
Intro to Analysis of Algorithms
Greedy

Chapter 2

Michael Soltys

CSU Channel Islands

[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Introduction - 1/37

MCST

Given a directed or undirected graph G = (V ,E) its adjacency
matrix is a matrix AG of size n× n, where n = |V |, such that entry
(i , j) is 1 if (i , j) is an edge in G , and it is 0 otherwise.

An adjacency matrix can be encoded as a string over {0, 1}.

That is, given AG of size n × n, let sG ∈ {0, 1}n2 , where sG is
simply the concatenation of the rows of AG .

We can check directly from sG if (i , j) is an edge by checking if
position (i − 1)n + j in sG contains a 1.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) MCST - 2/37

Definitions:

I undirected graph

I path

I connected

I cycle / acyclic

I tree

I spanning tree

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) MCST - 3/37

Every tree with n nodes has exactly n − 1 edges.

Claim 1: Every tree has a leaf.

Proof: A leaf is by definition a node with less than 2 edges
adjacent on it. If a graph does not have a leaf, then it has a cycle:
pick any node, leave it by one of its edges, arrive at a new node . . .

Claim 2: Every tree of n nodes has exactly n − 1 edges.

Proof: By induction on n. BC: n = 1 is trivial. Then consider a
tree T of n + 1 nodes; pick a leaf (it has one by Claim 1). Remove
the leaf and its edge, and obtain a new tree T ′ (why is T ′ a tree?).
Apply IH to T ′ and conclude T is a tree.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) MCST - 4/37

We are interested in finding a minimum cost spanning tree for G ,
assuming that each edge e is assigned a cost c(e).

The understanding is that the costs are non-negative real number,
i.e., each c(e) is in R+.

The total cost c(T) is the sum of the costs of the edges in T .

We say that T is a minimum cost spanning tree (MCST) for G if
T is a spanning tree for G and given any spanning tree T ′ for G ,
c(T) ≤ c(T ′).

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) MCST - 5/37

Encodings

Difference between encoding and encryption. ASCII is an
encoding; Caesar cipher is an encryption.

For example, the 7-bit word 1000001 represents (in ASCII) the
letter ‘A’ and the word 0100110 represents ‘&’.

With 7 bits we can encode . . .

Encodings are a convention for representing data. In Computer
Science all data is eventually encoded as a string over the binary
alphabet Σ = {0, 1}.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) MCST - 6/37

Encoding of a Graph


0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0


Adjacency matrix

Encoded as a string:

0110010111110100110101010

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) MCST - 7/37

Kruskal’s Algorithm (A2.1)

1: Sort the edges: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
2: T ←− ∅
3: for i : 1..m do
4: if T ∪ {ei} has no cycle then
5: T ←− T ∪ {ei}
6: end if
7: end for

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Kruskal’s Algorithm - 8/37

But how do we test for a cycle, i.e., execute line 4 in the algorithm?

At the end of each iteration of the for-loop, the set T of edges
divides the vertices V into a collection V1, . . . ,Vk of connected
components.

That is, V is the disjoint union of V1, . . . ,Vk , each Vi forms a
connected graph using edges from T , and no edge in T connects
Vi and Vj , if i 6= j .

A simple way to keep track of V1, . . . ,Vk is to use an array D[i]
where D[i] = j if vertex i ∈ Vj .

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Kruskal’s Algorithm - 9/37

Initialize D by setting D[i]←− i for every i = 1, 2, . . . , n.

To check whether ei = (r , s) forms a cycle within T , it is enough
to check whether D[r] = D[s].

If ei does not form a cycle within T , then we update:
T ←− T ∪ {(r , s)}, and we merge the component D[r] with D[s]
as shown in the algorithm in the next slide.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Kruskal’s Algorithm - 10/37

Merging Components (A2.2)

1: k ←− D[r]
2: l ←− D[s]
3: for j : 1..n do
4: if D[j] = l then
5: D[j]←− k
6: end if
7: end for

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Kruskal’s Algorithm - 11/37

We now prove that Kruskal’s algorithm works.

It is not immediately clear that Kruskal’s algorithm yields a
spanning tree, let alone a MCST.

To see that the resulting collection T of edges is a spanning tree
for G , assuming that G is connected, we must show that (V ,T) is
connected and acyclic.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Kruskal’s Algorithm - 12/37

It is obvious that T is acyclic, because we never add an edge that
results in a cycle.

To show that (V ,T) is connected, we reason as follows. Let u and
v be two distinct nodes in V .

