
Intro to Analysis of Algorithms
Randomized

Chapter 6

Michael Soltys

CSU Channel Islands

[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Introduction - 1/55

Primality testing

One way to determine whether a number p is prime, is to try all
possible numbers n < p, and check if any are divisors.

This brute force procedure has exponential time complexity in the
length of p, and so it has a prohibitive time cost.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 2/55

Sieve of Eratosthenes

Eratosthenes of Cyrene
Born ∼ 276 BC and died ∼ 194 BC
Chief librarian at Library of Alexandria

Algorithm for finding all primes ≤ n.

1: L = {2, 3, 4, . . . , n}
2: p = 2
3: Mark all 2p, 3p, 4p, . . . on list L
4: Find first unmarked number greater than p, say k .
5: Repeat with p = k

See simulation here:
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 3/55

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Although a polytime (deterministic) algorithm for primality is now
known1, the Rabin-Miller randomized algorithm for primality
testing is simpler and more efficient, and therefore still used in
practice.

1Agrawal, Kayal and Saxena, August 2002.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 4/55

Testing primality with openssl version:

OpenSSL 1.0.2g 1 Mar 2016

openssl prime 348911131111712333333111111111

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 5/55

Fermat’s Little theorem provides a “test” of sorts for primality,
called the Fermat test; the Rabin-Miller algorithm is based on this
test. When we say that p passes the Fermat test at a, what we
mean is that a(p−1) ≡ 1 (mod p). Thus, all primes pass the
Fermat test for all a ∈ Zp − {0}.

Unfortunately, there are also composite numbers n that pass the
Fermat tests for every a ∈ Z∗n; these are the so called Carmichael
numbers, for example, 561, 1105, 1729, etc.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 6/55

If p is a composite non-Carmichael number, then it passes at most
half of the tests in Z∗p. That is, if p is a composite non-Carmichael
number, then for at most half of the a’s in the set Z∗p it is the case

that a(p−1) ≡ 1 (mod p).

Call a a witness (for p) if it fails the Fermat test for p, that is, a is
a witness if a(p−1) 6≡ 1 (mod p). Let S ⊆ Z∗p consist of those
elements a ∈ Z∗p for which ap−1 ≡ 1 (mod p). It is easy to check
that S is in fact a subgroup of Z∗p.

Therefore, by Lagrange theorem |S | must divide |Z∗p|. Suppose
now that there exists an element a ∈ Z∗p for which ap−1 6≡ 1
(mod p). Then, S 6= Z∗p, so the next best thing it can be is “half”
of Z∗p, so |S | must be at most half of |Z∗p|.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 7/55

A number is pseudoprime if it is either prime or Carmichael.

The last result suggests an algorithm for pseudoprimes: on input p,
check whether a(p−1) ≡ 1 (mod p) for some random a ∈ Zp −{0}.

If p fails this test (i.e., a(p−1) 6≡ 1 (mod p)), then p is composite
for sure.

If p passes the test, then p is probably pseudoprime.

We show that the probability of error in this case is ≤ 1
2 .

Suppose p is not pseudoprime. If gcd(a, p) 6= 1, then a(p−1) 6≡ 1
(mod p), so assuming that p passed the test, it must be the case
that gcd(a, p) = 1, and so a ∈ Z∗p. But then at least half of the
elements of Z∗p are witnesses of non-pseudoprimeness.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 8/55

Show that if gcd(a, p) 6= 1 then a(p−1) 6≡ 1 (mod p).

The informal algorithm for pseudoprimeness described in the
paragraph above is the basis for the Rabin-Miller algorithm which
we discuss next. The Rabin-Miller algorithm extends the
pseudoprimeness test to deal with Carmichael numbers.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 9/55

Rabin-Miller algorithm
1: If n = 2, accept; if n is even and n > 2, reject.
2: Choose at random a positive a in Zn.
3: if a(n−1) 6≡ 1 (mod n) then
4: reject
5: else
6: Find s, h such that s is odd and n − 1 = s2h

7: Compute the sequence as·2
0
, as·2

1
, as·2

2
, . . . , as·2

h

(mod n)
8: if all elements in the sequence are 1 then
9: accept

10: else if the last element different from 1 is −1 then
11: accept
12: else
13: reject
14: end if
15: end if

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 10/55

Note that this is a polytime (randomized) algorithm.

