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Abstract

As the demands on automotive communications systems have in-

creased, so have the amount of data and the complexity. Connected

vehicles pose a unique challenge due to the fact that they have be-

come mobile embedded networks that directly impact the physical

well being of people in and around the vehicle. Reverse engineer-

ing of automotive communications has become an area of interest for

researchers hoping to develop supervisory security systems that are

able to learn normal operation characteristics and detect anomalies.

This paper focuses on time series analysis and first surveys existing

methods, proposes a new method of sample rate reduction, and finally

analyzes the real-time processing feasibility of each method. This pa-

per also provides a counter argument to the widely held assumptions



that DTW is both necessary or even useful to automotive time series

analysis.
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1 Introduction

We are currently living in an age of unfathomable complexity. Whereas it

was once possible to design customs systems for every use it is now highly

desirable to employ systems that can adapt and optimize for their speci�c

use case. With the growth of the Internet of things (IoT), the connected

automobile has grown with it. The connected car poses a unique security

risk since it is a combination of both information and physical systems. With

the connected car it is possible for not only the owner's information to be

stolen but also physical harm can be in
icted upon them. Because of the large

risks associated with connected cars it is of great interest to the automotive

industry to cost e�ectively monitor and detect any malicious incursion.

The available information streaming from a modern vehicle's sensors has

increased several orders of magnitude from what was available just a few

years prior. Whit a focus on clustering, this thesis provides insight into a

viable method of sample rate reduction for use with automotive time series

sensor data. Many of the most widely used tools for the analysis of time se-

ries data have quadratic time and space complexity [1][2][3][4][5]. Most of the

prior research has been focused on dimension reduction by generalized opti-

mization or approximation of the algorithms without much focus on the end

use case [6][7]. This Thesis provides a new method of sample rate reduction

by analyzing the full resolution signal �rst and then removing data samples

while maintaining enough information to successfully perform clustering.
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In the last 10 years the �eld of automotive data analysis and reverse engi-

neering has gained a lot of attention. The need for automotive cybersecurity

research has been demonstrated by security researches and met with interest

from the academic community [8][9][10]. Most of the prior work has been

centered around the reverse engineering of the controller area network bus or

classifying signals [11][12][10]. Many of the methods used employ Dynamic

Time Warping to perform their comparisons [11]. There have been many

e�orts to optimize Dynamic Time Warping but they have remained limited

to modifying the algorithm choosing a subset of data to analyze [?][6][13][13].

The optimizations and windowing have been unfortunately discovered to be

of limited use [5][14]. In the world of time series analysis however, Dynamic

Time Warping is only one of many techniques currently employed. UC River-

side has developed several techniques such as Symbolic Aggregate approX-

imation, Shapelets, and MPdist [15][16][17]. There have been some e�orts

to employ clustering on automotive data but they have been relatively few

in number and performed with labeled data to cluster attributes like driving

styles [18][19].
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1.1 Contributions

This thesis refutes a widespread assumption within the automotive research

community as to the importance of dynamic time warping in signal clustering.

This thesis provides evidence that Euclidean distance is not only faster to

perform but just as accurate as dynamic time warping in the vast majority

of situations.

The concept of the time seriesSelf Distancefor measuring signal degra-

dation at various sample rates is introduced in this Thesis. It is proposed as

a relative measure and alternative to more complex methods of sample rate

optimization.

This thesis argues that due to the longer sample times required for ef-

fective capture of signal data, the de�nition of real-time or online analysis

allows for a surprisingly large amount of analysis time. Measurements are

�rst made on a one-to-one comparison to determine if the industry favored

DTW algorithm can process a series of signals in less time than it took to

capture them [20]. The experiments were run on a Nvidia Jetson Nano to

simulate the type of embeddable hardware used in automotive applications.

DTW is not likely to be able to meet this criterion in real use, but it is

proposed that DTW can still be considered real-time if it is able to be cal-

culated faster than the data is received. This for example, would be 300%

of the sample time for an 8 hour driving day and a full 24 hours in which to

process the signals.
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2 Background

2.1 Cybersecurity and Connected Vehicles

2.1.1 Evolution of Automotive Electronics

In the early days of the automobile the electrical systems were remarkably

simple, and every single component added its own dedicated wiring. Most of

the early uses of electrical systems were used to run lighting and functions

such as the starter motor and in some cases power windows. As technology

progressed the complexity of the electrical system did as well. Soon because

of ever tightening emissions requirements, computerization took hold of key

functions. An example of this shift towards computer control is demonstrated

by systems such as electronic fuel injection (EFI).

