Intro to Analysis of Algorithms Greedy
 Chapter 2

Michael Soltys

CSU Channel Islands
[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

MCST

Given a directed or undirected graph $G=(V, E)$ its adjacency matrix is a matrix A_{G} of size $n \times n$, where $n=|V|$, such that entry (i, j) is 1 if (i, j) is an edge in G, and it is 0 otherwise.

An adjacency matrix can be encoded as a string over $\{0,1\}$.
That is, given A_{G} of size $n \times n$, let $s_{G} \in\{0,1\}^{n^{2}}$, where s_{G} is simply the concatenation of the rows of A_{G}.

We can check directly from s_{G} if (i, j) is an edge by checking if position $(i-1) n+j$ in s_{G} contains a 1 .

Definitions:

- undirected graph
- path
- connected
- cycle / acyclic
- tree
- spanning tree

Every tree with n nodes has exactly $n-1$ edges.
Claim 1: Every tree has a leaf.
Proof: A leaf is by definition a node with less than 2 edges adjacent on it. If a graph does not have a leaf, then it has a cycle: pick any node, leave it by one of its edges, arrive at a new node...

Claim 2: Every tree of n nodes has exactly $n-1$ edges.
Proof: By induction on n. BC: $n=1$ is trivial. Then consider a tree T of $n+1$ nodes; pick a leaf (it has one by Claim 1). Remove the leaf and its edge, and obtain a new tree T^{\prime} (why is T^{\prime} a tree?). Apply IH to T^{\prime} and conclude T is a tree.

We are interested in finding a minimum cost spanning tree for G, assuming that each edge e is assigned a cost $c(e)$.

The understanding is that the costs are non-negative real number, i.e., each $c(e)$ is in \mathbb{R}^{+}.

The total cost $c(T)$ is the sum of the costs of the edges in T.
We say that T is a minimum cost spanning tree (MCST) for G if T is a spanning tree for G and given any spanning tree T^{\prime} for G, $c(T) \leq c\left(T^{\prime}\right)$.

Encodings

Difference between encoding and encryption. ASCII is an encoding; Caesar cipher is an encryption.

For example, the 7 -bit word 1000001 represents (in ASCII) the letter 'A' and the word 0100110 represents ' $\&$ '.

With 7 bits we can encode ...
Encodings are a convention for representing data. In Computer Science all data is eventually encoded as a string over the binary alphabet $\Sigma=\{0,1\}$.

Encoding of a Graph

Kruskal's Algorithm (A2.1)

1: Sort the edges: $c\left(e_{1}\right) \leq c\left(e_{2}\right) \leq \ldots \leq c\left(e_{m}\right)$
2: $T \longleftarrow \emptyset$
3: for $i: 1 . . m$ do
4:
if $T \cup\left\{e_{i}\right\}$ has no cycle then
5: $\quad T \longleftarrow T \cup\left\{e_{i}\right\}$
6: end if
7: end for

But how do we test for a cycle, i.e., execute line 4 in the algorithm?
At the end of each iteration of the for-loop, the set T of edges divides the vertices V into a collection V_{1}, \ldots, V_{k} of connected components.

That is, V is the disjoint union of V_{1}, \ldots, V_{k}, each V_{i} forms a connected graph using edges from T, and no edge in T connects V_{i} and V_{j}, if $i \neq j$.

A simple way to keep track of V_{1}, \ldots, V_{k} is to use an array $D[i]$ where $D[i]=j$ if vertex $i \in V_{j}$.

Initialize D by setting $D[i] \longleftarrow i$ for every $i=1,2, \ldots, n$.
To check whether $e_{i}=(r, s)$ forms a cycle within T, it is enough to check whether $D[r]=D[s]$.

If e_{i} does not form a cycle within T, then we update:
$T \longleftarrow T \cup\{(r, s)\}$, and we merge the component $D[r]$ with $D[s]$ as shown in the algorithm in the next slide.