If n is a prime then the Rabin-Miller algorithm accepts it; if n is
composite, then the algorithm rejects it with probability ≥ 1

2 .

If n is prime, then by Fermat’s Little theorem a(n−1) ≡ 1 (mod n),
so line 4 cannot reject n. Suppose that line 13 rejects n; then there
exists a b in Zn such that b 6≡ ±1 (mod n) and b2 ≡ 1 (mod n).
Therefore, b2 − 1 ≡ 0 (mod n), and hence

(b − 1)(b + 1) ≡ 0 (mod n).

Since b 6≡ ±1 (mod n), both (b − 1) and (b + 1) are strictly
between 0 and n, and so a prime n cannot divide their product.
This gives a contradiction, and therefore no such b exists, and so
line 13 cannot reject n.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 11/55

If n is an odd composite number, then we say that a is a witness
(of compositness) for n if the algorithm rejects on a.

We show that if n is an odd composite number, then at least half
of the a’s in Zn are witnesses.

The distribution of witnesses in Zn appears to be very irregular,
but if we choose our a “uniformly at random,” we hit a witness
with probability ≥ 1

2 .

Because n is composite, either n is the power of an odd prime, or n
is the product of two odd co-prime numbers.

This yields two cases.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 12/55

Case 1. Suppose that n = qe where q is an odd prime and e > 1.

Set t := 1 + qe−1 (1)

From the binomial expansion of tn we obtain:

tn = (1 + qe−1)n = 1 + nqe−1 +
n∑

l=2

(
n

l

)
(qe−1)l , (2)

∴ tn ≡ 1 (mod n) (3)

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 13/55

I If tn−1 ≡ 1 (mod n), then tn ≡ t (mod n) which
contradicts (1) and (3).
Hence t is a line 4 witness.

I But the set of line 4 non-witnesses,

S1 := {a ∈ Zn|a(n−1) ≡ 1 (mod n)},

is a proper subgroup of Z∗n
Note that t ∈ Z∗ − S1
by Lagrange’s theorem S1 is at most half of Z∗n, and so it is at
most half of Zn.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 14/55

Case 2. Suppose that n = qr , where q, r are co-prime.

Among all line 13 non-witnesses, find a non-witness for which the
−1 appears in the largest position in the sequence in line 7 of the
algorithm

Note that −1 is a line 13 non-witness, so the set of these
non-witnesses is not empty.

Let x be such a non-witness and let j be the position of −1 in its
sequence, where the positions are numbered starting at 0;
x s·2

j ≡ −1 (mod n) and x s·2
j+1 ≡ 1 (mod n).

The line 13 non-witnesses are a subset of

S2 := {a ∈ Z∗n|as·2
j ≡ ±1 (mod n)},

and S2 is a subgroup of Z∗n.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 15/55

By the CRT there exists t ∈ Zn such that

t ≡ x (mod q)
t ≡ 1 (mod r)

⇒ ts·2
j ≡ −1 (mod q)

ts·2
j ≡ 1 (mod r)

Hence t is a witness because ts·2
j 6≡ ±1 (mod n) but on the other

hand ts·2
j+1 ≡ 1 (mod n).

Exercise: Show that ts·2
j 6≡ ±1 (mod n).

Therefore, just as in case 1, we have constructed a t ∈ Z∗n which is
not in S2, and so S2 can be at most half of Z∗n, and so at least half
of the elements in Zn are witnesses.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 16/55

Note that by running the algorithm k times on independently
chosen a, we can make sure that it rejects a composite with
probability ≥ 1− 1

2k
(it will always accept a prime with

probability 1).

Thus, for k = 100 the probability of error, i.e., of a false positive,
is negligible.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 17/55

Summarize 3 important points

1. Rabin-Miller has 50% of a false-positive, but we can amplify it
away by repeating the test to negligable.

2. As there are lots of primes (π(n)→ n/ log(n)) we can convert
easily a tester of primes into a generator of primes.

3. For implementation we still have to show how to compute

g x (mod n)

for large x , say in the order of 4K bits: repeated squaring trick.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 18/55

Repeated Squaring

Computing large powers in (Zn, ∗) can be done efficiently with
repeated squaring—for example, if (m)b = cr . . . c1c0, then
compute

a0 = a, a1 = a20, a2 = a21, . . . , ar = a2r−1 (mod n),

and so am = ac00 ac11 · · · acrr (mod n).

