array of ≥ 1 time series, data returned as answer.

1: q ⇐ 0
2: N ⇐ n− l
3: i⇐ l
4: while i ≤ N do
5: if Sum of T [N − l] : T [N] > v then
6: Append T [N − l] : T [N] to data[q]
7: i⇐ i+ l
8: else if Sum of T [N − l] : T [N] ≤ v then
9: while Sum of T [N − l] : T [N] ≤ v do

10: i⇐ i+ l

11: q ⇐ q + 1

After the regions of interest are segmented then the minimum resolution

that maintains most of the information is determined. Since Euclidean dis-

tance requires a one to one mapping of points in each series, it is necessary

to use linear interpolation on the reduced resolution signal in order to have

an accurate distance measurement. Algorithm 2 puts a lower limit on the

minimum possible resolution, m, to avoid excess processing of low informa-

tion signals. Maximum self-distance, m is a tunable parameter and must be

49

selected by the user.

Algorithm 2 Sample Rate Reduction
Input:

Time series T of length n
Minimum allowable resolution, m
Maximum self-distance, d

Output:
Value minRes returned as answer.

1: i⇐ 1
2: Distance⇐ 0
3: while Distance ≤ d AND n

i
≥ m do

4: tempSeries⇐ every i− th value of T
5: tempSeries⇐ tempSeries linearly interpolated to n values
6: Distance⇐ Euclidean distance between T and tempSeries
7: i⇐ 2i

As stated previously, the time complexity of Algorithm 2 is mO(n) with

n the length of the time series and m the number of iterations required

to minimize the resolution. A comparable algorithm, Symbolic Aggregate

approXimation (SAX) has a time complexity ofO(n) but lacks any way to self

scale it’s parameters. SAX alphabet and word length must be hand chosen for

best results. Self Distance by comparison, only requires a maximum distance

parameter to be set and the algorithm will automatically adjust based on the

individual data set. The Ramer-Douglas-Peucker algorithm (RDP), while

having promise, is not a competitor to Self Distance because of it’s O(n2)

time complexity. Self Distance demonstrates it’s strengths against similar

algorithms by enabling an auto tuning scheme and keeping time complexity

to a minimum.

50

3.7 Viability

A stated aim of this thesis has been to determine viable of automotive signals

specifically using onboard embedded hardware. The author has an aversion

to using Python due to its potential for bloat and slow running algorithms.

The initial intent was to utilize Golang for runtime reduction and only use

Python for exploration of an algorithms properties. Python is a perfect

choice for this type of exploration due to its simple syntax and wide array

of libraries that make quick work of any specific task no matter how niche.

It was however, quickly found that as with most software projects technical

debt accumulates and is hard to pay off. Due to the large amount of work

that had already been done in Python it made sense to try to find a way to

speed up certain operations in the language. A well-known solution for this

is Cython [39]. Cython is a C optimizing compiler for Python that facilitates

the execution of Python compatible modules at compiled C speeds.

Figure 22 demonstrates the speed up in the Raymer Douglas figure algo-

rithm. The first runtime is a Python native implementation [40] utilizing the

Python3 interpreter and the second runtime is a Cython optimized imple-

mentation [41]. The data being processed represents a sample time of 33.6

seconds and 763 individual signals. It is obvious that the issue lies with being

able to perform DTW on a full signal set in real time.

51

Python RDP ran in 13.3503 seconds

Cython RDP ran in 0.0020 seconds

Figure 22: Python vs Cython RDP Run Times

Figure 23 also demonstrates a slightly less impressive, however still sub-

stantial speed improvement with DTW [42][30]. Cython can be compiled

with the arm64 architecture and is thus a valid option for an automotive

embedded system.

Python DTW ran in 162.3225 seconds

Cython DTW ran in 60.5227 seconds

Figure 23: Python vs Cython DTW Run Times

3.8 DTW Sample Rate

The minimum viable sample rate for performing DTW will be measured

against the self distance to determine a fast method for reducing the number

of data points requited to perform DTW. It should be noted that the standard

for what will be considered acceptable performance of DTW is somewhat

arbitrary. A threshold of 90% performance of full-scale DTW will be used.