By the mid 1980s computers were now being fully integrated within the

vehicle performing many di�erent tasks the obvious next step was to have

these systems log and report data for diagnostics purposes [21]. In 1987 BMW

brought to market the �rst car with diagnostics capabilities [21]. Meanwhile,

car manufacturers were searching for a solution to an ever-increasing bulk of

wiring within the vehicles. The growth in volume of wiring within vehicles

was not only an economic drawback because of the cost of the wiring itself

but also due to the added mass caused a decline in fuel e�ciency [21].
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2.1.2 Intra-Vehicle Communication Systems

In 1983 the major automotive component supplier Bosch began an internal

project to �nd a solution for the industries wiring problem. The solution that

Bosch devised was to be known as Controller Area Network [21]. Controller

Area Network allowed for communications between hundreds of nodes on

a single twisted-pair of wire. During this time, many proprietary solutions

were developed by each manufacturer such as or Diagnosis Bus and I/K Bus

by BMW in 1987 and 1991 respectively [21]. The following year, in 1992

Daimler introduced the �rst production vehicle incorporating controller area

network [21]. The CAN bus ultimately won out over all of the proprietary

solutions due to its open standard. The controller area network bus facili-

tated complex interactions between components within the car. Command

and control signals could be sent to enable or disable door locks and control

lighting. In addition to command-and-control signals, nodes were able to

give status reports such as whether a light bulb was out or the position of a

switch. Analog signals were also transmitted across the bus in the form of

temperature sensors or engine speed data. The early diagnostic systems were

relatively simple in nature consisting of minimum or maximum threshold val-

ues to toggle an alarm. In modern vehicles the diagnostic systems are far

more complex and use many statistical techniques to predict long term prob-

lems before they result in the failure of a component. In the years since then,

many other solutions have been developed for intra-vehicle communication
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but CAN remains the most widely used today.

2.1.3 Telematics, V2V and V2I

As high-speed cellular network coverage has become more ubiquitous, man-

ufacturers have been able to make use of telematics units that are connected

to the internet and continually transmit vehicle sensor data in real-time. At

the present time, a wide variety of vehicles can be purchased with real-time

information streamed directly to and from the vehicle. The data to be con-

sumed by the vehicles occupants includes real-time tra�c data, music and

weather reports. Vehicles will send information to manufacturers such as on-

board diagnostics data. This diagnostics data is then used by manufacturers

to recommend maintenance before they become more costly repairs.

Still only in its infant stages, the technology of vehicle to vehicle and ve-

hicle to infrastructure communication is the industry solution to many of the

challenges faced by autonomous driving. Vehicle to vehicle communication

would enable vehicles to give positional data to one another to avoid colli-

sions and a vehicle could transmit road hazard information, such as objects

obstructing the road, to the vehicles behind it [22]. Vehicle to infrastructure

communication would assist vehicles in localization by referencing the posi-

tions of infrastructure nodes relative to the vehicles position [22]. Another

use of vehicles infrastructure would be tra�c lights telling vehicles their sta-

tus ahead of time which would reduce and autonomous vehicles reliance on

camera data.
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2.1.4 Cyber Threats and Risks

For all the bene�ts that we have discussed there is a dark side which must

be considered. Every mode of communication enabled within a vehicle and

from a vehicle to the outside world is a potential path for exploit by a bad

actor. Because of the ever increasing complexity of on-board systems, the au-

tomotive industry has enacted stringent protocols for ensuring the safety and

reliability of their products. Up until recently the internal networks within a

vehicle were only accessible by directly and physically accessing the network

cables. Generally speaking it would be extremely di�cult for a threat to

compromise a moving vehicle in this manner. Security researchers, Charlie

Miller and Chris Valasek demonstrated the vulnerability of the internal ve-

hicle buses in a technical white paper published in 2014 [8]. While the pair

did go on to publish other papers related to remote exploits, most of their

work demonstrating safety critical vulnerabilities required hands-on access to

the vehicles. In the years since Miller and Valasek's research it has become

increasingly common to �nd vehicles with permanent internet connectivity

and this trend is expected to continue [23].