Since G is connected, there is a path p connecting u and v in G .
The algorithm considers each edge ei of G in turn, and puts ei in
T unless T ∪ {ei} forms a cycle.

But in the latter case, there must already be a path in T
connecting the end points of ei , so deleting ei does not disconnect
the graph.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Kruskal’s Algorithm - 13/37

This argument can be formalized by showing that the following
statement is an invariant of the loop in Kruskal’s algorithm:

The edge set T ∪ {ei+1, . . . , em} connects all nodes in V .

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Kruskal’s Algorithm - 14/37

Promising

We say T is promising if it can be extended to a MCST with edges
that have not been considered yet.

“T is promising”

is a loop invariant of Kruskal’s algorithm.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Promising - 15/37

Exchange Lemma (Lemma 2.11)

Let G be a connected graph, and let T1 and T2 be any two
spanning trees for G . For every edge e in T2 − T1 there is an edge
e ′ in T1 − T2 such that T1 ∪ {e} − {e ′} is a spanning tree for G .

T1 • a • T2

•

e′

•

e

g

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Promising - 16/37

Example run

• e1

e2

•

e5

e6

•
e7• e4

e3

•

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Promising - 17/37

• • • e1 • • e1

e2

• • e1

e2

•

• • • •

• • • • • • • •

• e1

e2

• • e1

e2

• • e1

e2

• e6
• e1

e2

• e6

• • • •

• e4
• • e4

• • e4
• • e4

•

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Promising - 18/37

Iteration Edge Current T MCST extending T

0 ∅ {e1, e3, e4, e7}
1 e1 {e1} {e1, e3, e4, e7}
2 e2 {e1, e2} {e1, e2, e4, e7}
3 e3 {e1, e2} {e1, e2, e4, e7}
4 e4 {e1, e2, e4} {e1, e2, e4, e7}
5 e5 {e1, e2, e4} {e1, e2, e4, e7}
6 e6 {e1, e2, e4, e6} {e1, e2, e4, e6}
7 e7 {e1, e2, e4, e6} {e1, e2, e4, e6}

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Promising - 19/37

We show the loop invariant.

Basis Case is easy.

Induction Step: assume T is promising; show it continues being
promising after one more iteration of the loop.

Suppose edge ei has been considered.

Case 1: ei is rejected

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Promising - 20/37

Case 2: ei is accepted. We must show T ∪ {ei} is still promising.

We must show that T ∪ {ei} is still promising. Since T is
promising, there is a MCST T1 such that T ⊆ T1. We consider
two subcases.

Subcase a: ei ∈ T1. Then obviously T ∪ {ei} is promising.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Promising - 21/37

Subcase b: ei /∈ T1.

According to the Exchange Lemma, there is an edge ej in T1 − T2,
where T2 is the spanning tree resulting from the algorithm, such
that T3 = (T1 ∪ {ei})− {ej} is a spanning tree.

Notice that i < j , since otherwise ej would have been rejected from
T and thus would form a cycle in T and so also in T1.

Therefore c(ei) ≤ c(ej), so c(T3) ≤ c(T1), so T3 must also be a
MCST. Since T ∪ {ei} ⊆ T3, it follows that T ∪ {ei} is promising.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Promising - 22/37

Jobs with deadlines and profits

n jobs and one processor

each job has a deadline and a profit, but all have duration 1

We think of a schedule S as consisting of a sequence of job “slots”
1, 2, 3, . . ., where S(t) is the job scheduled in slot t.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 23/37

A schedule is an array S(1),S(2), . . . ,S(d) where d = max di , that
is, d is the latest deadline, beyond which no jobs can be scheduled.

If S(t) = i , then job i is scheduled at time t, 1 ≤ t ≤ d .

If S(t) = 0, then no job is scheduled at time t.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 24/37

A schedule S is feasible if it satisfies two conditions:

Condition 1: If S(t) = i > 0, then t ≤ di , i.e., every scheduled
job meets its deadline.

Condition 2: If t1 6= t2 and also S(t1) 6= 0, then S(t1) 6= S(t2),
i.e., each job is scheduled at most once.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 25/37

Job Scheduling A2.3

1: Sort the jobs in non-increasing order of profits:
g1 ≥ g2 ≥ . . . ≥ gn

2: d ←− maxi di
3: for t : 1..d do
4: S(t)←− 0
5: end for
6: for i : 1..n do
7: Find the largest t such that S(t) = 0 and t ≤ di ,

S(t)←− i
8: end for

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 26/37

A schedule is promising if it can be extended to an optimal
schedule.

