Intro to Analysis of Algorithms Divide \& Conquer Chapter 3

Michael Soltys

CSU Channel Islands
[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

Herman Hollerith, 1860-1929

Suppose that we have two lists of numbers that are already sorted.
That is, we have a list $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{m}$.
We want to combine those two lists into one long sorted list $c_{1} \leq c_{2} \leq \cdots \leq c_{n+m}$.

The mergesort algorithm sorts a given list of numbers by first dividing them into two lists of length $\lceil n / 2\rceil$ and $\lfloor n / 2\rfloor$, respectively, then sorting each list recursively, and finally combining the results.

```
Pre-condition: \(a_{1} \leq a_{2} \leq \cdots \leq a_{n}\) and \(b_{1} \leq b_{2} \leq \cdots \leq b_{m}\)
    1: \(p_{1} \longleftarrow 1 ; p_{2} \longleftarrow 1 ; i \longleftarrow 1\)
    2: while \(i \leq n+m\) do
    3: \(\quad\) if \(a_{p_{1}} \leq b_{p_{2}}\) then
    4:
    5: \(\quad p_{1} \longleftarrow p_{1}+1\)
    6: else
    7: \(\quad c_{i} \longleftarrow b_{p_{1}}\)
    8: \(\quad p_{2} \longleftarrow p_{2}+1\)
    9: end if
    10:
    \(i \longleftarrow i+1\)
    11: end while
    Post-condition: \(c_{1} \leq c_{2} \leq \cdots \leq c_{n+m}\)
```

Pre-condition: A list of integers $a_{1}, a_{2}, \ldots, a_{n}$
1: $L \longleftarrow a_{1}, a_{2}, \ldots, a_{n}$
2: if $|L| \leq 1$ then
3: return L
4: else
5: $\quad L_{1} \longleftarrow$ first $\lceil n / 2\rceil$ elements of L
6: $\quad L_{2} \longleftarrow$ last $\lfloor n / 2\rfloor$ elements of L
7: \quad return $\operatorname{Merge}\left(\operatorname{Mergesort}\left(L_{1}\right)\right.$, $\operatorname{Mergesort}\left(L_{2}\right)$)
8: end if
Post-condition: $a_{i_{1}} \leq a_{i_{2}} \leq \cdots \leq a_{i_{n}}$

Multiplication

	1	2	3	4	5	6	7	8
x					1	1	1	0
y					1	1	0	1
s_{1}					1	1	1	0
s_{2}				0	0	0	0	
s_{3}			1	1	1	0		
s_{4}		1	1	1	0			
$x \times y$	1	0	1	1	0	1	1	0

Multiply 1110 times 1101 , i.e., 14 times 13. Takes $O\left(n^{2}\right)$ steps.

Clever multiplication

Let x and y be two n-bit integers. We break them up into two smaller $n / 2$-bit integers as follows:

$$
\begin{aligned}
& x=\left(x_{1} \cdot 2^{n / 2}+x_{0}\right) \\
& y=\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) .
\end{aligned}
$$

x_{1} and y_{1} correspond to the high-order bits of x and y, respectively, and x_{0} and y_{0} to the low-order bits of x and y, respectively.

The product of x and y appears as follows in terms of those parts:

$$
\begin{align*}
x y & =\left(x_{1} \cdot 2^{n / 2}+x_{0}\right)\left(y_{1} \cdot 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} \cdot 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) \cdot 2^{n / 2}+x_{0} y_{0} \tag{1}
\end{align*}
$$

A divide and conquer procedure appears surreptitiously. To compute the product of x and y we compute the four products $x_{1} y_{1}, x_{1} y_{0}, x_{0} y_{1}, x_{0} y_{0}$, recursively, and then we combine them to obtain $x y$.

Let $T(n)$ be the number of operations that are required to compute the product of two n-bit integers using the divide and conquer procedure:

$$
\begin{equation*}
T(n) \leq 4 T(n / 2)+c n, \tag{2}
\end{equation*}
$$

since we have to compute the four products $x_{1} y_{1}, x_{1} y_{0}, x_{0} y_{1}, x_{0} y_{0}$ (this is where the $4 T(n / 2)$ factor comes from), and then we have to perform three additions of n-bit integers (that is where the factor $c n$, where c is some constant, comes from).

