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Abstract

Predicting the remaining useful life (RUL) of machinery, such as NASA's Turbofan 

engines, is crucial for maintenance and reliability. Traditionally, this task has relied on manual 

machine learning (ML) approaches that require domain expertise and extensive feature 

engineering. However, the emergence of AutoML (Automated Machine Learning) has promised 

to simplify this process, making it accessible to non-experts by automating tasks like model 

selection, hyper-parameter tuning, and feature engineering. This study conducts a comprehensive 

comparative analysis between traditional manual ML and AutoML approaches for RUL 

prediction in Turbofan engines. The Commercial Modular Aero-Propulsion System Simulation 

(C-MAPSS) dataset is used to evaluate the performance of both methods. Various factors such as 

predictive accuracy, model interpretability, and ease of use are considered. The results of this 

study provide valuable insights into the strengths and weaknesses of manual ML and AutoML in 

the context of RUL prediction. This research contributes to a deeper understanding of the 

applicability of AutoML in critical domains like aerospace engineering and highlights when each 

approach may be preferable. Ultimately, the study indicates that the manual LSTM model has an 

accuracy advantage over the automated machine model, by approximately 26%. However, the 

total time spent on manual models is hundreds of times greater than AutoGluon. 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1. INTRODUCTION


	 The remaining useful life (RUL) is used to describe the progression of faults in 

prognostics and health management (PHM) applications [1]. RUL prediction is a crucial aspect 

of turbofan engine maintenance, turbofan engines are used in aircraft and other aerospace 

applications and are subjected to harsh operating conditions. According to the National 

Transportation Safety Board (NTSB), data from 1981 to 2001 reveals that 36% of all mechanical 

failures in the United States' 7,571 aircraft accidents were attributed to propulsion system issues 

[2]. Within the civil aviation sector, airlines allocate approximately 30 billion dollars annually to 

aircraft maintenance, with engine maintenance alone constituting roughly 31% of this 

expenditure [3]. According to a report from the International Air Transport Association (IATA), 

there were 39 total aviation accidents in 2022, and there were five tragic incidents resulting in 

fatal accidents that led to the loss of passengers, and crew members' lives. The number of 

fatalities rose from 121 in 2021 to 158 in 2022 [4]. The degradation of engine components is a 

natural phenomenon that occurs over time, and it is critical to predict the remaining useful life of 

these components accurately to avoid catastrophic failures and ensure optimal performance. RUL 

prediction for turbofan engine degradation involves using advanced analytical methods and 

machine learning techniques to analyze engine data and predict the remaining useful life of 

various engine components. This can include analyzing data from sensors that measure engine 

temperature, pressure, and vibration, as well as data on the engine's operating conditions, such as 

altitude and airspeed. The primary goal of RUL prediction is to provide maintenance teams with 
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accurate and timely information on the remaining useful life of engine components. This allows 

them to plan predictive maintenance (PdM) activities for condition-based monitoring (CBM) 

more effectively [5], reduce unscheduled downtime, and optimize engine performance. In 

addition, RUL prediction can help airlines and other operators save money by substantially 

reducing maintenance costs and avoiding costly engine replacements [6]. 


	 Estimating RUL poses a formidable challenge. RUL is not a straightforward target 

variable derived from sensor data; instead, it requires inferring trends in degradation patterns 

over an extended period. The primary challenges in this task revolve around data preprocessing 

and defining the target RUL variable for effective machine learning model training. Additionally, 

choosing the right learning algorithm is a complex decision given the multitude of available 

options. This selection often assumes that the researcher or end-user possesses the requisite 

knowledge, ability, and time for such choices. The algorithm's design and hyper-parameter 

decisions, alongside those made during data preprocessing, create a daunting task for end-users. 

Consequently, many opt for pre-selecting an algorithm or limiting themselves to a predefined list 

during initial experiments. This approach may inadvertently lead to the neglect of potentially 

suitable learning schemes, hindering the discovery of more appropriate algorithms for addressing 

the problem effectively. 


	 Recent research has made significant strides in estimating the RUL of turbofan engines 

through the application of deep learning techniques, including convolutional neural networks 

(CNNs), long short-term memory (LSTMs) networks, and their various combinations and 

modifications. Significantly, LSTM networks have demonstrated superior performance when 
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compared to CNN-based models [7], [8]. LSTM's effectiveness stems from their suitability for 

handling time-series data, their capacity to capture temporal features in multivariate systems, and 

their ability to minimize the root mean square error (RMSE) concerning target predictions. This 

paper proposes an LSTM-based model for predicting the RUL of turbofan engines, capitalizing 

on these advantages.


	 Moreover, this study also introduces an automated machine learning (AutoML) 

predicting method to estimate RUL. AutoML simplifies the complex task of RUL prediction by 

automating many of the traditionally labor-intensive and technical aspects of machine learning. 

AutoGluon is an open-source AutoML framework developed by Amazon Web Services (AWS). 

In two well-known Kaggle competitions, AutoGluon outperformed 99% of the participating data 

scientists with just 4 hours of training on the raw data [9].  


The contributions in this paper are as follows:


A. An LSTM-based model with effective preprocessing steps, i.e. correlation analysis with data 

normalization and filtering is proposed.


B. A method for estimating the RUL, based on the use of AutoGluon which can automatically 

generate a suitable pipeline.


C. The comparison of LSTM-based model prediction method and novel AutoGluon prediction 

method. 
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2.  BACKGROUND


	 A RUL prediction model is a computational model or algorithm that is designed to 

estimate the remaining operational lifespan of a machine, system, or component. This model 

leverages historical data, sensor measurements, and other relevant information to make 

predictions about when a particular asset is likely to fail or no longer meet its performance 

requirements. RUL prediction models are commonly used in predictive maintenance and 

reliability engineering to optimize maintenance schedules, reduce downtime, and prevent 

unexpected equipment failures. These models can take various forms and employ different 

techniques, including physics-based models [10], data-driven models [11], and hybrid models 

[12]. 


2.1 Physics-based Technique


	 Conventional model-based approaches typically utilize algorithms such as the Kalman 

filter (KF), extended Kalman filter (EKF), and particle filters to develop mathematical 

representations of machines based on multi-sensor time series data sequences [13] [14]. The 

model-based approach begins with a thorough comprehension of the machine's physical 

structure, followed by the application of physical principles to derive a mathematical model for 

estimating RUL [15]. Moreover, the corrosion model [16], abrasion model [17], and Taylor tool 
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wear model [18] are examples of model-based techniques. A physics-based approach is suitable 

when a reliable degradation model, like fatigue crack growth, is available [19] [20]. However, it 

demands substantial prior knowledge or measurement data and necessitates the consideration of 

noise effects [21]. 


