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Boolean connectives: ∧ is “and,” ∨ is “or” and ¬ is “not.”

We also use → as Boolean implication, i.e., x → y is logically
equivalent to ¬x ∨ y , and ↔ is Boolean equivalence, and α↔ β
expresses ((α→ β) ∧ (β → α)).

∀ is the “for-all” universal quantifier, and ∃ is the “there exists”
existential quantifier.

We use “⇒” to abbreviate the word “implies,” i.e., 2|x ⇒ x is
even, while “̸⇒” abbreviates “does not imply.”
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Partial Correctness:

(∀I ∈ IA)[(αA(I ) ∧ ∃O(O = A(I )))→ βA(A(I ))] (1.1)

How to modify it to express full correctness? (Problem 1.1)
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Division Algorithm (A1.1)

Pre-condition: x ≥ 0 ∧ y > 0 ∧ x , y ∈ N
1: q ← 0
2: r ← x
3: while y ≤ r do
4: r ← r − y
5: q ← q + 1
6: end while
7: return q, r

Post-condition: x = (q · y) + r ∧ 0 ≤ r < y
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Loop invariant:

x = (q · y) + r ∧ r ≥ 0. (1.2)

Show that it holds true after each iteration of the loop:

Basis case (i.e., zero iterations of the loop—we are just before
line 3 of the algorithm): q = 0, r = x , so x = (q · y) + r and since
x ≥ 0 and r = x , r ≥ 0.
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Induction step: suppose x = (q · y) + r ∧ r ≥ 0 and we go once
more through the loop.

Let q′, r ′ be the new values of q, r , respectively (computed in lines
4 and 5 of the algorithm).

Since we executed the loop one more time it follows that y ≤ r
(this is the condition checked for in line 3 of the algorithm), and
since r ′ = r − y , we have that r ′ ≥ 0. Thus,

x = (q · y) + r = ((q + 1) · y) + (r − y) = (q′ · y) + r ′,

and so q′, r ′ still satisfy the loop invariant.
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Partial Correctness

Now we use the loop invariant to show that (if the algorithm
terminates) the post-condition of the division algorithm holds, if
the pre-condition holds.

This is very easy in this case since the loop ends when it is no
longer true that y ≤ r , i.e., when it is true that r < y .

On the other hand, we proved already that loop invariant holds
after each iteration, in particular the last one. Putting it all
together we get the post-condition.
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Termination

To show termination we use the least number principle (LNP).

We need to relate some non-negative monotone decreasing
sequence to the algorithm; just consider r0, r1, r2, . . ., where r0 = x ,
and ri is the value of r after the i-th iteration.

Note that ri+1 = ri − y .

First, ri ≥ 0, because the algorithm enters the while loop only if
y ≤ r , and second, ri+1 < ri , since y > 0.

By LNP such a sequence “cannot go on for ever,” (in the sense
that the set {ri |i = 0, 1, 2, . . .} is a subset of the natural numbers,
and so it has a least element), and so the algorithm must
terminate.
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Problem 1.3

What is the running time of the algorithm? That is, how many
steps does it take to terminate? Assume that assignments (lines 1
and 2), and arithmetical operations (lines 4 and 5) as well as
testing “≤” (line 3) all take one step.
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Euclid’s Algorithm (A1.2)

Given two positive integers a and b, their greatest common divisor,
denoted as gcd(a, b), is the largest positive integer that divides
them both.

Pre-condition: a > 0 ∧ b > 0 ∧ a, b ∈ Z
1: m← a ; n← b ; r ← rem(m, n)
2: while (r > 0) do
3: m← n ; n← r ; r ← rem(m, n)
4: end while
5: return n

Post-condition: n = gcd(a, b)
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Unlike division, Euclid’s algorithm is very fast.

This is very important, as it is one of the building blocks of
Cryptography; see Problem 6.10, which leads to the correctness of
the Rabin-Miller algorithm.

The Rabin-Miller algorithm (Algorithm 6.3) for primality testing is
what makes Publick Key Crypto such as Diffie-Hellman, El Gamal,
RSA, etc., possible.
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Loop Invariant:

m > 0, n > 0 and gcd(m, n) = gcd(a, b) (1.3)

Basis Case: m = a > 0 and n = b > 0 and so loop invariant holds

Induction Step: suppose m, n > 0 and gcd(a, b) = gcd(m, n), and
we go through the loop one more time, yielding m′, n′.

We want to show that gcd(m, n) = gcd(m′, n′).

