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Longest Monotone Subsequence

Input: d , a1, a2, . . . , ad ∈ N.
Output: L = length of the longest monotone non-decreasing
subsequence.

Note that a subsequence need not be consecutive, that is
ai1 , ai2 , . . . , aik is a monotone subsequence provided that

1 ≤ i1 < i2 < . . . < ik ≤ d ,

ai1 ≤ ai2 ≤ . . . ≤ aik .
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Dynamic Prog approach

1. Define an array of sub-problems

2. Find the recurrence

3. Write the algorithm
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We first define an array of subproblems: R(j) = length of the
longest monotone subsequence which ends in aj . The answer can
be extracted from array R by computing L = max1≤j≤n R(j).

The next step is to find a recurrence. Let R(1) = 1, and for j > 1,

R(j) =

{
1 if ai > aj for all 1 ≤ i < j

1 + max1≤i<j{R(i)|ai ≤ aj} otherwise
.
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1: R(1)← 1
2: for j : 2..d do
3: max← 0
4: for i : 1..j − 1 do
5: if R(i) > max and ai ≤ aj then
6: max← R(i)
7: end if
8: end for
9: R(j)← max +1

10: end for
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Questions

1. Once R has been computed how do we build the actual
monotone subsequence?
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All pairs shortest path

Input: Directed graph G = (V ,E ), V = {1, 2, . . . , n}, and a cost
function C (i , j) ∈ N+ ∪ {∞}, 1 ≤ i , j ≤ n, C (i , j) =∞ if (i , j) is
not an edge.
Output: An array D, where D(i , j) the length of the shortest
directed path from i to j .
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Exponentially many paths Problem: 4.5

s 1 2 3 n

1′ 2′ 3′ n′ t
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Define an array of subproblems: let A(k , i , j) be the length of the
shortest path from i to j such that all intermediate nodes on the
path are in {1, 2, . . . , k}. Then A(n, i , j) = D(i , j) will be the
solution. The convention is that if k = 0 then {1, 2, . . . , k} = ∅.
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Define a recurrence: we first initialize the array for k = 0 as
follows: A(0, i , j) = C (i , j).

Now we want to compute A(k , i , j) for k > 0.

To design the recurrence, notice that the shortest path between i
and j either includes k or does not.

Assume we know A(k − 1, r , s) for all r , s.

Suppose node k is not included. Then, obviously,
A(k, i , j) = A(k − 1, i , j).

If, on the other hand, node k occurs on a shortest path, then it
occurs exactly once, so A(k , i , j) = A(k − 1, i , k) + A(k − 1, k , j).
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Therefore, the shortest path length is obtained by taking the
minimum of these two cases:

A(k, i , j) = min{A(k − 1, i , j),A(k − 1, i , k) + A(k − 1, k , j)}.
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Algorithm 4.2

1: for i : 1..n do
2: for j : 1..n do
3: B(i , j)←− C (i , j)
4: end for
5: end for
6: for k : 1..n do
7: for i : 1..n do
8: for j : 1..n do
9: B(i , j)←− min{B(i , j),B(i , k) +B(k, j)}

10: end for
11: end for
12: end for
13: return D ←− B
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Example

1 2 3

4 5 6

7 8 9

k = 0 can be read directly from the graph
(assume all edges worth 1).
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k = 1

1 ∞ 1 ∞ ∞ ∞ ∞ ∞
1 2 1 ∞ ∞ ∞ ∞

∞ ∞ 1 ∞ ∞ ∞
1 ∞ 1 ∞ ∞

1 ∞ 1 ∞
∞ ∞ 1

1 ∞
1
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k = 2

1 2 1 2 ∞ ∞ ∞ ∞
1 2 1 ∞ ∞ ∞ ∞

3 2 1 ∞ ∞ ∞
1 ∞ 1 ∞ ∞

1 ∞ 1 ∞
∞ ∞ 1

1 ∞
1
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The “overwriting” trick

“Overwriting” not a problem on line 9 of algorithm.
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Bellman-Ford algorithm: §4.2.1

Opt(i , v) = min{Opt(i−1, v),minw∈V {c(v ,w)+Opt(i−1,w)}}

where Opt(i , v) is the shortest i-path from v to t (we want the
shortest path from s to t).
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Knapsack Problem

Input: w1,w2, . . . ,wd ,C ∈ N, where C is the knapsack’s capacity.
Output: maxS{K (S)|K (S) ≤ C}, where S ⊆ [d ] and
K (S) =

∑
i∈S wi .
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First example of an NP-hard problem.
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Define an array of subproblems: we consider the first i weights
(i.e., [i ]) summing up to an intermediate weight limit j .