2.2 Data-driven Technique


	 Data-driven techniques leverage historical sensor data and machine learning algorithms 

to build predictive models. These models learn from the patterns and trends observed in the data 

without explicit knowledge of the underlying physical processes. The data-driven technique is 

both rapid and straightforward to implement, with the potential to reveal previously unnoticed 

relationships. Polynomials are often used in data-driven approaches for modeling because they 

offer a flexible and adaptable way to represent relationships between variables. When patterns in 

the data suggest non-linear relationships, polynomial functions can be employed to capture these 

non-linearities more accurately. Nonetheless, it requires a judicious approach as there is a risk of 

over-learning and overgeneralization [22]. Also, regression analysis, neural networks, Bayesian, 

random forest (RF),  support vector machine (SVM), and relevance vector machine (RVM) are 

examples of data-driven methodologies [23]. Given the numerous variations in today's 

supervisory control and data acquisition (SCADA) data, it becomes crucial to remove any 

extraneous or unnecessary information [24].
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2.3 Hybrid Technique


	 The hybrid approach combines a physical-based approach and a data-based approach [25] 

[26]. The prediction accuracy of the hybrid approach is improved by combining the polynomial 

advantages obtained from the data-driven method with the low error afforded by the physics-

based method’s degradation model [27]. The data is employed for training model parameters, and 

expertise in the physical processes guides the selection of the appropriate regression analysis 

method to apply such as linear, polynomial, exponential, etc.. Examples of hybrid techniques 

include particle filters, Kalman filters, and others [28]. On the other hand, it requires a 

comprehensive grasp of the system along with the acquisition of pertinent data [29].


2.4 Machine Learning 


	 Over the past decade, researchers have increasingly turned to data-driven prognostic 

methods, which are designed to estimate the RUL by scrutinizing degradation trends and sensor 

data trajectories. In recent years, artificial neural networks (ANNs) [30], particularly deep neural 

networks (DNNs), have emerged as effective tools for achieving highly accurate RUL 

predictions, particularly for nonlinear and intricate systems. A DNN is a type of ANN 

characterized by numerous hidden layers between the input and output layers. Ongoing research 

efforts have aimed to enhance prediction results through various algorithms. Among machine 
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learning algorithms used for turbofan engine RUL prediction, comparisons have been made 

between the multilayer perceptron (MLP), support vector regression (SVR), relevance vector 

regression (RVR), and the more recent CNN algorithm. Notably, the CNN algorithm 

demonstrated superior accuracy [30], with further improvements achieved by constructing a deep 

CNN model incorporating five CNN layers [31]. Concurrently, in the realm of recurrent neural 

networks (RNNs), the long short-term memory (LSTM) algorithm has been employed to address 

the gradient descent problem that arises as the depth of the network increases during training 

[32]. In comparative evaluations, LSTM demonstrated superior performance when contrasted 

with alternative methods, including MLP, SVR, RVR, and CNN [33] because of LSTM models' 

suitability for handling time-series data, their ability to capture temporal patterns in multivariate 

systems, and their capability to minimize the root mean square error (RMSE) in relation to target 

predictions. 


	 Therefore, in the context of this study, an LSTM-based model is proposed for predicting 

the RUL of a turbofan engine. While LSTM networks can effectively learn the relationships 

between target RUL values and sensor data, they do face certain limitations. These limitations 

include the presence of outliers, sensor data noise, unnormalized data, and uncorrelated sensor 

values, all of which can impact the performance of an LSTM network [34]. This paper focuses 

on addressing these challenges and implementing solutions to enhance predictive accuracy. 
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2.5 Automated Machine Learning


	 AutoML is a transformative approach that streamlines the machine learning model 

development process by automating various stages, from data preparation and feature 

engineering to model selection and hyper-parameter tuning [35]. It aims to make machine 

learning more accessible and efficient for both seasoned data scientists and those with limited 

expertise in the field. AutoML platforms and tools typically provide user-friendly interfaces that 

simplify complex machine learning tasks, enabling users to build high-performing models with 

minimal manual intervention. These tools can automatically preprocess data, handle missing 

values, select relevant features, choose appropriate algorithms, and fine-tune hyper-parameters. 

By automating these tasks, AutoML accelerates the model development cycle, reduces the barrier 

to entry for machine learning adoption, and democratizes artificial intelligence (AI) by allowing 

organizations to harness the power of machine learning for various applications, from predictive 

analytics to computer vision and natural language processing.


	 AutoGluon stands out as an open-source AutoML framework, introduced by Erickson et 

al. in 2020 [9]. Compared to traditional AutoML or artificial intelligence platforms, AutoGluon 

boasts a remarkable advantage: it excludes the need for extensive manual work in model 

selection and hyper-parameter optimization processes that conventional AutoML platforms 

demand [36]. Unlike traditional machine learning, which typically relies on a single model for 

training, AutoGluon adopts a distinctive approach by amalgamating results from multiple models 

[37]. Empirical evidence from data prediction projects demonstrates that AutoGluon outperforms 
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individual training models during its training phase. Moreover, AutoGluon exhibits remarkable 

predictive accuracy even when working with raw, untreated databases [38]. AutoGluon 

effortlessly handles a wide array of structured data types. If the predefined training model doesn't 

align with the original dataset, AutoGluon autonomously resolves the issue, eliminating the need 

for human intervention or choices. Furthermore, it offers high-level data preprocessing, supports 

deep learning and multi-layer model integration, and automatically categorizes data in each 

column, including specialized handling of text fields. AutoGluon also optimizes AutoML 

processes, such as intelligent model network design. Users have the flexibility to pause or 

resume the training process, enabling them to set the training duration as needed and receive 

timely results for adjustments based on their requirements.


	  In summary, this innovative AutoGluon AutoML platform streamlines the intricate 

AutoML workflow, reducing the technical barriers for users and making AutoML methods more 

accessible to a broader audience. Users can execute AutoML processes without grappling with 

complex coding; the implementation of AutoML algorithm functions can be achieved in just a 

few lines of code, making advanced algorithmic tools more user-friendly [39].  In [40], 

AutoGluon brings advantages such as the ability to identify non-linear associations among 

variables and the inclusion of a larger number of variables in the model-building process. Hence,  

the other main point in this study is using AutoGluon to predict RUL for NASA's turbofan 

engine.
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3.  DATASET DESCRIPTION 

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) [41] dataset 

was developed by NASA Ames Prognostics Center of Excellence [42] and contains simulated 

data of turbofan engines under different operating conditions and fault scenarios.


3.1 The Turbofan Engine


	 The turbofan engine comprises several key elements, including the nozzle, fan,  high-

pressure chamber (HPC), high-pressure turbine (HPT), low-pressure turbine (LPT), and low-

pressure chamber (LPC) as shown in Figure-1. 