Note that from line 3 of the algorithm we see that
m′ = n, n′ = r = rem(m, n), so in particular m′, n′ > 0, since if
r = rem(m, n) were zero, the loop would have terminated (and we
are assuming that we are going through the loop one more time).
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Problem 1.6: Show that for all m, n > 0,
gcd(m, n) = gcd(n, rem(m, n)).

Problem 1.7: Show that Euclid’s algorithm terminates.

Problem: 1.7: what is the complexity of Euclid’s algorithm?

More challenging problem: Show that for any integer k ≥ 1, if
a > b ≥ 1 and b < Fk+1 (where Fi is the i-th Fibonacci number),
then Euclid’s algorithm on a, b takes fewer than k iterations of the
while loop. (Ignore swaps, or use 2k instead.)
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Palindromes (A1.3)

racecar

Pre-condition: n ≥ 1 ∧ A[1 . . . n] is a character array
1: i ← 1
2: while (i ≤ ⌊n2⌋) do
3: if (A[i ] ̸= A[n − i + 1]) then
4: return F
5: end if
6: i ← i + 1
7: end while
8: return T

Post-condition: return T iff A is a palindrome
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Let the loop invariant be: after the k-th iteration, i = k + 1 and
for all j such that 1 ≤ j ≤ k , A[j ] = A[n − j + 1].

We prove that the loop invariant holds by induction on k .

Basis case: before any iterations take place, i.e., after zero
iterations, there are no j ’s such that 1 ≤ j ≤ 0, so the second part
of the loop invariant is (vacuously) true. The first part of the loop
invariant holds since i is initially set to 1.

Induction step: we know that after k iterations, A[j ] = A[n− j +1]
for all 1 ≤ j ≤ k ; after one more iteration we know that
A[k + 1] = A[n − (k + 1) + 1], so the statement follows for all
1 ≤ j ≤ k + 1. This proves the loop invariant.
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Show partial correctness of the palindromes algorithm.

Does it terminate? If yes, what is its complexity?

Other practice problems: 1.13,14,15
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Python String Manipulations

In is easy to manipulate strings in Python; a segment of a string is
called a slice. Consider the word palindrome; if we set the
variables s to this word,

s = ’palindrome’

then we can access different slices as follows:

print s[0:5] palin

print s[5:10] drome

print s[5:] drome

print s[2:8:2] lnr

where the notation [i:j] means the segment of the string starting
from the i-th character (and we always start counting at zero!), to
the j-th character, including the first but excluding the last.
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The notation [i:] means from the i-th character, all the way to
the end, and [i:j:k] means starting from the i-th character to
the j-th (again, not including the j-th itself), taking every k-th
character.

One way to understand the string delimiters is to write the indices
“in between” the numbers, as well as at the beginning and at the
end. For example

0p1a2l3i4n5d6r7o8m9e10

and to notice that a slice [i:j] contains all the symbols between
index i and index j .

IAA Chp 1 - Michael Soltys © February 8, 2022 (1a29710; ed3) Python strings - 19/41



Problem 1.12 What is the shortest Python program you can write
to test whether the string s is a palindrome?

Here is a fun problem: on September 11, 2019, we started a
“palindromic week,” meaning that the dates (given in the format
{M,MM}{D,DD}YY) are palindromes:
91119,91219,91319,. . .,91819. When is the next palindromic week?
Will we be so lucky as to live and experience it?
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Is it obvious when algorithms terminate?

Pre-condition: a > 0
x ←− a
while last three values of x not 4, 2, 1 do

if x is even then
x ←− x/2

else
x ←− 3x + 1

end if
end while
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Ranking Algorithms

▶ PageRank

▶ Stable Marriage

▶ Pairwise Comparisons
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PageRank

1. 1945 article by Vannevar Bush on the “Memex”

2. 1990s Berners-Lee and hyperlinks (HTML)

3. Huge WWW: how to find a relevant page?

4. Authoritative pages
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A web page X , and all the pages T1,T2,T2, . . . ,Tn that point to
it.

T1

((

T2

  

T3

��

. . . Tn

ww
X

IAA Chp 1 - Michael Soltys © February 8, 2022 (1a29710; ed3) Ranking Algorithms - 24/41



Given a page X , let C(X ) be the number of distinct links that
leave X , i.e., these are links anchored in X that point to a page
outside of X .

Let PR(X ) be the page rank of X . We also employ a paramater d ,
which we call the damping factor.

