Intro to Analysis of Algorithms Dynamic Programming Chapter 4

Michael Soltys

CSU Channel Islands
[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

Longest Monotone Subsequence

Input: $d, a_{1}, a_{2}, \ldots, a_{d} \in \mathbb{N}$.
Output: $L=$ length of the longest monotone non-decreasing subsequence.

Note that a subsequence need not be consecutive, that is $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ is a monotone subsequence provided that

$$
\begin{aligned}
& 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq d \\
& a_{i_{1}} \leq a_{i_{2}} \leq \ldots \leq a_{i_{k}}
\end{aligned}
$$

Dynamic Prog approach

1. Define an array of sub-problems
2. Find the recurrence
3. Write the algorithm

We first define an array of subproblems: $R(j)=$ length of the longest monotone subsequence which ends in a_{j}. The answer can be extracted from array R by computing $L=\max _{1 \leq j \leq n} R(j)$.

The next step is to find a recurrence. Let $R(1)=1$, and for $j>1$,

$$
R(j)= \begin{cases}1 & \text { if } a_{i}>a_{j} \text { for all } 1 \leq i<j \\ 1+\max _{1 \leq i<j}\left\{R(i) \mid a_{i} \leq a_{j}\right\} & \text { otherwise }\end{cases}
$$

```
1: R(1)\leftarrow1
2: for j:2..d do
3: }\quad\operatorname{max}\leftarrow
4: for i:1..j-1 do
                                    if R(i)> max and aj \leq aj then
                                    max}\leftarrowR(i
    7: end if
8: end for
9:}\quadR(j)\leftarrow\operatorname{max}+
10: end for
```


Questions

1. Once R has been computed how do we build the actual monotone subsequence?

All pairs shortest path

Input: Directed graph $G=(V, E), V=\{1,2, \ldots, n\}$, and a cost function $C(i, j) \in \mathbb{N}^{+} \cup\{\infty\}, 1 \leq i, j \leq n, C(i, j)=\infty$ if (i, j) is not an edge.
Output: An array D, where $D(i, j)$ the length of the shortest directed path from i to j.

Exponentially many paths Problem: 4.5

Define an array of subproblems: let $A(k, i, j)$ be the length of the shortest path from i to j such that all intermediate nodes on the path are in $\{1,2, \ldots, k\}$. Then $A(n, i, j)=D(i, j)$ will be the solution. The convention is that if $k=0$ then $\{1,2, \ldots, k\}=\emptyset$.

Define a recurrence: we first initialize the array for $k=0$ as follows: $A(0, i, j)=C(i, j)$.

Now we want to compute $A(k, i, j)$ for $k>0$.
To design the recurrence, notice that the shortest path between i and j either includes k or does not.

Assume we know $A(k-1, r, s)$ for all r, s.
Suppose node k is not included. Then, obviously, $A(k, i, j)=A(k-1, i, j)$.

If, on the other hand, node k occurs on a shortest path, then it occurs exactly once, so $A(k, i, j)=A(k-1, i, k)+A(k-1, k, j)$.

Therefore, the shortest path length is obtained by taking the minimum of these two cases:

$$
A(k, i, j)=\min \{A(k-1, i, j), A(k-1, i, k)+A(k-1, k, j)\} .
$$

Algorithm 4.2

Example

$k=0$ can be read directly from the graph (assume all edges worth 1).

$k=1$									
	1	∞	1	∞	∞	∞	∞	∞	
		1	2	1	∞	∞	∞	∞	
			∞	∞	1	∞	∞	∞	
				1	∞	1	∞	∞	
					1	∞	1	∞	
						∞	∞	1	
							1	∞	
								1	

$k=2$										
	1	2	1	2	∞	∞	∞	∞		
		1	2	1	∞	∞	∞	∞		
			3	2	1	∞	∞	∞		
				1	∞	1	∞	∞		
					1	∞	1	∞		
						∞	∞	1		
							1	∞		
								1		

The "overwriting" trick

"Overwriting" not a problem on line 9 of algorithm.