Merging Components (A2.2)

```
1: \(k \longleftarrow D[r]\)
2: \(l \longleftarrow D[s]\)
3: for \(j: 1 . . n\) do
4: if \(D[j]=/\) then
5: \(\quad D[j] \longleftarrow k\)
6: end if
7: end for
```

We now prove that Kruskal's algorithm works.
It is not immediately clear that Kruskal's algorithm yields a spanning tree, let alone a MCST.

To see that the resulting collection T of edges is a spanning tree for G, assuming that G is connected, we must show that (V, T) is connected and acyclic.

It is obvious that T is acyclic, because we never add an edge that results in a cycle.

To show that (V, T) is connected, we reason as follows. Let u and v be two distinct nodes in V.

Since G is connected, there is a path p connecting u and v in G. The algorithm considers each edge e_{i} of G in turn, and puts e_{i} in T unless $T \cup\left\{e_{i}\right\}$ forms a cycle.

But in the latter case, there must already be a path in T connecting the end points of e_{i}, so deleting e_{i} does not disconnect the graph.

This argument can be formalized by showing that the following statement is an invariant of the loop in Kruskal's algorithm:

The edge set $T \cup\left\{e_{i+1}, \ldots, e_{m}\right\}$ connects all nodes in V.

Promising

We say T is promising if it can be extended to a MCST with edges that have not been considered yet.
" T is promising"
is a loop invariant of Kruskal's algorithm.

Exchange Lemma (Lemma 2.11)

Let G be a connected graph, and let T_{1} and T_{2} be any two spanning trees for G. For every edge e in $T_{2}-T_{1}$ there is an edge e^{\prime} in $T_{1}-T_{2}$ such that $T_{1} \cup\{e\}-\left\{e^{\prime}\right\}$ is a spanning tree for G.

Example run

Iteration	Edge	Current T	MCST extending T
0		\emptyset	$\left\{e_{1}, e_{3}, e_{4}, e_{7}\right\}$
1	e_{1}	$\left\{e_{1}\right\}$	$\left\{e_{1}, e_{3}, e_{4}, e_{7}\right\}$
2	e_{2}	$\left\{e_{1}, e_{2}\right\}$	$\left\{e_{1}, e_{2}, e_{4}, e_{7}\right\}$
3	e_{3}	$\left\{e_{1}, e_{2}\right\}$	$\left\{e_{1}, e_{2}, e_{4}, e_{7}\right\}$
4	e_{4}	$\left\{e_{1}, e_{2}, e_{4}\right\}$	$\left\{e_{1}, e_{2}, e_{4}, e_{7}\right\}$
5	e_{5}	$\left\{e_{1}, e_{2}, e_{4}\right\}$	$\left\{e_{1}, e_{2}, e_{4}, e_{7}\right\}$
6	e_{6}	$\left\{e_{1}, e_{2}, e_{4}, e_{6}\right\}$	$\left\{e_{1}, e_{2}, e_{4}, e_{6}\right\}$
7	e_{7}	$\left\{e_{1}, e_{2}, e_{4}, e_{6}\right\}$	$\left\{e_{1}, e_{2}, e_{4}, e_{6}\right\}$

We show the loop invariant.
Basis Case is easy.
Induction Step: assume T is promising; show it continues being promising after one more iteration of the loop.

Suppose edge e_{i} has been considered.
Case 1: e_{i} is rejected

Case 2: e_{i} is accepted. We must show $T \cup\left\{e_{i}\right\}$ is still promising.
We must show that $T \cup\left\{e_{i}\right\}$ is still promising. Since T is promising, there is a MCST T_{1} such that $T \subseteq T_{1}$. We consider two subcases.

Subcase a: $e_{i} \in T_{1}$. Then obviously $T \cup\left\{e_{i}\right\}$ is promising.