PR(X ) = (1− d) + d

[
PR(T1)

C(T1)
+

PR(T2)

C(T2)
+ · · ·+ PR(Tn)

C(Tn)

]
.
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// A // B
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// C
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D // E
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Using Excel with the following formulas: initially (Stage 0) all get
1/6, and then they are computed with:
PR(A) = PR(F )
PR(B) = PR(A)
PR(C ) = PR(B)/4 + PR(E )
PR(D) = PR(B)/4
PR(E ) = PR(B)/4 + PR(D)
PR(F ) = PR(B)/4 + PR(C )
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Stage 0 1 2 3 4 5 ... 17

----------------------------------------------------

A 0.17 0.17 0.21 0.25 0.29 0.18 0.22

B 0.17 0.17 0.17 0.21 0.25 0.29 0.22

C 0.17 0.21 0.25 0.13 0.14 0.16 0.17

D 0.17 0.04 0.04 0.04 0.05 0.06 0.06

E 0.17 0.21 0.08 0.08 0.09 0.11 0.11

F 0.17 0.21 0.25 0.29 0.18 0.20 0.22

----------------------------------------------------

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Stable Marriage

An instance of the stable marriage problem of size n consists of
two disjoint finite sets of equal size; a set of boys
B = {b1, b2, . . . , bn}, and a set of girls G = {g1, g2, . . . , gn}.

Let “<i” denote the ranking of boy bi ; that is, g <i g
′ means that

boy bi prefers g over g ′.

Similarly, “<j” denotes the ranking of girl gj .

Each boy bi has such a ranking (linear ordering) <i of G which
reflects his preference for the girls that he wants to marry.

Similarly each girl gj has a ranking (linear ordering) <j of B which
reflects her preference for the boys she would like to marry.
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A matching (or marriage) M is a 1-1 correspondence between B
and G .

We say that b and g are partners in M if they are matched in M
and write pM(b) = g and also pM(g) = b.

A matching M is unstable if there is a pair (b, g) from B × G such
that b and g are not partners in M but b prefers g to pM(b) and g
prefers b to pM(g).

Such a pair (b, g) is said to block the matching M and is called a
blocking pair

A matching M is stable if it contains no blocking pair.
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b

$$

g

zz
pM(g) pM(b)

A blocking pair: b and g prefer each other to their partners pM(b)
and pM(g).
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1: Stage 1: b1 chooses his top g and M1 ←− {(b1, g)}
2: for s = 1, . . . , s = |B| − 1, Stage s + 1: do
3: M ←− Ms

4: b∗ ←− bs+1

5: for b∗ proposes to all g ’s in order of preference: do
6: if g was not engaged: then
7: Ms+1 ←− M ∪ {(b∗, g)}
8: end current stage
9: else if g was engaged to b but g prefers b∗:

then
10: M ←− (M − {(b, g)}) ∪ {(b∗, g)}
11: b∗ ←− b
12: repeat from line 5
13: end if
14: end for
15: Ms+1 ←− M
16: end for
17: return M|B|
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b1 : g2, g4, g3, g1 g1 : b1, b3, b4, b2
b2 : g4, g1, g2, g3 g2 : b3, b1, b4, b2
b3 : g2, g1, g3, g4 g3 : b3, b4, b1, b2
b4 : g3, g4, g1, g2 g4 : b2, b1, b3, b4

Stage 1: M1 = {(b1, g2)}

Stage 2: M = M1, b
∗ = b2, M2 = {(b1, g2), (b2, g4)}

Stage 3: M = M2, b
∗ = b3, M = {(b2, g4), (b3, g2)}, b∗ = b1,

M3 = {(b1, g3), (b2, g4), (b3, g2)}
Stage 4: M = M3, b

∗ = b4, M = {(b2, g4), (b3, g2), (b4, g3)},
b∗ = b1, M4 = {(b1, g1), (b2, g4), (b3, g2), (b4, g3)}
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b1 : g2, g4, g3, g1 g1 : b1, b3, b4, b2
b2 : g4, g1, g2, g3 g2 : b3, b1, b4, b2
b3 : g2, g1, g3, g4 g3 : b3, b4, b1, b2
b4 : g3, g4, g1, g2 g4 : b2, b1, b3, b4

Stage 1: M1 = {(b1, g2)}
Stage 2: M = M1, b

∗ = b2, M2 = {(b1, g2), (b2, g4)}

Stage 3: M = M2, b
∗ = b3, M = {(b2, g4), (b3, g2)}, b∗ = b1,

M3 = {(b1, g3), (b2, g4), (b3, g2)}
Stage 4: M = M3, b

∗ = b4, M = {(b2, g4), (b3, g2), (b4, g3)},
b∗ = b1, M4 = {(b1, g1), (b2, g4), (b3, g2), (b4, g3)}
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b1 : g2, g4, g3, g1 g1 : b1, b3, b4, b2
b2 : g4, g1, g2, g3 g2 : b3, b1, b4, b2
b3 : g2, g1, g3, g4 g3 : b3, b4, b1, b2
b4 : g3, g4, g1, g2 g4 : b2, b1, b3, b4

