
Intro to Analysis of Algorithms
Divide & Conquer

Chapter 3

Michael Soltys

CSU Channel Islands

[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Introduction - 1/17

Herman Hollerith, 1860–1929

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Mergesort - 2/17

Suppose that we have two lists of numbers that are already sorted.

That is, we have a list a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bm.

We want to combine those two lists into one long sorted list
c1 ≤ c2 ≤ · · · ≤ cn+m.

The mergesort algorithm sorts a given list of numbers by first
dividing them into two lists of length dn/2e and bn/2c, respectively,
then sorting each list recursively, and finally combining the results.

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Mergesort - 3/17

Pre-condition: a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bm
1: p1 ←− 1; p2 ←− 1; i ←− 1
2: while i ≤ n + m do
3: if ap1 ≤ bp2 then
4: ci ←− ap1
5: p1 ←− p1 + 1
6: else
7: ci ←− bp1
8: p2 ←− p2 + 1
9: end if

10: i ←− i + 1
11: end while
Post-condition: c1 ≤ c2 ≤ · · · ≤ cn+m

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Mergesort - 4/17

Pre-condition: A list of integers a1, a2, . . . , an
1: L←− a1, a2, . . . , an
2: if |L| ≤ 1 then
3: return L
4: else
5: L1 ←− first dn/2e elements of L
6: L2 ←− last bn/2c elements of L
7: return Merge(Mergesort(L1),Mergesort(L2))
8: end if

Post-condition: ai1 ≤ ai2 ≤ · · · ≤ ain

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Mergesort - 5/17

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Mergesort - 6/17

Multiplication

1 2 3 4 5 6 7 8

x 1 1 1 0
y 1 1 0 1

s1 1 1 1 0
s2 0 0 0 0
s3 1 1 1 0
s4 1 1 1 0

x × y 1 0 1 1 0 1 1 0

Multiply 1110 times 1101, i.e., 14 times 13. Takes O(n2) steps.

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Multiplying nrs in binary - 7/17

Clever multiplication

Let x and y be two n-bit integers. We break them up into two
smaller n/2-bit integers as follows:

x = (x1 · 2n/2 + x0),

y = (y1 · 2n/2 + y0).

x1 and y1 correspond to the high-order bits of x and y , respectively,
and x0 and y0 to the low-order bits of x and y , respectively.

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Multiplying nrs in binary - 8/17

The product of x and y appears as follows in terms of those parts:

xy = (x1 · 2n/2 + x0)(y1 · 2n/2 + y0)

= x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0. (1)

A divide and conquer procedure appears surreptitiously. To
compute the product of x and y we compute the four products
x1y1, x1y0, x0y1, x0y0, recursively, and then we combine them to
obtain xy .

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Multiplying nrs in binary - 9/17

Let T (n) be the number of operations that are required to
compute the product of two n-bit integers using the divide and
conquer procedure:

T (n) ≤ 4T (n/2) + cn, (2)

since we have to compute the four products x1y1, x1y0, x0y1, x0y0
(this is where the 4T (n/2) factor comes from), and then we have
to perform three additions of n-bit integers (that is where the
factor cn, where c is some constant, comes from).

Notice that we do not take into account the product by 2n and
2n/2 as they simply consist in shifting the binary string by an
appropriate number of bits to the left (n for 2n and n/2 for 2n/2).
These shift operations are inexpensive, and can be ignored in the
complexity analysis.

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Multiplying nrs in binary - 10/17

It appears that we have to make four recursive calls; that is, we
need to compute the four multiplications x1y1, x1y0, x0y1, x0y0.

But we can get away with only three multiplications, and hence
three recursive calls: x1y1, x0y0 and (x1 + x0)(y1 + y0); the reason
being that

(x1y0 + x0y1) = (x1 + x0)(y1 + y0)− (x1y1 + x0y0). (3)

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Multiplying nrs in binary - 11/17

multiplications additions shifts

Method 1 4 3 2
Method 2 3 4 2

Algorithm takes T (n) ≤ 3T (n/2) + dn operations.

Thus, the running time is O(nlog 3) ≈ O(n1.59).

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Multiplying nrs in binary - 12/17

Recursive Binary Mult A3.3

Pre-condition: Two n-bit integers x and y
1: if n = 1 then
2: if x = 1 ∧ y = 1 then
3: return 1
4: else
5: return 0
6: end if
7: end if
8: (x1, x0)←− (first bn/2c bits, last dn/2e bits) of x
9: (y1, y0)←− (first bn/2c bits, last dn/2e bits) of y

10: z1 ←− Multiply(x1 + x0, y1 + y0)
11: z2 ←− Multiply(x1, y1)
12: z3 ←− Multiply(x0, y0)
13: return z2 · 2n + (z1 − z2 − z3) · 2dn/2e + z3

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Multiplying nrs in binary - 13/17

Savitch’s Algorithm

We have a directed graph, and we want to establish whether we
have a path from s to t.

Savitch’s algorithm solves the problem in space O(log2m).

R(G , u, v , i) ⇐⇒ (∃w)[R(G , u,w , i − 1)∧R(G ,w , v , i − 1)]. (4)

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Savitch’s Algorithm - 14/17

1: if i = 0 then
2: if u = v then
3: return T
4: else if (u, v) is an edge then
5: return T
6: end if
7: else
8: for every vertex w do
9: if R(G , u,w , i − 1) and R(G ,w , v , i − 1) then

10: return T
11: end if
12: end for
13: end if
14: return F

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Savitch’s Algorithm - 15/17

Example run

•1 •2 •3 •4

Then the recursion stack would look as follows for the first 6 steps:

R(1, 4, 0) F R(2, 4, 0) F
R(1, 1, 0) T R(1, 2, 0) T

R(1, 4, 1) R(1, 4, 1) R(1, 4, 1) R(1, 4, 1) R(1, 4, 1)
R(1, 1, 1) R(1, 1, 1) R(1, 1, 1) R(1, 1, 1) R(1, 1, 1)

R(1, 4, 2) R(1, 4, 2) R(1, 4, 2) R(1, 4, 2) R(1, 4, 2) R(1, 4, 2)

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Savitch’s Algorithm - 16/17

Quicksort & git bisect

qsort [] = []

qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger

where

smaller = [a | a <- xs, a <= x]

larger = [b | b <- xs, b > x]

IAA Chp 3 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Savitch’s Algorithm - 17/17

	Introduction
	Mergesort
	Multiplying nrs in binary
	Savitch's Algorithm