Figure-1: Structure of turbofan engine[41].
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3.1.1  The Cost of Turbofan Engine 


	 Turbofan engines come in various sizes and complexities, each tailored to specific 

aircraft needs and passenger capacities. Small turbofan engines, found in business jets like the 

Gulfstream G650, typically cost between $1.5 and $3.5 million per unit. These engines are 

designed for aircraft of this size, accommodating 18-28 passengers, with a primary focus on fuel 

efficiency [43]. 


	 Moving up in size and complexity, medium-sized turbofan engines, exemplified by 

models like the Pratt & Whitney PW1500G and CFM International LEAP, are built for 100-200 

passenger capacity aircraft such as the Airbus A320 and Boeing 737. The cost of these engines 

falls in the range of $10 to $15 million. Large turbofan engines, responsible for powering some 

of the world's largest airliners like the Boeing 777, Airbus A350, and Airbus A380, are 

significantly larger and more intricate in design. These engines, with their substantial power 

requirements, can come with a price tag ranging from $25 to $45 million [43].


	 Regarding the maintenance expenses for aircraft engines: Smaller business jet engines 

usually incur overhaul costs in the range of $200,000 to $300,000 each. On the contrary, 

overhauling modern large business jet engines can amount to approximately $1 million to $3 

million each [44].	 
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3.1.2   The Function of Turbofan Engine


	 While in flight, passengers are only able to observe a sizable fan positioned at the front 

and a relatively small exhaust pipe situated at the rear of a jet engine in Figure-2. However, there 

exists a substantial interplay of components between these two visible parts. The primary 

constituents of a turbofan engine encompass the fan blades, a compressor section, the 

combustion chamber, turbines, and the exhaust are given in Figure-3.


	 A turbofan engine works in four simple steps: suck, squeeze, bang, and blow. At the 

outset, a large fan draws air into the engine. This incoming air, traveling at high velocity, 

proceeds to the second stage, where it undergoes compression through a sequence of low-

pressure and high-pressure compressor blades. At this stage, the air has become approximately 

40 times denser than usual, and temperatures have risen to several hundred degrees. The highly 

compressed air proceeds into the combustion chamber, where fuel is sprayed to create a mixture. 

This mixture is then ignited, causing the gases to rapidly expand, ultimately exiting through the 

exhaust nozzles. In this scenario, the high-velocity exhaust gases exiting the engine generate 

thrust, which propels the aircraft forward with an equal and opposite force [45]. 
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Figure-2. Outward of the turbofan engine [43].





Figure-3. Internal structure of the turbofan engine[46].
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3.2 The C-MAPSS Dataset


	 The C-MAPSS dataset consists of multiple sub-datasets containing FD001, FD002, 

FD003, and FD004, each corresponding to a different combination of operating conditions and 

fault modes. These sub-datasets provide diverse scenarios for testing predictive maintenance 

models The datasets encompass multiple multivariate time series, with each dataset further 

partitioned into training and test subsets. A "cycle" generally refers to a specific operational 

period or a unit of time during which data is collected from a particular engine. These cycles 

could represent different phases of an engine's operation, such as takeoff, cruising, or landing, 

depending on the dataset's design and the specifics of the simulated engine systems. Each time 

series corresponds to a different engine, collectively representing a fleet of engines of the same 

type. Notably, these engines initiate their journeys with varying degrees of initial wear and 

undisclosed manufacturing variations, which are deemed normal and non-fault conditions. In 

addition, the dataset incorporates three operational settings that exert significant influence over 

engine performance, all of which are included in the data. It's important to note that the data is 

affected by sensor noise.


	 At the outset of each time series, the engine operates normally, eventually developing a 

fault at some point during the series. In the training set, the fault escalates in severity until 

system failure occurs. In contrast, the time series in the test set concludes before reaching system 

failure. The primary objective of the approach is to predict the number of remaining operational 
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cycles before failure in the test set, specifically the number of cycles that the engine will 

continue to operate after the final observed cycle. Additionally, a vector of true RUL values is 

provided for the test data, serving as a reference for evaluation. The dataset has played a 

significant role in advancing the field of predictive maintenance and RUL prediction, helping 

researchers develop and validate models for early fault detection and optimizing maintenance 

schedules in aviation.


	 Moreover, Figure-5 provides information about 21 sensors, including their specifications. 

The last column of Figure-5, labeled as "Trends," indicates the descriptions of the sensor data 

degradation patterns over time. In this context, "~" signifies irregular sensor behavior, "↑" 

denotes an increasing parameter trend with time, and "↓" signifies a decreasing parameter trend 

with time [47].

Figure-4. The subsets of the C-MAPSS dataset [41]. 

Data Set Train 
Trajectories

Test 
Trajectories

Conditions Fault Modes

FD001 100 100 1 
(Sea Level)

1 
(HPC Degradation)

FD002 260 259 6 (Fault)
1 

(HPC Degradation)

FD003 100 100
1 

(Sea Level)

2 
(HPC Degradation, Fan 

Degradation)

FD004 248 249 6 (Fault)
2 

(HPC Degradation, Fan 
Degradation)
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Figure-5. List of sensors [48]. 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4. PROPOSED METHODOLOGY


4.1 : Data Preprocessing


	 Data preprocessing is an essential step in the data analysis and machine learning 

workflow, with its specific methods and techniques tailored to the data's nature and analysis 

objectives. Effective data preprocessing enhances the accuracy and significance of insights and 

model predictions. In the model training phase, the original turbofan engine data undergoes 

preprocessing to generate the necessary model parameters. This preprocessing encompasses 

defining the RUL labels for both the training and test sets [Figure-6], finding the maximum cycle 

[Figure-7],  data splitting [Figure-8], feature selection [Figure-9], and data standardization 

[Figure-10]. The FD001 dataset comprises 21 sensor features and 3 operational parameters 

(flight altitude, Mach number, and throttling parser angle). Moreover, the number of running 

cycles is considered as a feature, resulting in a total of 25 features. 


	 


Figure-6. Adding RUL label function.
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Figure-7. Number of cycles of different engines, where the x-axis represents the number of 

cycles., and the y-axis represents the engine ID.	 	 


Figure-8. Data splitting.
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4.1.1 : Correlation Analysis


	 Well-engineered features can help machine learning models discover relevant patterns 

and relationships in the data, leading to improved predictive accuracy. Feature engineering can 

simplify complex datasets by reducing dimensionality [48], focusing on relevant information, 

and removing noise. Furthermore, feature engineering can enhance the interpretability of models 

by creating features that align with domain knowledge or human-understandable concepts. 

