
Intro to Analysis of Algorithms
Online

Chapter 5

Michael Soltys

CSU Channel Islands

[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Introduction - 1/24

List Accessing

If a file is in position i , we incur a search cost of i in locating it.

If the file is not in the cabinet, the cost is l , which is the total
number of files.

Let σ = σ1, σ2, . . . , σn be a finite sequence of n requests. To
service request σi , a list accessing algorithm ALG must search for
the item labeled σi by traversing the list from the beginning, until
it finds it.

The cost of retrieving this item is the index of its position on the
list. Thus, if item σi is in position j , the cost of retrieving it is j .
Furthermore, the algorithm may reorganize the list at any time.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 2/24

The work associated with a reorganization is the minimum number
of transpositions of consecutive items needed to carry it out.

Each transposition has a cost of 1, however, immediately after
accessing an item, we allow it to be moved free of charge to any
location closer to the front of this list.

These are free transpositions, while all other transpositions are
paid.

Let ALG(σ) be the sum of the costs of servicing all the items on
the list σ, i.e., the sum of the costs of all the searches plus the sum
of the costs of all paid transpositions.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 3/24

Let OPT be an optimal (offline) algorithm for the static list
accessing model.

Suppose that OPT and MTF both start with the same list
configuration. Then, for any sequence of requests σ, where
|σ| = n, we have that

MTF(σ) ≤ 2 ·OPTS(σ) + OPTP(σ)−OPTF (σ)− n,

where OPTS(σ),OPTP(σ),OPTF (σ) are the total cost of
searches, the total number of paid transpositions and the total
number of free transpositions, of OPT on σ, respectively.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 4/24

Imagine that both MTF and OPT process the requests in σ, while
each algorithm works on its own list, starting from the same initial
configuration.

You may think of MTF and OPT as working in parallel, starting
from the same list, and neither starts to process σi until the other
is ready to do so.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 5/24

Let
ai = ti + (Φi − Φi−1)

where ti is the actual cost that MTF incurs for processing this
request (so ti is in effect the position of item σi on the list of
MTF after the first i − 1 requests have been serviced).

Φi is a potential function, and here it is defined as the number of
inversions in MTF’s list with respect to OPT’s list.

An inversion is defined to be an ordered pair of items xj and xk ,
where xj precedes xk in MTF’s list, but xk precedes xj in OPT’s
list.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 6/24

Note that Φ0 depends only on the initial configurations of MTF
and OPT, and since we assume that the lists are initially identical,
Φ0 = 0.

Finally, the value ai is called the amortized cost, and its intended
meaning is the cost of accessing σi , i.e., ti , plus a measure of the
increase of the “distance” between MTF’s list and OPT’s list after
processing σi , i.e., Φi − Φi−1.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 7/24

It is obvious that the cost incurred by MTF in servicing σ, denoted
MTF(σ), is

∑n
i=1 ti .

But instead of computing
∑n

i=1 ti , which is difficult, we compute∑n
i=1 ai which is much easier.

The relationship between the two summations is,

MTF(σ) =
n∑

i=1

ti = Φ0 − Φn +
n∑

i=1

ai ,

and since we agreed that Φ0 = 0, and Φi is always positive, we
have that,

MTF(σ) ≤
n∑

i=1

ai .

So now it remains to compute an upper bound for ai .

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 8/24

Assume that the i-th request, σi , is in position j of OPT, and in
position k of MTF (i.e., this is the position of this item after the
first (i − 1) requests have been completed). Let x denote this item.

We are going to show that

ai ≤ (2si − 1) + pi − fi ,

where si is the search cost incurred by OPT for accessing request
σi , and pi and fi are the paid and free transpositions, respectively,
incurred by OPT when servicing σi .

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 9/24

This shows that

n∑
i=1

ai ≤
n∑

i=1

((2si − 1) + pi − fi)

= 2(
n∑

i=1

si) + (
n∑

i=1

pi)− (
n∑

i=1

fi)− n

= 2OPTS(σ) + OPTP(σ)−OPTF (σ)− n,

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 10/24

Two prove our statement in two steps: in the first step MTF
makes its move, i.e., moves x from the k-th slot to the beginning
of its list, and we measure the change in the potential function
with respect to the configuration of the list of OPT before OPT
makes its own moves to deal with the request for x .

In the second step, OPT makes its move and now we measure the
change in the potential function with respect to the configuration
of the list of MTF after MTF has completed its handling of the
request (i.e., with x at the beginning of the list of MTF).

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 11/24

MTF ∗ ∗ ∗ x

OPT x ∗ ∗ ∗

x is in position k in MTF, and in position j in OPT. Note that in
the figure it appears that j < k , but we make no such assumption
in the analysis. Let ∗ denote items located before x in MTF but
after x in OPT, i.e., the ∗ indicate inversions with respect to x .
There may be other inversions involving x , namely items which are
after x in MTF but before x in OPT, but we are not concerned
with them.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 12/24

suppose that there are v such ∗, i.e., v inversions of the type
represented in the figure. Then, there are at least (k − 1− v)
items that precede x in both list.