We define a Boolean array R as follows:

R(i , j) =

{
T if ∃S ⊆ [i ] such that K (S) = j

F otherwise
,

for 0 ≤ i ≤ d and 0 ≤ j ≤ C .

Once we have computed all the values of R we can obtain the
solution M as follows: M = maxj≤C{j |R(d , j) = T}.
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Define a recurrence: we initialize R(0, j) = F for j = 1, 2, . . . ,C ,
and R(i , 0) = T for i = 0, 1, . . . , d .

We now define the recurrence for computing R, for i , j > 0, in a
way that hinges on whether we include object i in the knapsack.

Suppose that we do not include object i . Then, obviously,
R(i , j) = T iff R(i − 1, j) = T.
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Suppose, on the other hand, that object i is included. Then it
must be the case that R(i , j) = T iff R(i − 1, j − wi ) = T and
j − wi ≥ 0, i.e., there is a subset S ⊆ [i − 1] such that K (S) is
exactly j − wi (in which case j ≥ wi ).

IAA Chp 4 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Knapsack problem - 25/45



Putting it all together we obtain the following recurrence for
i , j > 0:

R(i , j) = T ⇐⇒ R(i − 1, j) = T∨ (j ≥ wi ∧R(i − 1, j −wi ) = T).

IAA Chp 4 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Knapsack problem - 26/45



1: S(0)←− T
2: for j : 1..C do
3: S(j)←− F
4: end for
5: for i : 1..d do
6: for decreasing j : C ..1 do
7: if (j ≥ wi and S(j − wi ) = T) then
8: S(j)←− T
9: end if

10: end for
11: end for
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General Knapsack Problem

Input: w1,w2, . . . ,wd , v1, . . . , vd ,C ∈ N
Output: maxS⊆[d ]{V (S)|K (S) ≤ C}, K (S) =

∑
i∈S wi ,

V (S) =
∑

i∈S vi .

V (i , j) = max{V (S)|S ⊆ [i ] and K (S) = j},

for 0 ≤ i ≤ d and 0 ≤ j ≤ C .

Problem: what is the recurrence for this problem?
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Approximating SKS

Greedy “solution” to SKS:

order the weights from heaviest to lightest, keep adding for as long
as possible.

Let M be the optimal solution, and let M̄ be the solution obtained
from the greedy approach.

Performance: 1/2.

IAA Chp 4 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Knapsack problem - 29/45



Let S0 be the set of weights we got from greedy, so K (S0) = M̄.

If S0 = ∅, then M̄ = M.
If S0 = S (all weights in), then M̄ = M.

OTHERWISE:

Assume we throw out weights greater than C (they won’t be
added anyway). Let wj be the first weight that has been rejected,
after some weights have been added . . ..
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Activity Selection

Input: A list of activities (s1, f1, p1), . . . , (sn, fn, pn), where pi > 0,
si < fi and si , fi , pi are non-negative real numbers.
Output: A set S ⊆ [n] of selected activities such that no two
selected activities overlap, and the profit P(S) =

∑
i∈S pi is as

large as possible.

An activity i has a fixed start time si , finish time fi and profit pi .
Given a set of activities, we want to select a subset of
non-overlapping activities with maximum total profit.
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Define an array of subproblems: sort the activities by their finish
times, f1 ≤ f2 ≤ . . . ≤ fn.

As it is possible that activities finish at the same time, we select
the distinct finish times, and denote them u1 < u2 < . . . < uk ,
where, clearly, k ≤ n.

For instance, if we have activities finishing at times 1.24, 4, 3.77,
1.24, 5 and 3.77, then we partition them into four groups:
activities finishing at times u1 = 1.24, u2 = 3.77, u3 = 4, u4 = 5.
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Let u0 be min1≤i≤n si , i.e., the earliest start time. Thus,

u0 < u1 < u2 < . . . < uk ,

as it is understood that si < fi . Define an array A(0..k) as follows:

A(j) = max
S⊆[n]
{P(S)|S is feasible and fi ≤ uj for each i ∈ S},

where S is feasible if no two activities in S overlap. Note that
A(k) is the maximum possible profit for all feasible schedules S .
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Define a recurrence for A(0..k).

In order to give such a recurrence we first define an auxiliary array
H(1..n) such that H(i) is the index of the largest distinct finish
time no greater than the start time of activity i .

Formally, H(i) = ` if ` is the largest number such that u` ≤ si . To
compute H(i), we need to search the list of distinct finish times.

To do it efficiently, for each i , apply the binary search procedure
that runs in logarithmic time in the length of the list of distinct
finish times (try ` = bk2 c first).