52

3.9 Scoring

Since, when clustering we only care about relative distances and not absolute

distances or labels the top 5% of results from each of the experiments will be

scored against the top 5% of full resolution DTW and Euclidean distances.

In the case of the dataset currently being used, the top 5% of results is

approximately 33 different signals to be compared. The scoring will also

only include whether the signals appear on the list not their position, so two

algorithms may have a 100% match but not rank all of the top 33 signals in

exactly the same order.

53

4 Conclusion and Future Work

4.1 Conclusion

One quite important discovery made by sheer happenstance during the course

of this thesis is a refutation of an implicit assumption made by many of the

researchers working in the field of automotive signal reverse engineering. The

vast majority of researchers are focusing on real-time high speed methods

when in actuality the information content within automotive signals is so

slow that such large time is required to gather the information it makes little

sense to pursue a real-time reverse engineering capability. The true value

of this data is in optimizing storage of as large amount of sample data as

possible for later analysis. This analysis may be done onboard a vehicle in

the case of a supervisory cybersecurity appliance or off-board but the fact

still remains the same that an extremely large amount of sampling time is

required to be useful for clustering.

4.1.1 Euclidean Distance for Automotive Time Series Clustering

For the vast majority of clustering applications performed in this thesis

dynamic time warping was almost indecipherable from Euclidean distance.

When performing the rankings between the Euclidean distance top 5% and

dynamic time warping top 5% the matches were greater than 90% similarity

on almost all occurrences. A few outliers existed such as very sparse data,

54

for example a brake light switch that is a Boolean value and only activated

for a few moments at a time. However it is interesting to note that of these

outliers the top two or three matches were always consistent and the lower

ranking matches can be explained by DTW’s need to force fit data through

extreme warping. It is important to note that the dynamic time warping

performed on this data was not constrained anyway, that is to say the warp-

ing path was a full classic DTW cost matrix. Figure 24 demonstrates that

as the sample length becomes longer the results of Euclidean and dynamic

time warping distances will converge.

Data Length (s) DTW Top 5% Matches (33 Signals)

≤ 60 63.6%

> 60 - ≤ 180 90.9%

> 180 100%

Figure 24: Euclidean Distance and DTW

4.1.2 Self Distance and DTW

Self distance proved useful in reducing the sample rate of time series data.

What is interesting to note is that meandering time series are able to be

reduced in resolution with a gradual increase in self distance. Impulse time

series data however, will tend to explode or increase distance exponentially.

This is naturally due to the sparsity of information within the signal. The

remedy for this has been proposed as the segmentation of the signals that

55

then removes the large gaps in information. Looking at Figure 25 we can

see that up until approximately 10% self-distance, the full resolution and

reduced resolution signals are identical to the DTW algorithm. At around

20% self-distance the top five matches drops to 72.7%. The experimental

limit for self distance and DTW accuracy is approximately 12%, when the

matches are above 95% accuracy.

Self-distance % DTW Top 5% Matches (33 Signals)

0 100%

5 100%

10 97.0%

20 72.7%

Figure 25: Self-distance and DTW

4.1.3 RDP for Clustering

The results of using RDP for dynamic time warping and Euclidean distance

optimization were unimpressive. Since RDP is using an optimized subset

of the time series, it did demonstrate a more optimized way of reducing

data points and keeping self distance to a minimum. Feeding RDP into the

dynamic time warping algorithm did not provide any more useful information

than simply using Euclidean distance.

56

4.1.4 Real-time Implementation

The Euclidean and dynamic time warping operations performed on the data

were benchmarked against the simulated real-world sample time to determine

if it would be possible to perform this analysis in real time. It is assumed that

the processing will be done on dedicated hardware that has no other com-

putational overhead. The benchmarks are only measuring execution time.

Data retrieval and storage times are neglected. Figure 26 shows the results

of these calculations performed on Nvidia Jetson Nano development board.

