Intro to Analysis of Algorithms
Greedy
Chapter 2

Michael Soltys

CSU Channel Islands

[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Introduction - 1/37

MCST

Given a directed or undirected graph G = (V/, E) its adjacency
matrix is a matrix Ag of size n x n, where n = |V, such that entry
(i,7) is 1if (i,/) is an edge in G, and it is O otherwise.

An adjacency matrix can be encoded as a string over {0,1}.

That is, given Ag of size n x n, let sg € {0, 1}”2, where s¢ is
simply the concatenation of the rows of Ag.

We can check directly from s¢ if (i,/) is an edge by checking if
position (i — 1)n+j in sg contains a 1.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) MCST - 2/37

Definitions:

>
»
| 2
>
>
>

undirected graph
path

connected

cycle / acyclic
tree

spanning tree

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3)

MCST - 3/37

Every tree with n nodes has exactly n — 1 edges.
Claim 1: Every tree has a leaf.

Proof: A leaf is by definition a node with less than 2 edges
adjacent on it. If a graph does not have a leaf, then it has a cycle:
pick any node, leave it by one of its edges, arrive at a new node ...

Claim 2: Every tree of n nodes has exactly n — 1 edges.

Proof: By induction on n. BC: n =1 is trivial. Then consider a
tree T of n+ 1 nodes; pick a leaf (it has one by Claim 1). Remove
the leaf and its edge, and obtain a new tree T’ (why is T’ a tree?).
Apply IH to T’ and conclude T is a tree.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) MCST - 4/37

We are interested in finding a minimum cost spanning tree for G,
assuming that each edge e is assigned a cost c(e).

The understanding is that the costs are non-negative real number,
i.e., each c(e) is in R,

The total cost ¢(T) is the sum of the costs of the edges in T.

We say that T is a minimum cost spanning tree (MCST) for G if
T is a spanning tree for G and given any spanning tree T’ for G,
c(T) <c(T).

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) MCST - 5/37

Encodings

Difference between encoding and encryption. ASCII is an
encoding; Caesar cipher is an encryption.

For example, the 7-bit word 1000001 represents (in ASCII) the
letter ‘A" and the word 0100110 represents ‘&'.

With 7 bits we can encode ...

Encodings are a convention for representing data. In Computer
Science all data is eventually encoded as a string over the binary
alphabet ¥ = {0, 1}.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) MCST - 6/37

Encoding of a Graph

1 2 01100
10111
11010
> 01101
01 010
3 4 Adjacency matrix

Encoded as a string:

0110010111110100110101010

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) MCST - 7/37

Kruskal’s Algorithm (A2.1)

1: Sort the edges: c(e1) < c(e2) < ... < c(em)
22 T+— 0

3: for i:1..m do

4: if T U{ei} has no cycle then

5: T+—TuU {e,-}

6: end if

7: end for

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Kruskal’s Algorithm - 8/37

But how do we test for a cycle, i.e., execute line 4 in the algorithm?

At the end of each iteration of the for-loop, the set T of edges

divides the vertices V into a collection Vi, ..., Vi of connected
components.
That is, V is the disjoint union of Vi,..., V,, each V; forms a

connected graph using edges from T, and no edge in T connects
Viand V;, if i # j.

A simple way to keep track of Vi,..., Vi is to use an array D|[i]
where D[i] = j if vertex i € V.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Kruskal’s Algorithm - 9/37

Initialize D by setting D[i] «— i for every i =1,2,...,n.

To check whether e; = (r,s) forms a cycle within T, it is enough
to check whether D[r] = D[s].

If e; does not form a cycle within T, then we update:
T <— T U{(r,s)}, and we merge the component D[r] with D[s]
as shown in the algorithm in the next slide.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Kruskal’s Algorithm - 10/37

Merging Components (A2.2)

sk — D[r]
s — D[S]
: forj:1..ndo
if D[j] =/ then
D[j] +— k
end if
end for

Noag kN

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Kruskal’s Algorithm - 11/37

We now prove that Kruskal's algorithm works.

It is not immediately clear that Kruskal's algorithm yields a
spanning tree, let alone a MCST.

To see that the resulting collection T of edges is a spanning tree
for G, assuming that G is connected, we must show that (V, T) is
connected and acyclic.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Kruskal’s Algorithm - 12/37

It is obvious that T is acyclic, because we never add an edge that
results in a cycle.

