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What is ML?

ML is data-driven (as opposed to rule-driven) computation
* It is a subfield of Al (Artificial Intelligence)



Example: Linear Regression

e https://mlu-explain.github.io/linear-regression/
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https://mlu-explain.github.io/linear-regression/
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https://github.com/michaelsoltys/sagemaker-enrollment
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Where is ML in the hype cycle?

Hype Cycle for Emerging Tech, 2022

Foundation Models
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Past
Theory and bespoke code



University of Toronto
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Geoffrey Hinton was pioneering deep learning (1990-2015)
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Mathematics

#10yearchallenge



Stephen Cook




McMaster University

Copy and paste is a design error.

-David Parnas




Jan Mycielski

P LAY i Senc A BV FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)
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FIG. 2 — Organization of a perceptron.
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Perceptrons: an intro to computational geometry
by Marvin Minsky and Seymour Papert, 1969.

An edition with handwritten corrections

released in the early 1970s.

Reissue of the

An Introduction to Computational Geometry




How was ML done

* Code was bespoke
* Written de novo each time

e But by the early 2000s:
e Shared theoretical core of tarets = o1, o1, 01, 21, (0,
knowledge:
* Backpropagation
* Statistical Learning Theory e A Gl L AU

 What was taught:
* Theory of neural networks and

+= inputs[j][k] * weights_input_to_hidden[j] [k]

limitation of learning algorithms i oyer_ot - clmidte) o 3 1 b oyr
* HOW to COde them by hand ) z:u i::hidden_layer_out[j] * weights_hidden_to_output [j] [k]

output_layer_out = [sigmoid(x) for x in output_layer_in]

output_errors = [0, 0]



Present
Powerful tools



The Cloud as enabler

* Specs of an AWS SageMaker instance:

*ml.gb.48xlarge: ACQUIRED
* 8 NVIDIA A10G Tensor Core GPUs ST e

e 192 vCPUs!
* 768G1B storage

MAR 27, 2022 - S10 E5 - 29 MIN LEFT

Nvidia: The GPU Company
Acquired

https://podcasts.apple.com/us/podcast/acquired/id1050462261?i=1000558142063

* But Cloud is not the solution for everything:
read this post on the Stack Overflow architecture



https://twitter.com/sahnlam/status/1629713954225405952?s=20

Proliferation of Packages

* 2007 — Theano

e 2010 — Scikit Learn

e 2014 — Jupyter Notebooks
* 2014 — XGBoost

e 2015 — Tensorflow, Keras
* 2016 — PyTorch, MXNet



PyTorch implementation

Net(nn.Module): e
init (self): Bcnn R
super(Net, self).__init_ () el B L e b e

learn():

self.fcl = nn.Linear(2, 2) o

n_outputs = 1

Se-l.f [} f C2 n n [ ] Linea r ( 2 ’ 1 ) weights_input_to_hidden = [[0.15, 0.2, 0.25], (0.4, .45, 0.5]]

weights_hidden_to_output = [(0.6, 0.7, [0.65, 0.8], [0.8, 0.9]]

n range(500):

hidden_layer_in = [0, 0]

forward(self, x): T e

X = F.sigmoid(self.fcl(x))

X self.fc2(x)
return X

hidden_layer_in[k] += inputs[j][k] * weights_input_to_hidden[j] [k]
hidden_layer_out = [sigmoid(x) for x in hidden_layer_in]
output_layer_in = [0, 0]
for j in range(n_hidden):
for k in range(n_outputs):
output_layer_in[k] += hidden_layer_out[j] * weights_hidden_to_output [j] [k]
output_layer_out = [sigmoid(x) for x in output_layer_in]

output_errors = [0, 0]
for j in range(n_outputs):
error = targets[j]1[0] - output_layer_out[j]
output_errors[j] = error * derivative_sigmoid(output_layer_out[j])
for k in range(n_hidden):
error = weights_hidden_to_output[j]1Ik] * error

weights_hidden_to_output [j] [k] += hidden_layer_out[k] % error  derivative_sigmoid(hidden_layer_out [k])

hidden_errors = [0, 0]
for j in range(n_hidden):
error 0




Impact

* New tools allowed practitioner to go up one level of abstraction:
* Before: “How do | take all this math and write it in code?”
* Now: “How can | structure this network to solve my problem?
* Or Even: “How do | organize my data/problem so a model can train on it?”