Schedule S ′ extends schedule S if for all 1 ≤ t ≤ d , if S(t) 6= 0,
then S(t) = S ′(t).

For example, S ′ = (2, 0, 1, 0, 3) extends S = (2, 0, 0, 0, 3).

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 27/37

We show by induction that S is promising is a loop invariant.

Basis case is easy

Induction step: Suppose that S is promising, and let Sopt be some
optimal schedule that extends S .

Let S ′ be the result of one more iteration through the loop where
job i is considered.

We must prove that S ′ continues being promising, so the goal is to
show that there is an optimal schedule S ′

opt that extends S ′.

S = 0 0 j

Sopt = 0 i j

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 28/37

We consider two cases: job i can/cannot be scheduled

job i cannot be scheduled: easy

job i is scheduled at time t0

job i is scheduled at time t0, so S ′(t0) = i (whereas S(t0) = 0)
and t0 is the latest possible time for job i in the schedule S .

We have two subcases.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 29/37

Subcase a: job i is scheduled in Sopt at time t1:

If t1 = t0, then, as in case 1, just let S ′
opt = Sopt.

If t1 < t0, then let S ′
opt be Sopt except that we interchange t0 and

t1, that is we let S ′
opt(t0) = Sopt(t1) = i and S ′

opt(t1) = Sopt(t0).
Then S ′

opt is feasible (why 1?), it extends S ′ (why 2?), and
P(S ′

opt) = P(Sopt) (why 3?).

The case t1 > t0 is not possible (why 4?).

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 30/37

Subcase b: job i is not scheduled in Sopt. Then we simply define
S ′
opt to be the same as Sopt, except S ′

opt(t0) = i . Since Sopt is
feasible, so is S ′

opt, and since S ′
opt extends S ′, we only have to

show that P(S ′
opt) = P(Sopt).

Claim: Let Sopt(t0) = j . Then gj ≤ gi .

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 31/37

We prove the claim by contradiction: assume that gj > gi (note
that in this case j 6= 0). Then job j was considered before job i .
Since job i was scheduled at time t0, job j must have been
scheduled at time t2 6= t0 (we know that job j was scheduled in S
since S(t0) = 0, and t0 ≤ dj , so there was a slot for job j , and
therefore it was scheduled). But Sopt extends S , and
S(t2) = j 6= Sopt(t2)—contradiction.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 32/37

Make Change A2.4

1. What would be the natural greedy alg for making change?

2. Does it work with all currencies?

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 33/37

Maximum weight matching

(Application to network switches.)

Let G = (V1 ∪ V2,E) be a bipartite, i.e, a graph with edge set
E ⊆ V1 × V2 with disjoint sets V1 and V2. w : E −→ N assigns a
weight w(e) ∈ N to each edge e ∈ E = {e1, . . . , em}.

A matching for G is a subset M ⊆ E such that no two edges in M
share a common vertex. The weight of M is w(M) =

∑
e∈M w(e).

What would be a natural Greedy alg?

See Problem 2.29 and Algorithm 2.6 given in its solution

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 34/37

Maximum weight matching

(Application to network switches.)

Let G = (V1 ∪ V2,E) be a bipartite, i.e, a graph with edge set
E ⊆ V1 × V2 with disjoint sets V1 and V2. w : E −→ N assigns a
weight w(e) ∈ N to each edge e ∈ E = {e1, . . . , em}.

A matching for G is a subset M ⊆ E such that no two edges in M
share a common vertex. The weight of M is w(M) =

∑
e∈M w(e).

What would be a natural Greedy alg?

See Problem 2.29 and Algorithm 2.6 given in its solution

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 34/37

Shortest path

Application to OSPF: Open Shortest Path First, see RFC 2328

•s

��
u• e // •v

d ′(v) = min
u∈S ,e=(u,v)

d(u) + c(e).

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 35/37

Huffman Codes A2.5

Suppose that we have a string s over the alphabet {a, b, c, d, e, f},
and |s| = 100.

Suppose also that the characters in s occur with the frequencies
44, 14, 11, 17, 8, 6, respectively.

As there are six characters, if we were using fixed-length binary
codewords to represent them we would require three bits, and so
300 characters to represent the string.

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 36/37

100

a:44 56

25

c:11 b:14

31

14

f:6 e:8

d:17

IAA Chp 2 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Jobs - 37/37

	Introduction
	MCST
	Kruskal's Algorithm
	Promising
	Jobs