To show that (V, T) is connected, we reason as follows. Let v and
v be two distinct nodes in V.

Since G is connected, there is a path p connecting u and v in G.
The algorithm considers each edge e; of G in turn, and puts €; in
T unless T U {e;} forms a cycle.

But in the latter case, there must already be a path in T
connecting the end points of ¢;, so deleting e; does not disconnect
the graph.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Kruskal’s Algorithm - 13/37

This argument can be formalized by showing that the following
statement is an invariant of the loop in Kruskal's algorithm:
The edge set T U{e€jt1,...,€em} connects all nodes in V.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Kruskal’s Algorithm - 14/37

Promising

We say T is promising if it can be extended to a MCST with edges

that have not been considered yet.
“T is promising”

is a loop invariant of Kruskal's algorithm.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3)

Promising - 15/37

Exchange Lemma (Lemma 2.11)

Let G be a connected graph, and let 77 and T» be any two
spanning trees for G. For every edge e in T, — T; there is an edge
e in Ty — T, such that Ty U {e} — {€’} is a spanning tree for G.

T ° e ° Ts

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Promising - 16/37

Example run

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3)

Promising - 17/37

€1
e — O

€2

e — 0
€4

IAA Chp 2 - Michael Soltys (©

€1

e — 0
L] []
€1
o— 0

o — 0
€4

e
e—o
€ []
° °
e
e—o
\6‘6
€ []
e—o
e

February 5, 2019 (£f93cc40; ed3)

e
e — o
[]
. .
e
e —oeo
\eﬁ
[]
e—eo
e

Promising - 18/37

Iteration | Edge | Current T MCST extending T
0 0 {e1,e3,€e4,€e7}
1 el {61} {61,63764767}
2 e | {e, e} {e1, e, 64,67}
3 e3s | {e1, e} {e1, e, e4,e7}
4 es | {e1, e, e} {e1, e, €4, 67}
5 es | {e1, e, e} {e1, e, 64,67}
6 e | {e1,e,e1,66} | {e1,e2,e4, 66}
7 e7 | {e,e,e1,66} | {e1,e2, 64,66}

IAA Chp 2 - Michael Soltys (©

February 5, 2019 (£f93cc40; ed3)

Promising - 19/37

We show the loop invariant.
Basis Case is easy.

Induction Step: assume T is promising; show it continues being
promising after one more iteration of the loop.

Suppose edge €; has been considered.

Case 1: ¢ is rejected

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Promising - 20/37

Case 2: ¢; is accepted. We must show T U {e;} is still promising.

We must show that T U {e;} is still promising. Since T is
promising, there is a MCST Tj such that T C T;. We consider
two subcases.

Subcase a: e € T1. Then obviously T U {e;} is promising.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Promising - 21/37

Subcase b: ¢ ¢ T;.

According to the Exchange Lemma, there is an edge ¢; in T1 — Tp,
where T5 is the spanning tree resulting from the algorithm, such
that T3 = (T1 U {ej}) — {¢;} is a spanning tree.

Notice that i < j, since otherwise e; would have been rejected from
T and thus would form a cycle in T and so also in Tj.

Therefore c(e;) < c(ej), so c(T3) < c(T1), so T3 must also be a
MCST. Since T U {e;j} C T3, it follows that T U {e;} is promising.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Promising - 22/37

Jobs with deadlines and profits

n jobs and one processor
each job has a deadline and a profit, but all have duration 1

We think of a schedule S as consisting of a sequence of job “slots”
1,2,3,..., where 5(t) is the job scheduled in slot t.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 23/37

A schedule is an array 5(1),5(2),...,5(d) where d = maxd, that
is, d is the latest deadline, beyond which no jobs can be scheduled.

If S(t) =i, then job i is scheduled at time t, 1 <t < d.

If S(t) =0, then no job is scheduled at time t.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 24/37

A schedule S is feasible if it satisfies two conditions:

Condition 1: If S(t) =i >0, then t < d;, i.e., every scheduled
job meets its deadline.