Subcase b: $e_{i} \notin T_{1}$.
According to the Exchange Lemma, there is an edge e_{j} in $T_{1}-T_{2}$, where T_{2} is the spanning tree resulting from the algorithm, such that $T_{3}=\left(T_{1} \cup\left\{e_{i}\right\}\right)-\left\{e_{j}\right\}$ is a spanning tree.

Notice that $i<j$, since otherwise e_{j} would have been rejected from T and thus would form a cycle in T and so also in T_{1}.

Therefore $c\left(e_{i}\right) \leq c\left(e_{j}\right)$, so $c\left(T_{3}\right) \leq c\left(T_{1}\right)$, so T_{3} must also be a MCST. Since $T \cup\left\{e_{i}\right\} \subseteq T_{3}$, it follows that $T \cup\left\{e_{i}\right\}$ is promising.

Jobs with deadlines and profits

n jobs and one processor
each job has a deadline and a profit, but all have duration 1
We think of a schedule S as consisting of a sequence of job "slots" $1,2,3, \ldots$, where $S(t)$ is the job scheduled in slot t.

A schedule is an array $S(1), S(2), \ldots, S(d)$ where $d=\max d_{i}$, that is, d is the latest deadline, beyond which no jobs can be scheduled.

If $S(t)=i$, then job i is scheduled at time $t, 1 \leq t \leq d$.
If $S(t)=0$, then no job is scheduled at time t.

A schedule S is feasible if it satisfies two conditions:
Condition 1: If $S(t)=i>0$, then $t \leq d_{i}$, i.e., every scheduled job meets its deadline.

Condition 2: If $t_{1} \neq t_{2}$ and also $S\left(t_{1}\right) \neq 0$, then $S\left(t_{1}\right) \neq S\left(t_{2}\right)$, i.e., each job is scheduled at most once.

Job Scheduling A2.3

1: Sort the jobs in non-increasing order of profits:

$$
g_{1} \geq g_{2} \geq \ldots \geq g_{n}
$$

2: $d \longleftarrow \max _{i} d_{i}$
3: for $t: 1 . . d$ do
4: $S(t) \longleftarrow 0$
5: end for
6: for $i: 1 . . n$ do
7: \quad Find the largest t such that $S(t)=0$ and $t \leq d_{i}$, $S(t) \longleftarrow i$
8: end for

A schedule is promising if it can be extended to an optimal schedule.

Schedule S^{\prime} extends schedule S if for all $1 \leq t \leq d$, if $S(t) \neq 0$, then $S(t)=S^{\prime}(t)$.

For example, $S^{\prime}=(2,0,1,0,3)$ extends $S=(2,0,0,0,3)$.

We show by induction that S is promising is a loop invariant.
Basis case is easy
Induction step: Suppose that S is promising, and let $S_{\text {opt }}$ be some optimal schedule that extends S.

Let S^{\prime} be the result of one more iteration through the loop where job i is considered.

We must prove that S^{\prime} continues being promising, so the goal is to show that there is an optimal schedule $S_{\text {opt }}^{\prime}$ that extends S^{\prime}.

$$
\begin{aligned}
S & =\begin{array}{|l|l|l|l|l|l|l|l|}
\hline & 0 & & 0 & & j & \\
\hline
\end{array} \\
S_{\mathrm{opt}} & =\begin{array}{|l|l|l|l|l|l|}
\hline & 0 & & i & & j \\
\hline
\end{array}
\end{aligned}
$$

We consider two cases: job i can/cannot be scheduled job i cannot be scheduled: easy
job i is scheduled at time t_{0}
job i is scheduled at time t_{0}, so $S^{\prime}\left(t_{0}\right)=i\left(\right.$ whereas $\left.S\left(t_{0}\right)=0\right)$ and t_{0} is the latest possible time for job i in the schedule S.

We have two subcases.