Careful feature selection and engineering can reduce the risk of overfitting by removing noisy or 

irrelevant features that may cause the model to generalize poorly.


	 Correlation analysis is a statistical technique used to evaluate the strength and direction 

of the linear relationship between two or more variables. It helps in understanding how changes 

in one variable are associated with changes in another [49]. Pearson’s correlation coefficient 

analysis is a representative filter method for determining removal from a dataset based on the 

degree of correlation [50]. The formula for Pearson's correlation coefficient is:


                                                                           (2)


where  represents Pearson's correlation coefficient.  and   are the individual data points for 

the two variables.  and  are the means (averages) of the two variables. The summation ( ) is 

taken over all data points  from 1 to , where  is the total number of data points. The formula 

r =
∑n

i=1 (Xi − X̄ )(Yi − Ȳ )

∑n
i=1 (Xi − X̄ )2 ∑n

i=1 (Yi − Ȳ )2

r Xi Yi

X̄ Ȳ ∑

i n n
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calculates the covariance between  and  divided by the product of their standard deviations. 

Also,  represents perfect positive correlation,  represents perfect negative 

correlation, and  represents no linear correlation. 











Figure-9. Correlation heat map.


	 Based on the information presented in Figure-9, this heatmap only displays correlations 

above the threshold which is 0.5. Red represents positive linear correlation, blue represents 

negative linear correlation, and zero indicates no correlation, displaying neither color nor a 

numerical value for non-linear correlation. Therefore, it is evident that certain features, namely 

op1, op2, op3, sensor1, sensor5, sensor6, sensor9, sensor10, sensor14, sensor16, sensor18, and 

sensor19, exhibit no linear correlation. Subsequently, a detailed analysis of the correlation matrix 

reveals that features lacking correlation will be excluded from the training procedure. 

X Y

r = 1 r = − 1

r = 0
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4.1.2: Z-Score Normalization 


	 The z-score, also known as the standard score or normalized score, is a statistical measure 

that quantifies how many standard deviations a data point is from the mean (average) of a 

dataset. It is a way to standardize and compare data points from different distributions. The C-

MAPSS dataset contains sensor measurements and operational parameters from multiple 

engines, each subjected to different operating conditions and levels of degradation. To effectively 

analyze and compare the sensor data, z-scores are often used to standardize the features. By 

calculating the z-scores for each sensor reading, the data becomes normalized, with a mean of 0 

and a standard deviation of 1. The formula for calculating the z-score of a data point: 


                                                                        (1)


where   (Z) represents the standardized value (z-score) of the feature,  is the individual data 

point,   is the mean of the dataset and   is the standard deviation of the dataset.


Figure-10. Data standardization. 

Xstd =
X − μ

σ

Xstd X

μ σ
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4.2 : LSTM Model Architecture 


	 Shortly after the initial development of Elman-style RNNs trained using back-

propagation [51], the challenges associated with learning long-term dependencies, primarily 

stemming from issues like vanishing and exploding gradients, became evident. Discussions on 

this problem were notably presented by Bengio and Hochreiter [52][53]. While gradient clipping 

proved effective in mitigating exploding gradients, addressing vanishing gradients required a 

more intricate solution. One of the earliest and most successful solutions for tackling vanishing 

gradients was the introduction of the long short-term memory (LSTM) model, credited to 

Hochreiter and Schmidhuber [54].


	 LSTM is a type of RNN architecture that is designed to capture and process sequences of 

data. It was introduced to address some of the limitations of traditional RNNs, which often 

struggle with learning long-term dependencies in sequential data. What sets LSTM networks 

apart from traditional RNNs are their ability to capture long-term dependencies and remember 

information over extended sequences, and each ordinary recurrent node is replaced by a memory 

cell. Each memory cell contains an internal state, i.e., a node with a self-connected recurrent 

edge of fixed weight 1, ensuring that the gradient can pass across many time steps without 

vanishing or exploding [55]. LSTMs use a form of gradient descent called back-propagation 

through time (BPTT) to learn and adjust their parameters during training. This enables them to 

adapt to the patterns and relationships within the input sequences. This is achieved through a 
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more complex internal structure that includes memory cells, gates, and a mechanism to control 

the flow of information.


	 In LSTM models, activation functions like tanh (hyperbolic tangent) and sigmoid serve 

crucial roles in controlling the flow of information and regulating the output of various 

components within the LSTM cell. For the tanh function, squashes input values to the range of 

[-1, 1], making it zero-centered. This helps in mitigating the vanishing gradient problem 

compared to sigmoid, which is centered around 0.5. Also, it introduces non-linearities that enable 

the model to learn more complex relationships within the data, allowing LSTMs to capture a 

broader range of patterns. The derivative of tanh is higher than that of the sigmoid function, 

promoting a stronger gradient flow during backpropagation, which aids in training deep 

networks. And for the sigmoid function squeezes input values into the range of [0, 1], making it 

suitable for gating mechanisms in LSTMs, particularly for controlling the information flow 

through the gates (input, forget, and output gates). It is specifically useful in LSTM cells to 

regulate the flow of information through the gates, allowing the model to learn when to store or 

forget information from the cell state. In an LSTM cell, these activation functions are used in 

various components like the input gate, forget gate, output gate, and cell state operations. The 

tanh function is usually used for the cell state operations and candidate value computations, 

while sigmoid functions are commonly employed in gate mechanisms to control the flow of 

information in and out of the cell state.
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Figure-11: LSTM cell architecture [56]. 


4.2.1 Memory Cell


	 Within each memory cell, there exists an internal state alongside a collection of 

multiplicative gates, and their combined role is to oversee three pivotal functions. Firstly, the 

presence and influence of a particular input on the internal state are determined, a responsibility 

shouldered by the input gate. Secondly, the decision regarding the retention or clearing of the 

internal state is made under the purview of the forget gate. Lastly, the question of whether a 

specific neuron's internal state should contribute to the cell's output is resolved by the output 

gate. These three functions, orchestrated by the memory cell's components, are fundamental to its 

operation.
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4.2.2 Gates


	 LSTMs use three types of gates to control the flow of information: the input gate, the 

forget gate, and the output gate. These gates regulate what information should be stored, 

forgotten, and passed to the output. The input gate determines which information from the 

current input should be stored in the memory cell. Forget gate decides what information from the 

previous state of the memory cell should be discarded. The output gate controls what information 

from the memory cell should be used to produce the output. A value approaching 1 signifies the 

retention of information, while a value nearing 0 implies the exclusion or discarding of said 

information. The equations for input gate ( ), forget gate ( ), and output gate ( ):


                                       (3)


where  represents the weight parameter,  represents the bias parameter,  represents the 

previous hidden state,   represents the input value,   is the cell state, and  is the previous 

cell state. Also, sigmoid functions to map the input values to the interval form 0 to 1.


