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Herman Hollerith, 1860-1929

IAA Chp 3 - Michael Soltys (© February 5, 2019 (£93cc40; ed3) Mergesort - 2/17



Suppose that we have two lists of numbers that are already sorted.
Thatis, we havealista; < apy <---<apand by < bp < --- < byy,.

We want to combine those two lists into one long sorted list
a<ao<---< Cn+m-

The mergesort algorithm sorts a given list of numbers by first
dividing them into two lists of length [n/2] and |n/2], respectively,
then sorting each list recursively, and finally combining the results.
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Pre-condition: a; < ay <---<ajand by < by <--- < by,
Lpr—1, pp+—1 i1
2: while i < n+ mdo

3: if a,, < by, then

4: Ci < ap,

5: pr<—p1+1
6: else

T: Ci < bp1

8: p2<+— p2+1
9: end if

10: i<—i+1

11: end while
Post-condition: ¢; < o < - < chym
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Pre-condition: A list of integers a1, a»,...,an

1. L<—ay,ay,...,an

2: if |L| <1 then

3: return L

4: else

5 Ly «— first [n/2] elements of L

6: Ly <— last |n/2] elements of L

7: return Merge(Mergesort(L1), Mergesort(L5))
8: end if

Post-condition: a; < a;, <--- < a;,
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Multiplication

1 2 3 45 6 7 8
X 1 1 1 0
y 1 1 0 1
S1 1 1 1 0
S 0 0 0 O
s3 1 1 1 0
S4 1 1 0
xxy |1l 0 1 01 10

Multiply 1110 times 1101, i.e., 14 times 13. Takes O(n?) steps.
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Clever multiplication

Let x and y be two n-bit integers. We break them up into two
smaller n/2-bit integers as follows:

x = (x1- 2% 4+ xp),
y=n-2"%+y).

x1 and yj correspond to the high-order bits of x and y, respectively,
and xp and yp to the low-order bits of x and y, respectively.
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The product of x and y appears as follows in terms of those parts:
xy = (x1-2"% 4 x0) (1 - 2" + y0)
= x1y1 - 2"+ (xiy0 + xoy1) - 272 + xo¥0- (1)

A divide and conquer procedure appears surreptitiously. To
compute the product of x and y we compute the four products
X1Y1, X1Y0, XoY1, XoYo, recursively, and then we combine them to
obtain xy.
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Let T(n) be the number of operations that are required to
compute the product of two n-bit integers using the divide and
conquer procedure:

T(n) <4T(n/2) + cn, (2)

since we have to compute the four products x1 y1, x1 0, Xo¥1, X0 Yo
(this is where the 4T (n/2) factor comes from), and then we have
to perform three additions of n-bit integers (that is where the
factor cn, where c is some constant, comes from).

Notice that we do not take into account the product by 2" and
2"/2 3s they simply consist in shifting the binary string by an
appropriate number of bits to the left (n for 2" and n/2 for 2"/2).
These shift operations are inexpensive, and can be ignored in the
complexity analysis.
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It appears that we have to make four recursive calls; that is, we
need to compute the four multiplications xiy1, x1 Y0, Xo¥1, X0Y0-

But we can get away with only three multiplications, and hence
three recursive calls: x1y1, xoyo and (x1 + x0)(y1 + yo); the reason
being that

(x1yo + xoy1) = (x1 + x0)(y1 + y0) — (x1y1 + x0y0).  (3)
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‘ multiplications additions shifts
Method 1 4 3 2
Method 2 3 4 2

Algorithm takes T(n) < 3T(n/2) + dn operations.

Thus, the running time is O(n'°83) ~ O(n'5?).
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Recursive Binary Mult A3.3

Pre-condition: Two n-bit integers x and y

1:

e e
w N RO

if n=1 then
if x=1Ay =1 then
return 1
else
return 0
end if
end if

(x1,x0) «— (first [n/2] bits, last [n/2] bits) of x
(y1,y0) <— (first | n/2] bits, last [n/2] bits) of y
71 +— Multiply(x1 + x0, y1 + ¥0)

. zp «— Multiply(xy, y1)
. z3 <— Multiply(xo, yo)
creturn 222"+ (z; —zp — z3) - 21n/21 4 23
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Savitch’s Algorithm

We have a directed graph, and we want to establish whether we
have a path from s to t.

Savitch's algorithm solves the problem in space O(log? m).

R(G,u,v,i) <= (3w)[R(G,u,w,i—1)AR(G,w,v,i—1)]. (4)
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1: if i =0 then

2: if u=v then

3: return T

4: else if (u, v) is an edge then
5: return T

6: end if

7: else

8: for every vertex w do

0: if R(G,u,w,i—1) and R(G,w,v,i— 1) then
10: return T

11: end if

12: end for

13: end if

14: return F
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Example run

ol o2 o3 o*

Then the recursion stack would look as follows for the first 6 steps:

R(1,4,0) F R(2,4,0) F
R(1,1,0) T R(1,2,0) T
R(1,4,1) | R(1,4,1) | R(1,4,1) | R(1,4,1) | R(1,4,1)
R(1,1,1) | R(1,1,1) | R(1,1,1) | R(1,1,1) | R(1,1,1)
R(1,4,2) | R(1,4,2) | R(1,4,2) | R(1,4,2) | R(1,4,2) | R(1,4,2)
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
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Quicksort & git bisect

gsort []1 = []
gsort (x:xs) = gsort smaller ++ [x] ++ gsort larger
where

smaller = [a | a <- xs, a <= x]
larger = [b | b <- xs, b > x]
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