* Entry bar was high (PhD!), but now:
* Moving ML from research to production with emphasis on tooling
* Open Source tools like AutoGluon: https://auto.gluon.ai

TabularPredictor

predictor = TabularPredictor(label= ).fit(train_data=
predictions = predictor.predict( )



https://auto.gluon.ai/

SageMaker Studio Lab

* https://studiolab.sagemaker.aws

* Free

* Takes about a week to be approved for
account

e Linked to GitHub with lots of

examples
D

* Community on Stack Overflow

My project

Goh x I e Fom»xO@:
0 pesoon B News E3 Quiks B3 Notes D ropben 4 € 3igOwta L

@msotys

(]

Runtime status

Idle

Notebook Jobs lift the limits of
SageMaker Studio Lab

Schedule noteb
AWS account, without worryin

ooks to run in SageMaker using your

19 about run-away costs.

Resources and community

Make Al Generated Images

Use the

Find libraries, examples, and tutorials

con-sagemaker-lab on Github

Compute type

@cru Ocru

)

New to machine learning?

of upcoming events to learn
and tricks.

Machine Learning Blog

Stay up-to-date with the latest developments,
e hniques in the Al and machine

tearning spax

AWS Machine Learning Blogs

=
Get answers and help others

#amazon-sagemaker on Stack Overflow,


https://studiolab.sagemaker.aws/

Future
Foundation Models



Foundation models

Machine Learning @ ‘b
‘ Deep Foundation Models %
A ’

Learning
Emergence of... “how” features functionalities
Homogenization of... learning algorithms architectures  models

* Increased standardization of models:
* Code Whisperer
e GPT-3
* Stable Diffusion
e Chat GPT



Characteristics of Foundation Models

e Often trained “self-supervised”

* Predict portions of data from other portions with no explicit labels
* Eg., fill in blanked out word in text, or fill in missing portion of image

» Use rich data source (say most text written in history of humanity)
* Expensive, requiring millions S to train
* Made once, then reused by many without modification of any kind
* Interact by making a sentence where the only way to fill the blank is

with answer you want:
* Eg., “George Washington was barn in the year

”



Running out of data

Number of words (log)
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Will we run out of data? An analysis of the limits
of scaling datasets in Machine Learning

Pablo Villalobos*, Jaime Sevilla*T, Lennart Heim*$, Tamay Besiroglu*i, Marius Hobbhahn *Y, Anson Ho*



Explain-ability and Ethics

 How to demonstrate (prove) that a model is correct?
 Why is model training so successful?

e How to demonstrate that a model is not biased?

* How to protect human beings?



Important but not intellectually “elegant”

 Cl/CD aspect of ML

* Inindustry Git is one of the most important tools
* Understanding the mathematical foundations is probably the least important

* Documentation has to be superb, and it seldom is
* |t doesn’t work for a long time ..., until it finally works a little bit
* Interpretation of data — what does 0.3 likelihood of coming to Cl mean?

 Communications of methodology and findings — super important! Listen to
customer, do not push your fav technology; what is business need?

* Politics of data:
* No one wants to share their data, even within the same organization; negotiating for
data and terms of usage (e.g., access) takes 50% of time of entire effort
* Hard to reach agreement on “goodness” of data
. El\q/eréharder to reach agreement on “conclusion” and how to craft policy based on
the data



Al

SUPER-
PUOWERS

CHINA,
SILICON VALLEY,

NEW WORLD ORDER




MAN HAS MADE HIS MATCH

..NOW IT'S HIS PROBLEM

Man has made his match ... now it’s Skynet is a fictional neural network-based
his problem Al system that animates the Terminator