A modern connected car is vulnerable from theft of the data contained

within such as GPS locations and credentials for subscription services as well

as the vulnerability of safety critical systems that ensure the well-being of

its occupants. Just as diagnostic systems were implemented to predict the

need for repair or replacement of mechanical components within the vehicle
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there is now a need for supervisory systems that will predict or detect a

potential exploitation. The main use of having such on-board systems is as a

last line of defense in the event of cyber attack. Security best practices such

as rotating security certi�cates and enforcing least privilege are among the

�rst lines of defense in securing the data centers and vehicles against attack.

If those countermeasures fail it is not acceptable to a allow a threat to go

undetected especially in a cyber physical system carrying humans traveling

at a high rate of speed.

2.1.5 Fleet Management

It is highly desirable for both manufacturers and owners of large 
eets to

make use of telematics to maintain their vehicles. It is currently common

for 
eet maintenance technicians to be required to spend countless hours

performing diagnosis of failed vehicles. By only detecting the need for re-

pair after catastrophic failure, additional downtime is incurred. By utilizing

telemetry to predict potential failures it is possible to perform the repairs

during scheduled maintenance, thus reducing downtime. If an on-board di-

agnostics system detects an error or potential cyber threat it is possible for

the proper teams to be noti�ed within the organization.
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2.2 Time Series Data Analysis

2.2.1 Classifying VS Clustering

In the �elds of data science and machine learning both classifying and clus-

tering are use to make sense of data. Classifying is when unknown data is

labeled with prede�ned groups. Classifying is useful when the data is well

understood and it is possible to list all of potential labels for the data. Clus-

tering is grouping unknown or unlabeled data by similarities. Clustering is

most useful when trying to make sense of unknown or unlabeled data. By

grouping the data by its similarities it is then possible to attempt to reverse

engineer or suss out the labels and meaning of the data.

2.2.2 Basic Methods for Time Series Analysis

One of the simplest methods of analyzing to time series data sets is through

Euclidean distance. Euclidean distance measures the di�erence in value be-

tween each data point on a one-to-one mapping. A visualization of this

mapping is shown in Figure 1. It can be seen that both time series seg-

ments are similar however not exactly the same. Euclidean distance has

been demonstrated to not be very e�ective with certain data sets [24][?][13].

k Nearest Neighbors (KNN) can be used for time series classi�cation and

has been shown to perform as well as Dynamic Time Warping (DTW) with

some data sets [24]. The KNN algorithm works by comparing a data point

to a speci�ed k number of previously classi�ed neighboring data points. The
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data point in question will be labeled with the predominant neighboring

point's class. For time series, the KNN algorithm is performed for every

point in the data set and then the series data will be classi�ed with the

most closely correlated label. Both Euclidean distance and DTW are spe-

ci�c implementations of one nearest neighbor (1-NN) [24].k-means is similar

to KNN but is used in time series clustering by taking the moving average

of each data series in a group and then clustering each series' moving aver-

age with that of the most similar other moving averages [2]. Thek-means

clustering algorithm works on data that has been minimally prepossessed,

unlike KNN which requires previously classi�ed sample data to compare the

unclassi�ed data series to [2].

Figure 1: Euclidean distance of two time series

10



2.2.3 Dynamic Time Warping

Basic DTW: Dynamic Time Warping (DTW) attempts to solve the issues

present when using Euclidean distance [25]. DTW will allow for warping in

the time series along a cost matrix to try to �nd the best �t. This warping

is demonstrated in Figure 2. The algorithm attempts to take the two similar

time series and explain the di�erences in o�set. Figure 3 illustrates the

warping path taken across the cost matrix. The path is de�ned by the

dark black region traversing the matrix. The varying cost of each element

is illustrated by the shaded grey area with longer distances, or higher cost,

being darker. The warping path in Figure 3 shows a warping bias towards the

shorter (lighter) regions of the matrix. The cost matrix in Figure 3 has been

constrained by the Itakura parallelogram where the warping path is allowed

a maximum slope de�ned by the constraints of the parallelogram [26]. This

is one of the many attempts to optimize and speed up DTW execution. The

well known algorithm that computes the similarity of two strings known as

the Levenshtein Distance is an implementation of DTW. The Levenshtein

Distance is an invaluable tool used in search recommendations and spell

checking [27].
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