But this implies that (k − 1− v) ≤ (j − 1), since x is in the j-th
position in OPT. Thus, (k − v) ≤ j . So what happens when MTF
moves x to the front of the list? In terms of inversions two things
happen: (i) (k − 1− v) new inversions are created, with respect to
OPT’s list, before OPT itself deals with the request for x . Also,
(ii) v inversions are eliminated, again with respect to OPT’s list,
before OPT itself deals with the request for x .

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 13/24

Therefore, the contribution to the amortized cost is:

k + ((k − 1− v)− v) = 2(k − v)− 1
(1)

≤ 2j − 1
(2)
= 2s − 1

where (1) follows from (k − v) ≤ j shown above, and (2) follows
from the fact that the search cost incurred by OPT when looking
for x is exactly j .

In the second step of the analysis, MTF has made its move and
OPT, after retrieving x , rearranges its list. Each paid transposition
contributes 1 to the amortized cost and each free transposition
contributes −1 to the amortized cost.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 14/24

In the dynamic list accessing model we also have insertions, where
the cost of an insertion is l + 1—here l is the length of the list—,
and deletions, where the cost of a deletion is the same as the cost
of an access, i.e., the position of the item on the list.

Our result still holds in the dynamic case.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 15/24

The infimum of a subset S ⊆ R is the largest element r , not
necessarily in S , such that for all all s ∈ S , r ≤ s.

We say that an online algorithm is c-competitive if there is a
constant α such that for all finite input sequences
ALG(σ) ≤ c ·OPT(σ) + α.

The infimum over the set of all values c such that ALG is
c-competitive is called the competitive ratio of ALG and is
denoted R(ALG).

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 16/24

Observe that OPT(σ) ≤ n · l , where l is the length of the list and
n is |σ|.

MTF is a 2-competitive algorithm, and that R(MTF) ≤ 2− 1
l .

Competitive analysis: the payoff of an online algorithm is measured
by comparing its performance to that of an optimal offline
algorithm

Competitive analysis thus falls within the framework of worst case
complexity.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) List accessing - 17/24

Paging

Consider a two-level virtual memory system: each level, slow and
fast, can store a number of fixed-size memory units called pages.
The slow memory stores N pages, and the fast memory stores k
pages, where k < N. The k is usually much smaller than N.

Given a request for page pi , the system must make page pi
available in the fast memory. If pi is already in the fast memory,
called a hit, the system need not do anything. Otherwise, on a
miss, the system incurs a page fault, and must copy the page pi
from the slow memory to the fast memory. In doing so, the system
is faced with the following problem: which page to evict from the
fast memory to make space for pi . In order to minimize the
number of page faults, the choice of which page to evict must be
made wisely.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Paging - 18/24

LRU Least Recently Used
CLOCK Clock Replacement
FIFO First-In/First-Out
LIFO Last-In/First-Out
LFU Least Frequently Used

LFD Longest Forward Distance

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Paging - 19/24

Demand paging algorithms never evict a page from the cache
unless there is a page fault, that is, they never evict preemptively.
All the paging disciplines in the table on the previous slide are
demand paging.

We consider the page fault model, where we charge 1 for bringing
a page into the fast memory, and we charge nothing for accessing
a page which is already there.

Theorem 5.11: Any page replacement algorithm, online or offline,
can be modified to be demand paging without increasing the
overall cost on any request sequence.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Paging - 20/24

�� c �� �� d ��

�� a �� �� b ��

ALG × ×

ALG′ × ×

σ = σ1 σ2 σi = p • σj = p σn

p is evicted from the
cache of ALG′

OO

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Paging - 21/24

Suppose that i , j is the smallest pair such that there exists a page
p with the property that σi = σj = p. ALG′ incurs a page fault at
σi and σj , and the two corresponding page moves of ALG′ are
both matched with the same page move of p by ALG somewhere
in the stretch a.

We show that this is not possible: if ALG′ incurs a page fault at
σi = σj = p it means that somewhere in b the page p is
evicted—this point is denoted with ‘•’.

If ALG did not evict p in the stretch c , then ALG also evicts page
p at ‘•’ and so it must then bring it back to the cache in stretch
d—we would match the × at σj with that move.

If ALG did evict p in the stretch c , then again it would have to
bring it back in before σj . In any case, there is a later move of p
that would be matched with the page fault of ALG′ at σj .

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Paging - 22/24

FIFO

When a page must be replaced, the oldest page is chosen. It is not
necessary to record the time when a page was brought in; all we
need to do is create a FIFO (First-In/First-Out) queue to hold all
pages in memory.

The FIFO algorithm is easy to understand and program, but its
performance is not good in general.

FIFO also suffers from the so called Belady’s anomaly. Suppose
that we have the following sequence of page requests:
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5. Then, we have more page faults when
k = 4 than when k = 3. That is, FIFO has more page faults with a
bigger cache!

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Paging - 23/24

LRU

If we use the recent past as an approximation of the near future,
then we will replace the page that has not been used for the
longest period of time. This approach is the Least Recently Used
(LRU) algorithm.

LRU replacement associates with each page the time of that
page’s last use. When a page must be replaced, LRU chooses that
page that has not been used for the longest period of time. The
LRU algorithm is considered to be good, and is often
implemented—the major problem is how to implement it; two
typical solutions are counters and stacks.

IAA Chp 5 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Paging - 24/24

	Introduction
	List accessing
	Paging