4.2.3 Input Node


	 The input node is also called the candidate cell state and represents the information that 

can potentially be stored in the cell at the current time step. It is calculated based on the input, 

It Ft Ot

It = σ (WxiXt + WhiHt−1 + WciCt−1 + bi)
Ft = σ (Wxf Xt + Whf Ht−1 + Wcf Ct−1 + bf )
Ot = σ (WxoXt + WhoHt−1 + WcoCt + bo)

W b Ht−1

X Ct Ct−1
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the previous hidden state (  ), and a weight matrix. The sigmoid and hyperbolic tangent 

functions help in scaling and gating the information. This leads to the following equation at time 

step  :


                                                 (4)


where  represents the hyperbolic tangent activation function, and returns from -1 to 1. In 

general, the candidate cell state also use  to represent. 


  


4.2.4 Memory Cell Internal State


	 It represents the accumulated knowledge or memory of the LSTM cell at the current time 

step. The cell state ( ) is updated by combining the previous cell state ( ) with the candidate 

cell state ( ) based on the input gate ( ) and forget gate ( ). It represents the accumulated 

knowledge or memory of the LSTM cell at the current time step. Using the Hadamard product 

operator  , the following update equation:


                                                               (5)


	 When the forget gate is consistently set to 1 and the input gate remains at 0, the memory 

cell's internal state remains static, persisting unchanged through each subsequent time step. 

However, the presence of input and forget gates grants the model the adaptability to decide when 

to maintain this value unaltered and when to modify it in response to incoming inputs. This 

Ht−1

t

C̃t = tanh(WxcXt + WhcHt−1 + bc)

tanh

Gt

Ct Ct−1

C̃t It Ft

⊙

Ct = Ct−1 ⊙ Ft + C̃t ⊙ It
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architectural choice effectively addresses the vanishing gradient problem in practice, making 

models considerably more trainable, particularly when dealing with datasets characterized by 

lengthy sequences.


4.2.5 Hidden State


	 The gated hidden state ( ) is computed by applying the output gate ( ) to the cell state 

( ) using the hyperbolic tangent function ( ). This procedure guarantees that the values of 

consistently fall within the range of -1 to 1. This hidden state is the primary output of the LSTM 

cell and carries information that can be passed to subsequent layers or used for predictions. The 

equation for the hidden state:


                                                 (6)


	 When the output gate approaches a value of 1, it grants unrestricted influence to the 

memory cell's internal state on subsequent layers. Conversely, for output gate values nearing 0, it 

prevents the current memory from affecting other network layers during the current time step. It's 

worth noting that a memory cell can accumulate information over multiple time steps without 

influencing the remainder of the network (as long as the output gate maintains values close to 0). 

However, it can swiftly impact the network at a subsequent time step as soon as the output gate 

transitions from values near 0 to values close to 1. 


Ht Ot

Ct tanh

Ht = Ot ⊙ tanh(Ct)
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4.2.6 Training 


	 Training the LSTM-based model on the training set involves using a batch size of 128, 

running for 10 epochs, and employing a learning rate set at 0.001, as depicted in [Figure-12] and 

[Figure-13].


Figure-12. LSTM model creation.


Figure-13.  Scheduler function.
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4.3: Evaluation Metric


	 Assessment metrics are numerical criteria employed to gauge the effectiveness of 

machine learning models, algorithms, or systems. These metrics facilitate the comprehension of a 

model's performance in a particular task or dataset. In this study, three evaluation metrics are 

used to evaluate the model. 


	 Firstly, the root mean square error (RMSE) stands as a frequently employed assessment 

metric in the realm of regression analysis and predictive modeling. Its purpose is to gauge the 

precision of numerical predictions by quantifying the average magnitude of errors between 

predicted values and actual values. The equation of RMSE is given below:


                                                       (8)


where  represents the number of data points in the dataset,  represents the actual (observed) 

value for the  data point,  represents the predicted value for the  data point and  denotes 

the summation of the squared differences between actual and predicted values.


	  Secondly, the mean absolute error (MAE) is a widely used evaluation metric in 

regression analysis and predictive modeling to assess the accuracy of numerical predictions. It 

R MSE =
1
n

n

∑
i=1

(yi − ̂yi)2

n yi

ith ̂yi ith
∑
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measures the average absolute magnitude of errors between predicted values and actual values 

and treats all errors equally. The equation of MAE is given below:


	                                                           (9)


where  represents the number of data points in the dataset,  represents the actual (observed) 

value for the   data point,  represents the predicted value for the  data point and  denotes 

the summation of the squared differences between actual and predicted values.


	 Lastly, the scoring function within the C-MAPSS dataset is tailored to reflect real-world 

industrial scenarios [57]. A superior model performance is characterized by a lower score value. 

The scoring mechanism penalizes overestimations of RUL values more heavily, as these can 

potentially lead to asset failure. Conversely, it imposes milder penalties for underestimated RUL 

values, which correspond to earlier-than-expected asset maintenance. This approach aligns with 

the practical considerations of the industry [58]. The scoring function is computed as follows:


                                                   (10)


where   and  denote the actual RUL and estimated RUL of   engine, respectively. 
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4.4 AutoGluon


	 AutoGluon is an open-source AutoML framework that simplifies and automates the 

machine learning pipeline. It is designed to make machine learning accessible to users of various 

skill levels, from beginners to experienced data scientists as creating a prediction model requires 

just a concise three-line code snippet. AutoGluon provides a high-level API that abstracts away 

many of the complexities of machine learning, allowing users to build and deploy accurate 

machine learning models with ease. It automates tasks such as data preprocessing, feature 

engineering, model selection, and hyper-parameter tuning, enabling users to focus on their 

specific problem domains rather than the intricacies of machine learning algorithms. AutoGluon 

is highly versatile and supports a wide range of machine learning tasks, including classification, 

regression, object detection, and natural language processing. It also includes a user-friendly 

dashboard for model training and evaluation. 


 	 This platform offers several key advantages for machine learning tasks. AutoGluon 

enables quick prototyping, allowing users to construct machine learning solutions from raw data 

with just a few lines of code. It leverages state-of-the-art (SOTA) techniques by automatically 

incorporating cutting-edge models, even for users without specialized expertise. Transitioning 

from experimental models to production is made simple with cloud predictors and pre-built 

containers, ensuring seamless deployment. Additionally, the platform is highly customizable, 

offering extensibility through custom feature processing, models, and metrics to meet unique 
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project requirements. Its flexibility and extensive capabilities have made it a valuable tool for 

organizations and individuals seeking efficient and powerful machine learning solutions.