Subcase a: job i is scheduled in $S_{\text {opt }}$ at time t_{1} :
If $t_{1}=t_{0}$, then, as in case 1 , just let $S_{\mathrm{opt}}^{\prime}=S_{\mathrm{opt}}$.
If $t_{1}<t_{0}$, then let $S_{\mathrm{opt}}^{\prime}$ be S_{opt} except that we interchange t_{0} and t_{1}, that is we let $S_{\mathrm{opt}}^{\prime}\left(t_{0}\right)=S_{\mathrm{opt}}\left(t_{1}\right)=i$ and $S_{\mathrm{opt}}^{\prime}\left(t_{1}\right)=S_{\mathrm{opt}}\left(t_{0}\right)$. Then $S_{\text {opt }}^{\prime}$ is feasible (why 1?), it extends S^{\prime} (why 2 ?), and $P\left(S_{\mathrm{opt}}^{\prime}\right)=P\left(S_{\mathrm{opt}}\right)$ (why 3 ?).

The case $t_{1}>t_{0}$ is not possible (why 4?).

Subcase b: job i is not scheduled in $S_{\text {opt }}$. Then we simply define $S_{\mathrm{opt}}^{\prime}$ to be the same as S_{opt}, except $S_{\mathrm{opt}}^{\prime}\left(t_{0}\right)=i$. Since S_{opt} is feasible, so is $S_{\mathrm{opt}}^{\prime}$, and since $S_{\mathrm{opt}}^{\prime}$ extends S^{\prime}, we only have to show that $P\left(S_{\mathrm{opt}}^{\prime}\right)=P\left(S_{\mathrm{opt}}\right)$.

Claim: Let $S_{\mathrm{opt}}\left(t_{0}\right)=j$. Then $g_{j} \leq g_{i}$.

We prove the claim by contradiction: assume that $g_{j}>g_{i}$ (note that in this case $j \neq 0$). Then job j was considered before job i. Since job i was scheduled at time t_{0}, job j must have been scheduled at time $t_{2} \neq t_{0}$ (we know that job j was scheduled in S since $S\left(t_{0}\right)=0$, and $t_{0} \leq d_{j}$, so there was a slot for job j, and therefore it was scheduled). But $S_{\text {opt }}$ extends S, and $S\left(t_{2}\right)=j \neq S_{\mathrm{opt}}\left(t_{2}\right)$-contradiction.

Make Change A2.4

1. What would be the natural greedy alg for making change?
2. Does it work with all currencies?

Maximum weight matching

(Application to network switches.)
Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a bipartite, i.e, a graph with edge set $E \subseteq V_{1} \times V_{2}$ with disjoint sets V_{1} and $V_{2} . w: E \longrightarrow \mathbb{N}$ assigns a weight $w(e) \in \mathbb{N}$ to each edge $e \in E=\left\{e_{1}, \ldots, e_{m}\right\}$.

A matching for G is a subset $M \subseteq E$ such that no two edges in M share a common vertex. The weight of M is $w(M)=\sum_{e \in M} w(e)$.

What would be a natural Greedy alg?

Maximum weight matching

(Application to network switches.)
Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a bipartite, i.e, a graph with edge set $E \subseteq V_{1} \times V_{2}$ with disjoint sets V_{1} and $V_{2} . w: E \longrightarrow \mathbb{N}$ assigns a weight $w(e) \in \mathbb{N}$ to each edge $e \in E=\left\{e_{1}, \ldots, e_{m}\right\}$.

A matching for G is a subset $M \subseteq E$ such that no two edges in M share a common vertex. The weight of M is $w(M)=\sum_{e \in M} w(e)$.

What would be a natural Greedy alg?
See Problem 2.29 and Algorithm 2.6 given in its solution

Shortest path

Application to OSPF: Open Shortest Path First, see RFC 2328

Huffman Codes A2.5

Suppose that we have a string s over the alphabet $\{a, b, c, d, e, f\}$, and $|s|=100$.

Suppose also that the characters in s occur with the frequencies $44,14,11,17,8,6$, respectively.

As there are six characters, if we were using fixed-length binary codewords to represent them we would require three bits, and so 300 characters to represent the string.