Bellman-Ford algorithm: §4.2.1

$\operatorname{Opt}(i, v)=\min \left\{\operatorname{OPt}(i-1, v), \min _{w \in v}\{c(v, w)+\operatorname{Opt}(i-1, w)\}\right\}$ where $\operatorname{Opt}(i, v)$ is the shortest i-path from v to t (we want the shortest path from s to t).

Knapsack Problem

Input: $w_{1}, w_{2}, \ldots, w_{d}, C \in \mathbb{N}$, where C is the knapsack's capacity.
Output: $\max _{S}\{K(S) \mid K(S) \leq C\}$, where $S \subseteq[d]$ and $K(S)=\sum_{i \in S} w_{i}$.

First example of an NP-hard problem.

WED LIKE EXACTLY \$15. 05 WORTH OF APPETIZERS, PLEASE.

$$
\ldots \text { EXACTLY? UHH ... }
$$

HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO -

- AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRaVELING SALESMAN?

Define an array of subproblems: we consider the first i weights (i.e., [i]) summing up to an intermediate weight limit j.

We define a Boolean array R as follows:

$$
R(i, j)= \begin{cases}\mathrm{T} & \text { if } \exists S \subseteq[i] \text { such that } K(S)=j \\ \mathrm{~F} & \text { otherwise }\end{cases}
$$

for $0 \leq i \leq d$ and $0 \leq j \leq C$.
Once we have computed all the values of R we can obtain the solution M as follows: $M=\max _{j \leq c}\{j \mid R(d, j)=T\}$.

Define a recurrence: we initialize $R(0, j)=\mathrm{F}$ for $j=1,2, \ldots, C$, and $R(i, 0)=\mathrm{T}$ for $i=0,1, \ldots, d$.

We now define the recurrence for computing R, for $i, j>0$, in a way that hinges on whether we include object i in the knapsack.

Suppose that we do not include object i. Then, obviously, $R(i, j)=\mathrm{T}$ iff $R(i-1, j)=\mathrm{T}$.

Suppose, on the other hand, that object i is included. Then it must be the case that $R(i, j)=\mathrm{T}$ iff $R\left(i-1, j-w_{i}\right)=\mathrm{T}$ and $j-w_{i} \geq 0$, i.e., there is a subset $S \subseteq[i-1]$ such that $K(S)$ is exactly $j-w_{i}$ (in which case $j \geq w_{i}$).

R	0	\cdots	$j-w_{i}$	\cdots	j	\cdots	C
0	T	$\mathrm{~F} \cdots \mathrm{~F}$	F	$\mathrm{~F} \cdots \mathrm{~F}$	F	$\mathrm{~F} \cdots \mathrm{~F}$	F
	T						
	\vdots						
	T						
	T		c		b		
	T				\mathbf{a}		
	T						
	\vdots						
	T						
d	T						

Putting it all together we obtain the following recurrence for $i, j>0$:

$$
R(i, j)=\mathrm{T} \Longleftrightarrow R(i-1, j)=\mathrm{T} \vee\left(j \geq w_{i} \wedge R\left(i-1, j-w_{i}\right)=\mathrm{T}\right)
$$

```
    1:}S(0)\longleftarrow\textrm{T
2: for j: 1..C do
3:}\quadS(j)\longleftarrow
4: end for
5: for i:1..d do
6: for decreasing j:C..1 do
7: if (j\geq\mp@subsup{w}{i}{}\mathrm{ and S(j-wi})=\textrm{T})\mathrm{ then}
8:
9: end if
10: end for
11: end for
```


General Knapsack Problem

Input: $w_{1}, w_{2}, \ldots, w_{d}, v_{1}, \ldots, v_{d}, C \in \mathbb{N}$
Output: $\max _{S \subseteq[d]}\{V(S) \mid K(S) \leq C\}, K(S)=\sum_{i \in S} w_{i}$, $V(S)=\sum_{i \in S} v_{i}$.

$$
V(i, j)=\max \{V(S) \mid S \subseteq[i] \text { and } K(S)=j\}
$$

for $0 \leq i \leq d$ and $0 \leq j \leq C$.
Problem: what is the recurrence for this problem?

Approximating SKS

Greedy "solution" to SKS:

order the weights from heaviest to lightest, keep adding for as long as possible.