Condition 2: If t; # t» and also S(t1) # 0, then S(t1) # S(t2),
i.e., each job is scheduled at most once.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 25/37

Job Scheduling A2.3

1: Sort the jobs in non-increasing order of profits:
8128 2...28n

2: d <— max; d;

3 fort:1..d do

4: S(t)«—0

5: end for

6: for i:1..ndo

7: Find the largest t such that S(t) =0 and t < d;,
S(t)y«—i

8: end for

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 26/37

A schedule is promising if it can be extended to an optimal
schedule.

Schedule S’ extends schedule S if for all 1 <t < d, if S(t) #0,
then S(t) = S'(t).

For example, S’ = (2,0,1,0,3) extends S = (2,0,0,0,3).

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 27/37

We show by induction that S is promising is a loop invariant.
Basis case is easy

Induction step: Suppose that S is promising, and let Sq,¢ be some
optimal schedule that extends S.

Let S’ be the result of one more iteration through the loop where
job i is considered.

We must prove that S’ continues being promising, so the goal is to
show that there is an optimal schedule S, that extends S'.

s=L[o] Jo[[J[[]

Sope = [0 [7[[J][]

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 28/37

We consider two cases: job i can/cannot be scheduled
job i cannot be scheduled: easy
job i is scheduled at time ty

job i is scheduled at time tg, so S'(to) = i (whereas S(tp) = 0)
and tp is the latest possible time for job / in the schedule S.

We have two subcases.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 29/37

Subcase a: job i is scheduled in S at time ty:

If t; = to, then, as in case 1, just let épt = Sopt-

If t; < tg, then let S(’)pt be Sopt except that we interchange tp and
t1, that is we let S (to) = Sopt(t1) = i and S/ (t1) = Sopt(to)-
Then S/, is feasible (why 17), it extends S (why 27?), and

P(épt) = P(Sopt) (why 37).

The case t; > tg is not possible (why 47).

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 30/37

Subcase b: job i is not scheduled in Sy,¢. Then we simply define
Sopt to be the same as Sopi, except S (to) = i. Since Sypy is
feasible, so is S/ ¢, and since S;; extends S’, we only have to

show that P(S;,:) = P(Sopt)-
Claim: Let Sopi(to) =j. Then gj < g;.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 31/37

We prove the claim by contradiction: assume that gj > gj (note
that in this case j # 0). Then job j was considered before job i.
Since job i was scheduled at time ty, job j must have been
scheduled at time ty # to (we know that job j was scheduled in S
since S(tp) =0, and tg < dj, so there was a slot for job j, and
therefore it was scheduled). But S, extends S, and

S(t2) = j # Sopt(t2)—contradiction.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 32/37

Make Change A2.4

1. What would be the natural greedy alg for making change?

2. Does it work with all currencies?

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 33/37

Maximum weight matching

(Application to network switches.)

Let G = (V1 U Vo, E) be a bipartite, i.e, a graph with edge set
E C V1 x V, with disjoint sets V7 and V,. w: E — N assigns a
weight w(e) € N to each edge e € E = {ey,...,en}.

A matching for G is a subset M C E such that no two edges in M
share a common vertex. The weight of M is w(M) =" ., w(e).

What would be a natural Greedy alg?

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 34/37

Maximum weight matching

(Application to network switches.)

Let G = (V1 U Vo, E) be a bipartite, i.e, a graph with edge set
E C V1 x V, with disjoint sets V7 and V,. w: E — N assigns a
weight w(e) € N to each edge e € E = {ey,...,en}.

A matching for G is a subset M C E such that no two edges in M
share a common vertex. The weight of M is w(M) =" ., w(e).

What would be a natural Greedy alg?

See Problem 2.29 and Algorithm 2.6 given in its solution

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 34/37

Shortest path

Application to OSPF: Open Shortest Path First, see RFC 2328

d(v)= min d(u)+ c(e).
ueS,e=(u,v)

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3)

Jobs - 35/37

Huffman Codes A2.5

Suppose that we have a string s over the alphabet {a,b,c,d,e, £},
and |s| = 100.

Suppose also that the characters in s occur with the frequencies
44,14,11,17,8, 6, respectively.

As there are six characters, if we were using fixed-length binary
codewords to represent them we would require three bits, and so
300 characters to represent the string.

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 36/37

100
56

25 31
c:11| |b:l4 14

IAA Chp 2 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Jobs - 37/37

	Introduction
	MCST
	Kruskal's Algorithm
	Promising
	Jobs