4.4.1 Data Preprocessing 


	 AutoGluon starts with raw data, which can be in various formats, including tabular data, 

time series data, or even multimodal data combining text, images, and tabular data. It performs 

essential data preprocessing tasks such as handling missing values, encoding categorical 

variables, and normalizing or scaling features. Also, AutoGluon's data processing involves two 

consecutive stages: model-agnostic preprocessing, which applies transformations to all models' 

inputs, and model-specific preprocessing, exclusively utilized on a duplicate of the data specific 

to training a particular model. Initially, it automatically determines the type of prediction task 

based on the label column's values. Non-numeric string values signify a classification task with 

classes determined by unique values in that column, while numeric values with limited repetition 

imply a regression task. This feature is part of AutoGluon's efforts to simplify problem 

translation from raw data to accurate predictions.


	 Model-agnostic preprocessing categorizes features into numeric, categorical, text, or date/

time categories. Uncategorized columns, which typically contain non-numeric and non-repeating 

fields with low predictive value (e.g., engineIDs), are removed. Text features undergo 

transformation into numeric vectors based on n-gram features, with only high-occurrence n-

grams retained to reduce memory usage. Date or time features are also converted into 
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appropriate numeric representations. A copy of these processed features, containing both numeric 

and categorical components, is then provided to model-specific methods for further tailored 

preprocessing. To address missing discrete variables, AutoGluon introduces an "Unknown" 

category instead of imputing missing values. This approach ensures that AutoGluon can handle 

novel categories during testing while preserving the evidence of absence, particularly when 

observations are not missing at random [59].


4.4.2 Types of Models


	 AutoGluon provides three distinct prediction patterns: tabular, multimodal, and time 

series. For conventional tabular datasets represented as tables, AutoGluon offers a diverse range 

of algorithms, covering neural networks, traditional machine learning, and ensemble techniques. 

These algorithms encompass neural networks, traditional models like random forests and 

extreme random trees, the k-nearest neighbors algorithm, and two robust boosting tree 

algorithms, namely CatBoost [60] and LightGBM [61].


	 Additionally, AutoGluon's MultiModalPredictor presents a deep learning model zoo 

capable of automatically constructing cutting-edge deep learning models suitable for various 

input types, including images, text, and tabular data.


	 Finally, AutoGluon addresses time series data, which consists of measurements collected 

at regular intervals. Time series forecasting aims to predict future values based on past 

observations. AutoGluon offers a selection of 14 default time series forecasting models, 
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including the naive model, seasonal naive model, ARIMA model, ETS model, auto ARIMA 

model, auto ETS model, Theta model [62], dynamic optimized Theta model [63], direct tabular 

model, recursive tabular model, DeepAR model [64], DLinear model [65], patch TST model 

[66], simple feedforward model, and temporal fusion transformer model [67]. So far, AutoGluon 

has not yet incorporated the LSTM algorithm.


4.4.3 Multi-layer Stack Ensembling


	 Ensembling stands as a well-established method to enhance model accuracy by 

amalgamating their predictions [68], thereby refining generalization. A prominent ensemble 

learning technique for both classification and regression is the random forest. It employs bagging 

[69] (bootstrap aggregating) to construct complete decision trees in parallel, drawing from 

random bootstrap samples of the dataset and its features. Predictions are derived by aggregating 

outcomes from all these trees, curtailing variance and elevating predictive precision. The 

ultimate prediction is a majority class or mean regression gleaned from all the decision tree 

forecasts. The introduction of randomness plays a pivotal role in the forest's success, with 

bagging ensuring that no two decision trees are alike, mitigating the overfitting issues associated 

with individual trees. These fundamental principles underlie popular machine learning 

algorithms such as random forest, XGBoost [70], Catboost, and LightGBM, all of which are 

leveraged by AutoGluon.
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	 Furthermore, ensembling techniques, which combine predictions from multiple models, 

are well-known for their effectiveness in improving predictive accuracy by reducing prediction 

variance. Various AutoML frameworks utilize ensembling methods such as bagging, boosting 

[71], stacking [72], or weighted combinations. Within the ML competition community, it's a rare 

occurrence for a single model to claim victory. Almost invariably, winning solutions involve the 

amalgamation of model ensembles. Shallow stack ensembling is common, where individual 

"base" models are trained separately, and their predictions are used as features for a "stacker" 

model. AutoGluon introduces a novel multi-layer stack ensembling approach, employing 

multiple layers of stacker models illustrated in Figure-14. These stackers use both the predictions 

from the previous layer and the original data features as inputs, allowing higher-layer stackers to 

revisit the original data. Additionally, AutoGluon uses ensemble selection in the final stacking 

layer to aggregate stacker model predictions in a weighted manner [73], enhancing resilience 

against overfitting.


	 Stacking, a powerful technique in machine learning, involves utilizing the collective 

predictions of a set of "base" regression or classification models to create features used for 

training a higher-level meta-classifier or regressor known as the "stacker" model. Taking this 

concept a step further, multi-layer stacking leverages the predictions generated by stacker models 

and feeds them as inputs to additional higher-layer stacker models. This iterative approach has 

proven to be a successful strategy in various Kaggle competitions. This innovative multi-layer 

stack ensembling strategy improves predictive accuracy and is a unique feature of AutoGluon 

[73]
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	 	 	 Figure-14. AutoGluon’s multi-layer stacking strategy [9].


4.4.4  k-fold Ensemble Bagging


	 In AutoGluon, the technique of -fold ensemble bagging is employed to enhance the 

stacking performance of its machine learning models. It operates by first randomly dividing the 

training data into  distinct subsets or folds taking care to maintain proportional class 

representation in classification tasks [74]. Then, AutoGluon trains  copies of each base machine 

learning model, with each copy being trained on -1 of the folds while leaving one fold out. 

During this training process, each model generates predictions for the held-out fold, known as 

out-of-fold (OOF) predictions. Subsequently, AutoGluon constructs an ensemble by training a 

k

k

k

k
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stacker model on these OOF predictions, learning how to effectively combine the base models' 

predictions. To enhance stability and robustness, AutoGluon repeats this entire process n times, 

using different random data partitions for each repetition. The final predictions are then obtained 

by averaging the predictions of the stacker models across all n repetitions. This repeated -fold 

bagging approach helps reduce variance, mitigate overfitting, and ultimately improves the 

accuracy and reliability of AutoGluon's machine learning models, particularly beneficial for 

smaller datasets where overfitting and data variance can be critical challenges.