The real-time percent metric is based on 100% being equal sample time and

processing time, where 125% for example would be 25% longer processing

than sample time. As demonstrated in Figure 26, both Euclidean distance

and RDP are viable options for an embedded system such as the Jetson Nano.

Dynamic time warping comes close to real-time feasibility but just isn’t quite

there. An argument could be made for the fact that a vehicle is not driving

24 hours a day and so the duty cycle of drive time versus processing time is

skewed in favor of processing time, while the vehicle is sitting in a parking

lot for example.

57

Operation % Percent Real-time Speed

Euclidean 7.2%

RDP 20.4%

Cython (10% Self-distance) DTW 104%

Figure 26: Self-distance and DTW

4.2 Future Work

Future work in this field should be focused on the efficient collection and

storage of large amounts of time series data. Ideally, this data would be used

in an application such as a Variational Auto-encoder that would then be fed

real-time data. The use of the VAE would be of great benefit in a number

of applications. One obvious application would be anomaly detection that

would be capable of predicting sensor failure or malicious actors. A second

valuable use would be in the form of a predictive observer system, this would

assist in anticipating hard braking or other safety critical events. A third

use would be in the ability to generate highly accurate simulated sensor

data model after real-world conditions. The fourth and most applicable to

furthering the work of this thesis is the clustering and labeling of signals based

on their similarity to a reference signal supplied by a VAE. The flowchart in

Figure 27 illustrates the function of such a system. The input would require

a few labeled signals to be fed into the VAE. The VAE will then generate a

larger number of labeled signals. Each unknown signal will then be measured

58

against the VAE generated ones and if a match is found then a label will be

applied. This method will allow for the bootstrapping of signal identification

since as each real signal is identified it can then be feed into the VAE to

generate further labeled reference signals.

Start

Unknown

Signals

Identified

Signals

Compare un-

known signal with

generated signal

Generate labeled

signals from VAE

Match?

Label signal

Next labeled signal

Newly Identi-

fied Signals

Stop

yes

no

Figure 27: Future Work - Classifying and Clustering with VAE

59

Currently, the simulation data such as that created by IPG is generated

using complex and intricate models that emulate the input and output of

every individual system on a vehicle. By capturing enough data from a fleet

of vehicles it would be possible to create a VAE that would be able to predict

the sensor states for any given condition without having to explicitly tune

every individual parameter on a model.

60

References

[1] Patrick Schäfer. Scalable time series classification. Data Mining and

Knowledge Discovery, 30(5):1273–1298, 9 2016.

[2] Pjotr Roelofsen. Time-series clustering. PhD thesis, Vrije Universiteit

Amsterdam, 2018.

[3] Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and Anthony

Bagnall. Classification of time series by shapelet transformation. Data

Mining and Knowledge Discovery, 28(4):851–881, 2014.

[4] Shima Imani and Eamonn Keogh. Matrix Profile XIX: Time series se-

mantic motifs: A new primitive for finding higher-level structure in time

series. Proceedings - IEEE International Conference on Data Mining,

ICDM, 2019-Novem:329–338, 2019.

[5] Renjie Wu and Eamonn J. Keogh. FastDTW is approximate and Gen-

erally Slower than the Algorithm it Approximates. IEEE Transactions

on Knowledge and Data Engineering, pages 1–1, 3 2020.

[6] Stan Salvador and Philip Chan. Toward accurate dynamic time warping

in linear time and space. Intelligent Data Analysis, 11(5):561–580, 10

2007.

61

[7] Jesin Zakaria, Abdullah Mueen, Eamonn Keogh, and Neal Young. Ac-

celerating the discovery of unsupervised-shapelets. Data Mining and

Knowledge Discovery, 30(1):243–281, 2016.

[8] Charlie Miller and Chris Valasek. Adventures in Automotive Networks

and Control Units. Technical White Paper, page 99, 2014.

[9] Mirco Marchetti and Dario Stabili. READ: Reverse engineering of auto-

motive data frames. IEEE Transactions on Information Forensics and

Security, 14(4), 2019.