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Primality testing - 19/55

Crypto

WEP, WPA/WPA2 SSL/SSH

PGP/GPG

RSA Encryption 128 bytes:

BE 89 0E A1 AD FA 7D 58 6A A1 6A E4

3B ED 75 E4 3E F2 19 F7 F3 0F FA D9

EF 62 10 52 7B FC DD 94 96 A8 35 6B

1B 50 60 2E 2E 79 AC 7C 2E A3 81 DE

8D 37 F9 EE 6E 4F 82 C7 E4 12 04 55

AF 57 69 94 8C EF 2E 50 7A 6D 53 0F

5B 5F 62 58 5E CF F2 DF F4 4D CE 71

B6 82 D7 86 E5 4F 77 E4 91 AA E4 BD

5A 65 AA 9E 20 4F 38 5E B4 8B E0 36

45 80 A8 D5 24 5C 46 9D F1 80 C0 6B

62 A5 1F 26 5E AE 17 47

DRM
FairPlay

MD5

5c3079df8a48623f5aa10f0181a7ab03

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Introduction to Crypto - 20/55

Cryptography is the art of computing & communicating in the
presence of an adversary.

Cryptography is concerned with the conceptualization, definition,
and construction of computing systems that address security
concerns.

The word cryptography comes from the Greek word κρυπτo
(hidden or secret) and γραφη (writing). It can be seen as the art
of secret writing; this kind of crypto can provide services such as:

I integrity checking: recipient is reassured that the message was
not altered;

I authentication: verifying someone’s identity.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Introduction to Crypto - 21/55

But also . . .

I Download a package and check its MD5 signature; the
adversary here is the “ether” through which the package
“travels,” e.g., noisy channel.

I Code “obfuscation” — compile code so that it is executable
but cannot be reverse-engineered.

I Authentication: password login, client-server communication.

I Non-repudiation, electronic voting, digital cash, etc.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Introduction to Crypto - 22/55

Origins

Herodotus chronicled
the conflict between
Greece & Persia, 5BC.

I Xerxes wanted to extend Persian
empire; mobilizes a force.

I Persian military buildup witnessed by
Demaratus. Writes message on
wooden tablets, covers with wax and
sends to Greece.

I Histaiaeus shaves the head of his
messanger, writes the message on the
scalp, and waits for hair to grow back.

I Steganography

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) History - 23/55

Simon Singh, “The Code Book.”

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) History - 24/55

Enigma machine

http://enigmaco.de/enigma/enigma.html

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) History - 25/55

http://enigmaco.de/enigma/enigma.html

Imitation Game (2014) Enigma (2001)

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) History - 26/55

Oxford (2005) Oxford (2005) Bletchley (2005)

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) History - 27/55

The discrete logarithm problem (DLP)

Fix a group G and g ∈ G : given an element h ∈ 〈g〉, find an
integer m satisfying h = gm.

The smallest m satisfying h = gm is the logarithm (or index) of h
with respect to g (written m = logg (h)).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

"primitive.txt"

Plot of log3(x) over Z17.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) History - 28/55

Shank’s “babystep-giantstep” algorithm

Computes x , such that g x ≡p h, in time O(
√
p log(

√
p)).

Pre-condition: p prime, 〈g〉 = Z∗p, h ∈ Z∗p
1: n←− 1 + b√pc
2: L1 ←− {g0, g1, g2, . . . , gn} (mod p)
3: L2 ←− {hg0, hg−n, hg−2n, . . . , hg−n

2} (mod p)
4: Find g i ≡p hg−jn ∈ L1 ∩ L2
5: x ←− jn + i
6: return x

Post-condition: g x ≡p h

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) History - 29/55

PKCs

I Diffie-Hellman

I ElGamal

I RSA

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 30/55

Diffie-Hellman Key Exchange

I Oldest public key cryptosystem still in use.

I Allows two individuals to agree on a shared key, even though
they can only exchange messages in public.

I A weakness is that there is no authentication; the other might
be a “bad guy.”