	 The overall training strategy is outlined in Figure-15, where each stacking layer is 

assigned a time budget denoted as . In Step 7, AutoGluon initiates the estimation of 

required training time, and if this estimation surpasses the remaining time allocated for the 

current layer, it proceeds to the subsequent stacking layer. Each newly trained model is promptly 

saved to disk to ensure fault tolerance, resulting in a framework that exhibits high predictability 

in its behavior. 


	 This design guarantees the generation of predictions, as long as at least one model can be 

trained on one fold within the given time limit. AutoGluon also accounts for potential training 

failures and seamlessly moves on to the next model in such cases. Unlike many AutoML 

frameworks that attempt to train multiple models in parallel on a single instance, AutoGluon-

Tabular opts for sequential model training, leveraging the efficiency of individual 

implementations to make the most of multiple cores. This sequential approach enables successful 

training even on larger datasets, where other frameworks may encounter out-of-memory errors 

without meticulous tuning.


k

Ttotal /L
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Figure-15. Tabular training strategy [9].


Figure-16. K-fold ensemble bagging [75]. 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4.4.5 Implementation 


	 AutoGluon offers the ability to train models with minimal coding, and the main three 

lines of code includes loading the data or library, training the model, and making prediction as 

shown in Figure-17.


Figure-17. 

A schematic illustrating 3 lines of code implementation [75].


1. Loading data and importing time series predictor:


———————————————————————————————————————


>>> from autogluon.timeseries import TimeSeriesDataFrame, TimeSeriesPredictor

>>> import pandas as pd

>>> df = pd.read_csv('~/CMAPSSData/train_FD001.cols.update.csv')

>>> df.head()

   ID       Cycle  Sensor2  Sensor3  Sensor4  Sensor7  Sensor8  Sensor9  Sensor12  Sensor13  
Sensor14  Sensor15  Sensor17  Sesnor20  Sensor21  RUL

0   1  1696704001   641.82  1589.70  1400.60   554.36  2388.06  9046.19    521.66   2388.02   
8138.62    8.4195       392     39.06   23.4190  191

1   1  1696704002   642.15  1591.82  1403.14   553.75  2388.04  9044.07    522.28   2388.07   
8131.49    8.4318       392     39.00   23.4236  190
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2   1  1696704003   642.35  1587.99  1404.20   554.26  2388.08  9052.94    522.42   2388.03   
8133.23    8.4178       390     38.95   23.3442  189

3   1  1696704004   642.35  1582.79  1401.87   554.45  2388.11  9049.48    522.86   2388.08   
8133.83    8.3682       392     38.88   23.3739  188

4   1  1696704005   642.37  1582.85  1406.22   554.00  2388.06  9055.15    522.19   2388.04   
8133.80    8.4294       393     38.90   23.4044  187


>>> train_data = TimeSeriesDataFrame.from_data_frame(df, id_column="ID", 
timestamp_column="Cycle")

>>> train_data.head()

                                       Sensor2  Sensor3  Sensor4  Sensor7  Sensor8  Sensor9  ...  Sensor14  
Sensor15  Sensor17  Sesnor20  Sensor21  RUL

item_id timestamp                                                                            ...                                                       

1       1970-01-01 00:00:01.696704001   641.82  1589.70  1400.60   554.36  2388.06  9046.19  ...   
8138.62    8.4195       392     39.06   23.4190  191

        1970-01-01 00:00:01.696704002   642.15  1591.82  1403.14   553.75  2388.04  9044.07  ...   
8131.49    8.4318       392     39.00   23.4236  190

        1970-01-01 00:00:01.696704003   642.35  1587.99  1404.20   554.26  2388.08  9052.94  ...   
8133.23    8.4178       390     38.95   23.3442  189

        1970-01-01 00:00:01.696704004   642.35  1582.79  1401.87   554.45  2388.11  9049.48  ...   
8133.83    8.3682       392     38.88   23.3739  188

        1970-01-01 00:00:01.696704005   642.37  1582.85  1406.22   554.00  2388.06  9055.15  ...   
8133.80    8.4294       393     38.90   23.4044  187


———————————————————————————————————————


2. Training the model and use RMSE for evaluation metric:


———————————————————————————————————————


[5 rows x 14 columns]

>>> predictor = TimeSeriesPredictor(target="RUL", eval_metric="RMSE")

>>> predictor.fit(train_data, presets="medium_quality", time_limit=600)

================ TimeSeriesPredictor ================

TimeSeriesPredictor.fit() called

Setting presets to: medium_quality

Fitting with arguments:

{'enable_ensemble': True,

 'evaluation_metric': 'RMSE',

 'excluded_model_types': None,

 'hyperparameter_tune_kwargs': None,

 'hyperparameters': 'medium_quality',

 'num_val_windows': 1,
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 'prediction_length': 1,

 'random_seed': None,

 'target': 'RUL',

 'time_limit': 600,

 'verbosity': 2}

Provided training data set with 20631 rows, 100 items (item = single time series). Average time 
series length is 206.3. Data frequency is 'N'.

=====================================================

AutoGluon will save models to AutogluonModels/ag-20231009_163513/

AutoGluon will gauge predictive performance using evaluation metric: 'RMSE'

	 This metric's sign has been flipped to adhere to being 'higher is better'. The reported score 
can be multiplied by -1 to get the metric value.


Provided dataset contains following columns:

	 target:           'RUL'

	 past covariates:  ['Sensor2', 'Sensor3', 'Sensor4', 'Sensor7', 'Sensor8', 'Sensor9', 'Sensor12', 
'Sensor13', 'Sensor14', 'Sensor15', 'Sensor17', 'Sesnor20', 'Sensor21']


Starting training. Start time is 2023-10-09 09:35:25

Models that will be trained: ['Naive', 'SeasonalNaive', 'Theta', 'AutoETS']

Training timeseries model Naive. Training for up to 599.64s of the 599.64s of remaining time.

	 -1.0000       = Validation score (-RMSE)

	 0.01    s     = Training runtime

	 4.49    s     = Validation (prediction) runtime

Training timeseries model SeasonalNaive. Training for up to 595.13s of the 595.13s of remaining 
time.

	 -1.0000       = Validation score (-RMSE)

	 0.01    s     = Training runtime

	 0.05    s     = Validation (prediction) runtime

Training timeseries model Theta. Training for up to 595.07s of the 595.07s of remaining time.

	 -0.5051       = Validation score (-RMSE)

	 0.02    s     = Training runtime

	 11.10   s     = Validation (prediction) runtime

Training timeseries model AutoETS. Training for up to 583.94s of the 583.94s of remaining 
time.

	 Warning: AutoETS/W0 failed for 19 time series (19.0%). Fallback model SeasonalNaive 
was used for these time series.

	 -0.4359       = Validation score (-RMSE)

	 0.01    s     = Training runtime

	 8.95    s     = Validation (prediction) runtime

Fitting simple weighted ensemble.