[10] Mert D. Pesé, Troy Stacer, C. Andrés Campos, Eric Newberry, Dongyao

Chen, and Kang G. Shin. LibreCan: Automated CAN message transla-

tor. Proceedings of the ACM Conference on Computer and Communi-

cations Security, pages 2283–2300, 2019.

[11] Jens de Hoog, Nick Castermans, Siegfried Mercelis, and Peter Hellinckx.

Online Reverse Engineering of CAN Data. pages 776–785. 2020.

[12] Mirco Marchetti and Dario Stabili. READ: Reverse Engineering of Au-

tomotive Data Frames. IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY, 14(4), 2019.

[13] Hoang Anh Dau, Diego Furtado Silva, François Petitjean, Germain

Forestier, Anthony Bagnall, Abdullah Mueen, and Eamonn Keogh. Op-

timizing dynamic time warping’s window width for time series data min-

62

ing applications. Data Mining and Knowledge Discovery, 32(4):1074–

1120, 7 2018.

[14] Jessica Lin, Eamonn Keogh, and Wagner Truppel. Clustering of stream-

ing time series is meaningless. In Proceedings of the 8th ACM SIGMOD

workshop on Research issues in data mining and knowledge discovery -

DMKD ’03, page 56, New York, New York, USA, 2003. ACM Press.

[15] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing

SAX: a novel symbolic representation of time series. Data Mining and

Knowledge Discovery, 15(2):107–144, 8 2007.

[16] Lexiang Ye and Eamonn Keogh. Time series shapelets: A new primi-

tive for data mining. Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 947–955,

2009.

[17] Shaghayegh Gharghabi, Shima Imani, Anthony Bagnall, Amirali

Darvishzadeh, and Eamonn Keogh. An ultra-fast time series distance

measure to allow data mining in more complex real-world deployments.

Data Mining and Knowledge Discovery, 34(4):1104–1135, 7 2020.

[18] Julia Hartung, Gabriele Gühring, Valentin Licht, and Alexander Warta.

Comparing multidimensional sensor data from vehicle fleets with meth-

ods of sequential data mining. SN Applied Sciences, 2(4):1–13, 2020.

63

[19] Umberto Fugiglando, Emanuele Massaro, Paolo Santi, Sebastiano Mi-

lardo, Kacem Abida, Rainer Stahlmann, Florian Netter, and Carlo

Ratti. Driving Behavior Analysis through CAN Bus Data in an Uncon-

trolled Environment. IEEE Transactions on Intelligent Transportation

Systems, 20(2):737–748, 2019.

[20] Chotirat Ratanamahatana and Eamonn Keogh. Everything you know

about dynamic time warping is wrong. Third Workshop on Mining

Temporal and Sequential Data, pages 22–25, 2004.

[21] BMW Munich Kirsten Matheus and BMW Munich Thomas Königseder.

Automotive Ethernet. Cambridge University Press, Cambridge, 2 edi-

tion, 2017.

[22] Jurgen Ronald K, editor. V2V/V2I Communications for Improved Road

Safety and Efficiency. SAE International, Warrendale, PA, 8 2012.

[23] Cisco: 2020 CISO Benchmark Report. Computer Fraud and Security,

2020(3):4, 3 2020.

[24] Anthony Bagnall and Jason Lines. An Experimental Evaluation of Near-

est Neighbour Time Series Classification. 6 2014.

[25] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization

for spoken word recognition. IEEE Transactions on Acoustics, Speech,

and Signal Processing, 26(1):43–49, 2 1978.

64

[26] F. Itakura. Minimum prediction residual principle applied to speech

recognition. IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, 23(1):67–72, 2 1975.

[27] Vladimir Levenshtein. Binary codes capable of correcting deletions, in-

sertions, and reversals. Soviet Physics Doklady, 10(8):707 – 710, 1966.

[28] Yihang Jiang, Yuankai Qi, Will Ke Wang, Brinnae Bent, Robert Avram,

Jeffrey Olgin, and Jessilyn Dunn. EventDTW: An improved dynamic

time warping algorithm for aligning biomedical signals of nonuniform

sampling frequencies. Sensors (Switzerland), 20(9), 2020.