Let M be the optimal solution, and let \bar{M} be the solution obtained from the greedy approach.

Performance: $1 / 2$.

Let S_{0} be the set of weights we got from greedy, so $K\left(S_{0}\right)=\bar{M}$.
If $S_{0}=\emptyset$, then $\bar{M}=M$.
If $S_{0}=S$ (all weights in), then $\bar{M}=M$.
OTHERWISE:
Assume we throw out weights greater than C (they won't be added anyway). Let w_{j} be the first weight that has been rejected, after some weights have been added

Activity Selection

Input: A list of activities $\left(s_{1}, f_{1}, p_{1}\right), \ldots,\left(s_{n}, f_{n}, p_{n}\right)$, where $p_{i}>0$, $s_{i}<f_{i}$ and s_{i}, f_{i}, p_{i} are non-negative real numbers.
Output: A set $S \subseteq[n]$ of selected activities such that no two selected activities overlap, and the profit $P(S)=\sum_{i \in S} p_{i}$ is as large as possible.

An activity i has a fixed start time s_{i}, finish time f_{i} and profit p_{i}. Given a set of activities, we want to select a subset of non-overlapping activities with maximum total profit.

Define an array of subproblems: sort the activities by their finish times, $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$.

As it is possible that activities finish at the same time, we select the distinct finish times, and denote them $u_{1}<u_{2}<\ldots<u_{k}$, where, clearly, $k \leq n$.

For instance, if we have activities finishing at times 1.24, 4, 3.77, $1.24,5$ and 3.77 , then we partition them into four groups: activities finishing at times $u_{1}=1.24, u_{2}=3.77, u_{3}=4, u_{4}=5$.

Let u_{0} be $\min _{1 \leq i \leq n} s_{i}$, i.e., the earliest start time. Thus,

$$
u_{0}<u_{1}<u_{2}<\ldots<u_{k}
$$

as it is understood that $s_{i}<f_{i}$. Define an array $A(0 . . k)$ as follows:

$$
A(j)=\max _{S \subseteq[n]}\left\{P(S) \mid S \text { is feasible and } f_{i} \leq u_{j} \text { for each } i \in S\right\}
$$

where S is feasible if no two activities in S overlap. Note that $A(k)$ is the maximum possible profit for all feasible schedules S.

Define a recurrence for $A(0 . . k)$.
In order to give such a recurrence we first define an auxiliary array $H(1 . . n)$ such that $H(i)$ is the index of the largest distinct finish time no greater than the start time of activity i.

Formally, $H(i)=\ell$ if ℓ is the largest number such that $u_{\ell} \leq s_{i}$. To compute $H(i)$, we need to search the list of distinct finish times.

To do it efficiently, for each i, apply the binary search procedure that runs in logarithmic time in the length of the list of distinct finish times (try $\ell=\left\lfloor\frac{k}{2}\right\rfloor$ first).

Since the length k of the list of distinct finish times is at most n, and we need to apply binary search for each element of the array $H(1 . . n)$, the time required to compute all entries of the array is $O(n \log n)$.

We initialize $A(0)=0$, and we want to compute $A(j)$ given that we already have $A(0), \ldots, A(j-1)$.

Consider $u_{0}<u_{1}<u_{2}<\ldots<u_{j-1}<u_{j}$.
Can we beat profit $A(j-1)$ by scheduling some activity that finishes at time u_{j} ? Try all activities that finish at this time and compute maximum profit in each case. We obtain the following recurrence:

$$
A(j)=\max \left\{A(j-1), \max _{1 \leq i \leq n}\left\{p_{i}+A(H(i)) \mid f_{i}=u_{j}\right\}\right\},
$$

where $H(i)$ is the greatest ℓ such that $u_{\ell} \leq s_{i}$.


```
\(A(0) \longleftarrow 0\)
for \(j: 1 . . k\) do
```

 \(\max \longleftarrow 0\)
 for \(i=1 . . n\) do
 if \(f_{i}=u_{j}\) then
 if \(p_{i}+A(H(i))>\max\) then
 \(\max \longleftarrow p_{i}+A(H(i))\)
 end if
 end if
 end for
 if \(A(j-1)>\max\) then
 \(\max \longleftarrow A(j-1)\)
 end if
 \(A(j) \longleftarrow \max\)
 end for