	 -0.3938       = Validation score (-RMSE)

	 0.47    s     = Training runtime
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	 20.06   s     = Validation (prediction) runtime

Training complete. Models trained: ['Naive', 'SeasonalNaive', 'Theta', 'AutoETS', 
'WeightedEnsemble']

Total runtime: 25.51 s

Best model: WeightedEnsemble

Best model score: -0.3938 (39.38%)


———————————————————————————————————————


	 As a result, the best model is WeightedEnsemble, and the best score of RMSE is 0.3938. 

Using RMSE as an evaluation metric will have their signs reversed, resulting in negative values. 

This approach is adopted to simplify the interpretation of the leaderboard, ensuring that users can 

intuitively discern that higher scores indicate better performance without the need to understand 

the intricacies of each specific metric. Also, setting up the time limit can accelerate model 

generation. 


Figure-18. Finding the best model.
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5. EXPERIMENTS 


5.1 LSTM Model Result Analysis 


	 After data preprocessing and training were conducted on an LSTM model, RUL 

prediction was performed. This study provides an interpretation of the results for the FD001 

dataset. The RMSE value obtained is 13.78% [Figured-19], and the S-score is 394.62 

[Figure-20].  This study focuses solely on using the LSTM model, which yields quite good 

accuracy, the true RUL and predicted RUL are very similar, as documented in Figure-21. Many 

studies have shown that combining models such as MLP, RNNs, CNNs, Bidirectional LSTM 

(BiLSTM), CNN-LSTM and deep layer-recurrent neural networks (DL-RNNs) can result in 

lower RMSE [76]  [77] [78]. However, it is essential to note that this process requires a 

significant amount of time for tuning and testing, especially for the FD002 and FD004 databases, 

where feature correlations are very low during feature engineering. This poses a challenge when 

selecting evaluation methods. Data preprocessing and the algorithm of the model determine the 

quality of the model.  


Figure-19. RMSE evaluation.


51



Master Thesis by Shuhui Yu




Figure-20. S-score evaluation.


Figure-21. True RUL vs. Predicted RUL, where the x-axis represents Engine ID, and the y-axis 

represents RUL values.
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5.2 AutoGluon Result Analysis


	 AutoGluon training and RUL prediction using timed series forecasting was conducted on 

Naive, SeasonalNaive, Theta, AutoETS, and Weighted Ensemble models. This study provides an 

interpretation of the results for the FD001 dataset. Comparing the final score of each model, the 

RMSE value obtained from the best model is 40.17% [Figure-22].  The results of testing data 

scores are sorted in ‘score_test” and metrics scores always show in higher is better form. 

Although AutoGluon introduced support for time series forecasting in June 2022, it remains a 

relatively new technique with ample room for further enhancement and development. This result 

shows only the most basic function of AutoGluon. AutoGluon provides numerous general 

evaluation metrics. However, specific metrics like S-Score, which are exclusively designed for 

evaluating C-MAPSS, are not included. Advanced users can override the presets and manually 

specify what models should be trained by the predictor using the hyper-parameters argument. 

Also, AutoGluon offers multiple ways to configure the behavior of a TimeSeriesPredictor that 

are suitable for both beginners and expert users.


Figure-22. Leaderboard of models. 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5.3 Manual Machine Learning vs. Automated Machine Learning


1. AutoGluon requires a much shorter period of time for coding and testing compared to the 

LSTM manual model coding and testing. LSTM manual model is time-consuming. 


2. AutoGluon model RMSE value of 40.17% is greater than the LSTM model RMSE value 

of 13.78%. Thus the LSTM model is more accurate than the AutoGluon model. 


3. AutoGluon automates various stages of the machine learning process, making it 

accessible to non-experts and reducing the need for manual intervention but building the 

LSTM model requires substantial expertise for data preprocessing, model selection, and 

coding.


4. Manual models are often more interpretable, making it easier to understand the 

underlying factors driving predictions. From the result, AutoGluon-generated models are 

less interpretable than LSTM models, making it challenging to explain predictions.
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6. CONCLUSION


	 From the experimental results, it can be seen that manual machine learning has a higher 

accuracy compared to automated learning. However, manual machine learning is significantly 

more time-consuming, requiring a solid background knowledge, coding skills, and background 

research. In contrast, the AutoGluon platform is simpler and more user-friendly. Both approaches 

have their pros and cons, depending on the users' needs. Over the past decade, machine learning 

has made significant advancements, giving rise to innovative model architectures and methods 

for handling extensive datasets. For complex datasets like C-MAPSS, the process of training 

models, finding suitable algorithms, and repeatedly testing model performance is time-

consuming. As state-of-the-art ML techniques continue to grow in complexity, even experienced 

ML experts face the challenge of keeping up with the latest best practices in modeling. The 

AutoGluon framework offers an appealing solution to this dilemma by automating model 

selection, ensembling, hyper-parameter tuning, feature engineering, data preprocessing, and data 

splitting, reducing the need for ongoing manual intervention. It lowers the entry threshold and 

enhances efficiency, but the crucial factor is enhancing precision. Adding a customization 

method to the AutoGluon model may reduce the RMSE value and improve accuracy. In 

summary, the contribution of this study lies in understanding the importance of RUL, basic 

knowledge of turbofan engines, introducing two different RUL prediction methods: manual 

machine learning using LSTM algorithms and automated machine learning using the 

AutoGluon’s time series model, and finally comparing the experimental results of these two 

approaches.
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7. FUTURE WORK


	 In the future, the commitment is to train the existing models on the additional three 

datasets of C-MAPSS, including FD002, FD003, and FD004. The additional datasets containing 

different conditions and fault modes may require further data preprocessing. This will allow for a 

more comprehensive set of experimental results, enabling a more objective comparison between 

manual machine learning and automated machine learning. Subsequently, based on the 

experimental results, the model configurations will be improved to achieve a more accurate RUL 

prediction model, thus making a substantial contribution to the maintenance of turbofan engines 

and aviation safety. Furthermore, with the rapid advancement of technology, the simplification of 

complex workflows and automation to save time has always been a goal pursued by people. Self-

driving cars and automated meal delivery robots have proven this. AutoML is expected to be a 

future trend. It functions like an encyclopedia, recording every ML algorithm, their strengths and 

weaknesses, and where they are best applied. For example, this study indicates that the LSTM 

model is suitable for evaluating time series data, and AutoGluon can add the LSTM model in 

time series modeling, making evaluations more convincing. Therefore, it is crucial to enhance 

the algorithms and models in the database, optimize recognition of input data, and automatically 

correct models with low accuracy to improve the evaluation accuracy in today's automated 

machine learning.
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