Since the length k of the list of distinct finish times is at most n,
and we need to apply binary search for each element of the array
H(1..n), the time required to compute all entries of the array is
O(n log n).
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We initialize A(0) = 0, and we want to compute A(j) given that
we already have A(0), . . . ,A(j − 1).

Consider u0 < u1 < u2 < . . . < uj−1 < uj .

Can we beat profit A(j − 1) by scheduling some activity that
finishes at time uj? Try all activities that finish at this time and
compute maximum profit in each case. We obtain the following
recurrence:

A(j) = max{A(j − 1), max
1≤i≤n

{pi + A(H(i)) | fi = uj}},

where H(i) is the greatest ` such that u` ≤ si .
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�� a ��

�� b ��

�� c ��

oo //◦ ◦ ◦ ◦ ◦ ◦

sb = uH(b) uH(a) sb sc = uH(c) uj−1 uj
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A(0)←− 0
for j : 1..k do

max←− 0
for i = 1..n do

if fi = uj then
if pi + A(H(i)) > max then

max←− pi + A(H(i))
end if

end if
end for
if A(j − 1) > max then

max←− A(j − 1)
end if
A(j)←− max

end for
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Introduction to Complexity
This material is not in the IAA textbook but here:
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A TM M is of time complexity T (n) if whenever M is given an
input w , |w | = n, then M halts after making at most T (n) many
moves.

L ∈ TIME(f (n)) if there exists a deterministic TM M of time
complexity O(f (n)) that decides L.

L ∈ NTIME(f (n)) if there exists a nondeterministic TM M of time
complexity O(f (n)) that decides L.

L is in the class P if L ∈ TIME(nk) for some fixed k .

L is in the class NP if L ∈ NTIME(nk) for some fixed k.
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Observation: P⊆NP; Question: NP⊆P ?

Ex. of a language in P:
{〈G , k〉|G has a spanning tree of weight ≤ k}. (k = 15)

Ex. of a language in NP believed not to be in P:
{〈G , k〉|G has a complete cycle of weight ≤ k}. (k = 16)
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A graph G can be encoded as an adjacency matrix. For example,
the graph given below would have the adjacency matrix given by:

1

3

2

4


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


If P is a decision problem, the related language LP consists of the
encodings (under some fixed convention) of all the “yes” instances
of P.

Feasibility Thesis:

Polynomial time algorithm ≡ polynomial time TM.
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A problem P1 is reducible in polynomial time to a problem P2 if
there exists a polynomial time function f such that:

〈I 〉 ∈ LP1 ⇐⇒ 〈f (I )〉 ∈ LP2

L is NP-complete if:

1. L ∈ NP

2. Every language L′ ∈ NP is polynomial time reducible to L.

Ex. Traveling Salesman Problem

L is NP-complete is evidence of L not being in P

(see Computers and Intractability by Michael Garey and David
Johnson.)

IAA Chp 4 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Complexity - 42/45



Theorem: If P1 is NP-complete, P2 is in NP, and there is a
polynomial time reduction of P1 to P2, then P2 is also
NP-complete.

Proof: Every language L in NP is reducible to LP1 , by
completeness, and P1 is reducible to P2. Enough to show
transitivity of reductions.

Theorem: If some NP-complete problem P is in P, then P=NP.

Proof: Follows from the fact that all languages in NP are
polynomial time reducible to P.
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Satisfiability

Boolean Expressions are built from: Boolean variables x , y , z , . . .,
Boolean values 0, 1, and Boolean connectives: ∨,∧,¬, and
parenthesis.

Ex. ¬x ∨ (y ∧ z)

If φ is a Boolean expression, then a truth assignment T is an
assignment of truth values to the variables of φ.

Ex. T (x) = 0,T (y) = 1,T (z) = 1, then
T (¬x ∨ (y ∧ z)) = ¬0 ∨ (1 ∧ 1) = 1 ∨ 1 = 1.

T satisfies φ if T (φ) = 1, and φ is satisfiable if ∃T s.t. T (φ) = 1.
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The satisfiability problem is: given a Boolean expression, is it
satisfiable?

SAT = {〈φ〉|φ is satisfiable}
(i.e., SAT is the language corresponding to the satisfiability
problem).

Cook’s Theorem: SAT is NP-complete.

PROOF: SAT is in NP.
Let L be any language in NP.
We show there exists a polynomial time function f s.t.:

w ∈ L ⇐⇒ f (w) = φ ∈ SAT

∃ non-det TM M s.t. L = L(M) and M always halts within nk

many steps on inputs w , |w | = n, for fixed k .
Given w , f outputs a Boolean formula φ which encodes a
computation of M on w and is satisfiable ⇐⇒ M accepts w .
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