Introduction to Complexity

This material is not in the IAA textbook but here:

A TM M is of time complexity $T(n)$ if whenever M is given an input $w,|w|=n$, then M halts after making at most $T(n)$ many moves.
$L \in \operatorname{TIME}(f(n))$ if there exists a deterministic TM M of time complexity $O(f(n))$ that decides L.
$L \in \operatorname{NTIME}(f(n))$ if there exists a nondeterministic TM M of time complexity $O(f(n))$ that decides L.
L is in the class P if $L \in \operatorname{TIME}\left(n^{k}\right)$ for some fixed k.
L is in the class $N P$ if $L \in \operatorname{NTIME}\left(n^{k}\right)$ for some fixed k.

Observation: $\mathrm{P} \subseteq \mathrm{NP}$; Question: $N P \subseteq P$?
Ex. of a language in P :
$\{\langle G, k\rangle \mid G$ has a spanning tree of weight $\leq k\} .(k=15)$

Ex. of a language in NP believed not to be in P : $\{\langle G, k\rangle \mid G$ has a complete cycle of weight $\leq k\} .(k=16)$

A graph G can be encoded as an adjacency matrix. For example, the graph given below would have the adjacency matrix given by:

If P is a decision problem, the related language L_{P} consists of the encodings (under some fixed convention) of all the "yes" instances of P.

Feasibility Thesis:

Polynomial time algorithm \equiv polynomial time TM.

A problem P_{1} is reducible in polynomial time to a problem P_{2} if there exists a polynomial time function f such that:

$$
\langle I\rangle \in L_{P_{1}} \Longleftrightarrow\langle f(I)\rangle \in L_{P_{2}}
$$

L is NP-complete if:

1. $L \in N P$
2. Every language $L^{\prime} \in N P$ is polynomial time reducible to L.

Ex. Traveling Salesman Problem
L is NP-complete is evidence of L not being in P
(see Computers and Intractability by Michael Garey and David Johnson.)

Theorem: If P_{1} is NP-complete, P_{2} is in NP, and there is a polynomial time reduction of P_{1} to P_{2}, then P_{2} is also NP-complete.

Proof: Every language L in NP is reducible to $L_{P_{1}}$, by completeness, and P_{1} is reducible to P_{2}. Enough to show transitivity of reductions.

Theorem: If some NP-complete problem P is in P , then $\mathrm{P}=\mathrm{NP}$.
Proof: Follows from the fact that all languages in NP are polynomial time reducible to P.

Satisfiability

Boolean Expressions are built from: Boolean variables x, y, z, \ldots, Boolean values 0,1 , and Boolean connectives: \vee, \wedge, \neg, and parenthesis.

Ex. $\neg x \vee(y \wedge z)$
If ϕ is a Boolean expression, then a truth assignment T is an assignment of truth values to the variables of ϕ.

Ex. $T(x)=0, T(y)=1, T(z)=1$, then
$T(\neg x \vee(y \wedge z))=\neg 0 \vee(1 \wedge 1)=1 \vee 1=1$.
T satisfies ϕ if $T(\phi)=1$, and ϕ is satisfiable if $\exists T$ s.t. $T(\phi)=1$.

The satisfiability problem is: given a Boolean expression, is it satisfiable?

SAT $=\{\langle\phi\rangle \mid \phi$ is satisfiable $\}$
(i.e., SAT is the language corresponding to the satisfiability problem).

Cook's Theorem: SAT is NP-complete.
PROOF: SAT is in NP.
Let L be any language in NP.
We show there exists a polynomial time function f s.t.:

$$
w \in L \Longleftrightarrow f(w)=\phi \in \mathrm{SAT}
$$

\exists non-det TM M s.t. $L=L(M)$ and M always halts within n^{k} many steps on inputs $w,|w|=n$, for fixed k.
Given w, f outputs a Boolean formula ϕ which encodes a computation of M on w and is satisfiable $\Longleftrightarrow M$ accepts w.