Stage 1: M1 = {(b1, g2)}
Stage 2: M = M1, b

∗ = b2, M2 = {(b1, g2), (b2, g4)}
Stage 3: M = M2, b

∗ = b3, M = {(b2, g4), (b3, g2)}, b∗ = b1,
M3 = {(b1, g3), (b2, g4), (b3, g2)}

Stage 4: M = M3, b
∗ = b4, M = {(b2, g4), (b3, g2), (b4, g3)},

b∗ = b1, M4 = {(b1, g1), (b2, g4), (b3, g2), (b4, g3)}
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b1 : g2, g4, g3, g1 g1 : b1, b3, b4, b2
b2 : g4, g1, g2, g3 g2 : b3, b1, b4, b2
b3 : g2, g1, g3, g4 g3 : b3, b4, b1, b2
b4 : g3, g4, g1, g2 g4 : b2, b1, b3, b4

Stage 1: M1 = {(b1, g2)}
Stage 2: M = M1, b

∗ = b2, M2 = {(b1, g2), (b2, g4)}
Stage 3: M = M2, b

∗ = b3, M = {(b2, g4), (b3, g2)}, b∗ = b1,
M3 = {(b1, g3), (b2, g4), (b3, g2)}
Stage 4: M = M3, b

∗ = b4, M = {(b2, g4), (b3, g2), (b4, g3)},
b∗ = b1, M4 = {(b1, g1), (b2, g4), (b3, g2), (b4, g3)}

IAA Chp 1 - Michael Soltys © February 8, 2022 (1a29710; ed3) Ranking Algorithms - 33/41



The matching M is produced in stages Ms so that bt always has a
partner at the end of stage s, where s ≥ t.

However, the partners of bt do not get better, i.e.,
pMt (bt) ≤t pMt+1(bt) ≤t · · · .

On the other hand, for each g ∈ G , if g has a partner at stage t,
then g will have a partner at each stage s ≥ t and the partners do
not get worse, i.e., pMt (g) ≥t pMt+1(g) ≥t . . ..
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Thus, as s increases, the partners of bt become less preferable and
the partners of g become more preferable.

At the end of stage s, assume that we have produced a matching

Ms = {(b1, g1,s), . . . , (bs , gs,s)},

where the notation gi ,s means that gi ,s is the partner of boy bi
after the end of stage s.
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We will say that partners in Ms are engaged.

The idea is that at stage s + 1, bs+1 will try to get a partner by
proposing to the girls in G in his order of preference.

When bs+1 proposes to a girl gj , gj accepts his proposal if either gj
is not currently engaged or is currently engaged to a less preferable
boy b, i.e., bs+1 <

j b.

In the case where gj prefers bs+1 over her current partner b, then
gj breaks off the engagement with b and b then has to search for a
new partner.
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Pairwise Comparisons

Ramon Llull
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Marquis de Condorcet
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Let X = {x1, x2, . . . , xn} be a finite set of objects to be ranked.

Let aij express the numerical preference between xi and xj . The
idea is that aij estimates “how much better” xi is compared to xj .

Clearly, for all i , j , aij > 0 and aij = 1/aji .

The intuition is that if aij > 1, then xi is preferred over xj by that
factor.

So, for example, Apple’s Retina display has four times the
resolution of the Thunderbolt display, and so if x1 is Retina, and x2
is Thunderbolt, we could say that the image quality of x1 is four
times better than the image quality of x2, and so a12 = 4, and
a21 = 1/4.

The assignment of values to the aij ’s are often done subjectively by
human judges.
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Let A = [aij ] be a pairwise comparison matrix, also known as a
preference matrix.

We say that a pairwise comparison matrix is consistent if for all
i , j , k we have that aijajk = aik . Otherwise, it is inconsistent.
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In practice, the subjective evaluations aij are seldom consistent,
which creates four problems, and to this day there is no
satisfactory solution to these problems:

1. How to measure inconsistency and what level is acceptable?

2. How to remove inconsistencies, or lower them to an
acceptable level?

3. How to derive the values wi starting with an inconsistent
ranking A?

4. How to justify a certain method for removing inconsistencies?

In real world cases, it is item 4. were the subjective side of the
judgments comes most to the fore, as the “subjectiveness” of the
referees is reflected in the inconsistency of the resulting matrix.
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