Notice that we do not take into account the product by 2^{n} and $2^{n / 2}$ as they simply consist in shifting the binary string by an appropriate number of bits to the left (n for 2^{n} and $n / 2$ for $2^{n / 2}$). These shift operations are inexpensive, and can be ignored in the complexity analysis.

It appears that we have to make four recursive calls; that is, we need to compute the four multiplications $x_{1} y_{1}, x_{1} y_{0}, x_{0} y_{1}, x_{0} y_{0}$.

But we can get away with only three multiplications, and hence three recursive calls: $x_{1} y_{1}, x_{0} y_{0}$ and $\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)$; the reason being that

$$
\begin{equation*}
\left(x_{1} y_{0}+x_{0} y_{1}\right)=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-\left(x_{1} y_{1}+x_{0} y_{0}\right) . \tag{3}
\end{equation*}
$$

	multiplications	additions	shifts
Method 1	4	3	2
Method 2	3	4	2

Algorithm takes $T(n) \leq 3 T(n / 2)+d n$ operations.
Thus, the running time is $O\left(n^{\log 3}\right) \approx O\left(n^{1.59}\right)$.

Recursive Binary Mult A3.3

Pre-condition: Two n-bit integers x and y
1: if $n=1$ then
2: \quad if $x=1 \wedge y=1$ then
3: return 1
else
5: return 0
6: end if
7: end if
8: $\left(x_{1}, x_{0}\right) \longleftarrow$ (first $\lfloor n / 2\rfloor$ bits, last $\lceil n / 2\rceil$ bits) of x
9: $\left(y_{1}, y_{0}\right) \longleftarrow$ (first $\lfloor n / 2\rfloor$ bits, last $\lceil n / 2\rceil$ bits) of y
10: $z_{1} \longleftarrow \operatorname{Multiply}\left(x_{1}+x_{0}, y_{1}+y_{0}\right)$
11: $z_{2} \longleftarrow \operatorname{Multiply}\left(x_{1}, y_{1}\right)$
12: $z_{3} \longleftarrow \operatorname{Multiply}\left(x_{0}, y_{0}\right)$
13: return $z_{2} \cdot 2^{n}+\left(z_{1}-z_{2}-z_{3}\right) \cdot 2^{\lceil n / 2\rceil}+z_{3}$

Savitch's Algorithm

We have a directed graph, and we want to establish whether we have a path from s to t.

Savitch's algorithm solves the problem in space $O\left(\log ^{2} m\right)$.

$$
\begin{equation*}
\mathrm{R}(G, u, v, i) \Longleftrightarrow(\exists w)[\mathrm{R}(G, u, w, i-1) \wedge \mathrm{R}(G, w, v, i-1)] . \tag{4}
\end{equation*}
$$

```
    1: if i=0 then
    2: if u=v then
    3: return T
    4: else if (u,v) is an edge then
    5: return T
    6: end if
    7: else
    8: for every vertex w do
    9: if R(G,u,w,i-1) and R(G,w,v,i-1) then
    10:
    11: end if
    12: end for
    13: end if
    14: return F
```


Example run

Then the recursion stack would look as follows for the first 6 steps:

		$R(1,4,0)$	F	$R(2,4,0)$	F
		$R(1,1,0)$	T	$R(1,2,0)$	T
	$R(1,4,1)$	$R(1,4,1)$	$R(1,4,1)$	$R(1,4,1)$	$R(1,4,1)$
	$R(1,1,1)$	$R(1,1,1)$	$R(1,1,1)$	$R(1,1,1)$	$R(1,1,1)$
Step 1	Step 2	Step 3	Step 4	Step 5	Step 6

Quicksort \& git bisect

```
qsort [] = []
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger
    where
        smaller = [a | a <- xs, a <= x]
    larger \(=[b \mid \mathrm{b}<-\mathrm{xs}, \mathrm{b}>\mathrm{x}]\)
```