[29] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guil-

laume Androz, Chester Holtz, Marie Payne, Roman Yurchak, Marc

Rußwurm, Kushal Kolar Woods, and Eli. Tslearn, A Machine Learning

Toolkit for Time Series Data. Journal of Machine Learning Research,

21(118):1–6, 2020.

[30] Johann Faouzi and Hicham Janati. pyts: A Python Package for Time

Series Classification. Journal of Machine Learning Research, 21(46):1–6,

2020.

[31] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-

Thieme. Learning time-series shapelets. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 392–401. Association for Computing Machinery, 2014.

65

[32] Thanawin Rakthanmanon and Eamonn Keogh. Fast Shapelets: A Scal-

able Algorithm for Discovering Time Series Shapelets. In Proceedings of

the 2013 SIAM International Conference on Data Mining, pages 668–

676, Philadelphia, PA, 5 2013. Society for Industrial and Applied Math-

ematics.

[33] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Bran-

don Westover. Exact Discovery of Time Series Motifs. In Proceedings

of the 2009 SIAM International Conference on Data Mining, volume 1,

pages 473–484, Philadelphia, PA, 4 2009. Society for Industrial and Ap-

plied Mathematics.

[34] DAVID H DOUGLAS and THOMAS K PEUCKER. ALGORITHMS

FOR THE REDUCTION OF THE NUMBER OF POINTS RE-

QUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICA-

TURE. Cartographica: The International Journal for Geographic Infor-

mation and Geovisualization, 10(2):112–122, 12 1973.

[35] Robert Bosch. CAN Specification Version 2.0. Rober Bousch GmbH,

Postfach, 300240:72, 1991.

[36] Jens de Hoog, Toon Bogaerts, Wim Casteels, Siegfried Mercelis, and

Peter Hellinckx. Online reverse engineering of CAN data. Internet of

Things, 11:100232, 2020.

66

[37] Andrew Van Benschoten, Austin Ouyang, Francisco Bischoff, and Tyler

Marrs. MPA: a novel cross-language API for time series analysis. Journal

of Open Source Software, 5(49):2179, 5 2020.

[38] Abdullah Mueen, Nikan Chavoshi, Noor Abu-El-Rub, Hossein Hamooni,

and Amanda Minnich. AWarp: Fast warping distance for sparse time

series. Proceedings - IEEE International Conference on Data Mining,

ICDM, pages 350–359, 2017.

[39] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,

Dag Sverre Seljebotn, and Kurt Smith. Cython: The Best of Both

Worlds. Computing in Science and Engineering, 13(2):31–39, 3 2011.

[40] Fabian Hirschmann. rdp - pypi.org, 2016.

[41] Ran Bi. crdp - pypi.org, 2019.

[42] Wannes Meert, Kilian Hendrickx, and Toon Van Craenendonck. wan-

nesm/dtaidistance, 8 2020.

67

	Introduction
	Contributions

	Background
	Cybersecurity and Connected Vehicles
	Evolution of Automotive Electronics
	Intra-Vehicle Communication Systems
	Telematics, V2V and V2I
	Cyber Threats and Risks
	Fleet Management

	Time Series Data Analysis
	Classifying VS Clustering
	Basic Methods for Time Series Analysis
	Dynamic Time Warping
	Shapelets and Motifs
	Matrix Profile Distance (MPdist)
	Symbolic Aggregate approXimation (SAX)
	Online versus Offline Analysis
	Sample Rate Reduction
	Time Series Research in Automotive

	Implementation
	Methodology
	Data Set Generation
	Time Series Sample Rate Reduction
	Impulse (Sparse) Time Series
	Meandering Time Series
	Algorithms
	Viability
	DTW Sample Rate
	Scoring

	Conclusion and Future Work
	Conclusion
	Euclidean Distance for Automotive Time Series Clustering
	Self Distance and DTW
	RDP for Clustering
	Real-time Implementation

	Future Work

	References