I Described in RFC 2631

https://www.ietf.org/rfc/rfc2631.txt

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 31/55

https://www.ietf.org/rfc/rfc2631.txt

Alice Bob

Public: Group G = 〈g〉 and n = |G | = ord(g)
Choose secret 0 < a < n Choose secret 0 < b < n
Computer A := ga Compute B := gb

Send A to Bob → ← Send B to Alice
Compute Ba Compute Ab

Alice & Bob have shared value
Ab = (ga)b = gab = gba = (gb)a = Ba

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 32/55

1. Alice and Bob agree to use a prime p = 23 and base g = 5.

2. Alice chooses secret a = 8; sends Bob A = ga (mod p)

2.1 A = 58 (mod 23)

2.2 A = 16

3. Bob chooses secret b = 15; sends Alice B = gb (mod p)

3.1 B = 515 (mod 23)

3.2 B = 19

4. Alice computes s = Ba (mod p)

4.1 s = 198 (mod 23)

4.2 s = 9

5. Bob computes s = Ab (mod p)

5.1 s = 1615 (mod 23)

5.2 s = 9

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 33/55

The Diffie-Hellman Problem (DHP): compute gab from ga and gb.

If we could solve the DLP easily, we could solve the DHP easily.

For some groups DLP is easy: (Zm,+), integers modulo m under
addition, or (R+, ∗), positive reals under multiplication.

For some groups, such as (Zm, ∗), integers modulo m under
multiplication, we believe that DLP is hard: the best known
algorithm takes time:

O
(
ec

3
√

(logm)(log logm)2
)

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 34/55

Diffie-Hellman enables two parties that have never communicated
before to establish a mutual secret key by exchanging messages
over a public channel. DH only resists passive adversaries.

A passive attack is one in which the intruder eavesdrops but does
not modify the message stream in any way.

An active attack is one in which the intruder may:

I transmit messages

I replay old messages

I modify messages in transit

I delete selected messages from the wire

A typical active attack is one in which an intruder impersonates
one end of the conversation, or acts as a man-in-the-middle.

How to do a “man-in-the-middle” on DH?

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 35/55

In DH it is recommended to make prime p 1024 bits long.

DH assumption: k = gab hard to compute from ga and gb in Z∗p.

But, this does not guarantee that a particular bit or group of bits
of k is also hard to compute.

Usually, the length of a symmetric session key is 128 bits.

Take the 128 most significant bits of k = gab (mod p); call this k̃.

k̃ is still hard to compute from ga and gb.

In 1996 Boneh & Venkatesan show that computing
√
|p| most

significant bits is as hard as computing all the bits (
√

1024 = 32).

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 36/55

ElGamal

Alice and Bob agree on public p, g , such that p is a prime and
Z∗p = 〈g〉.

Alice also has a private a and publishes a public A := ga (mod p).

Bob wants to send a message m to Alice, so he creates an
ephemeral key b, and sends the pair c1, c2 to Alice where:

c1 := gb (mod p); c2 := mAb (mod p).

Then, in order to read the message, Alice computes:

c−a1 c2 ≡p g−abmgab ≡p m.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 37/55

To compute c−a1 A computes the inverse of c1 in Z∗p, using the
extended Euclid’s algorithm (EEA), and then compute the a-th
power of the result.

To compute the inverse of some k in Z∗n, note first that
gcd(k , n) = 1.

So using EEA we obtain (feasibly!) s, t such that sk + tn = 1.
Then the inverse is s (mod n).

Pre-condition: m > 0, n ≥ 0
1: a←− m; b ←− n
2: if b = 0 then
3: return (a, 1, 0)
4: else
5: (d , x , y)←− Euclid(b, rem(a, b))
6: return (d , y , x − div(a, b) · y)
7: end if

Post-condition: mx + ny = d = gcd(m, n)

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 38/55

Reductions

We say that we can break ElGamal, if we have an efficient way for
computing m from 〈p, g ,A, c1, c2〉.

Reductions: We can break ElGamal if and only if we can solve the
DHP efficiently.

The DHP on input 〈p, g ,A ≡p ga,B ≡p gb〉 outputs gab (mod p),
and the ElGamal problem, call it ELGP, on input

〈p, g ,A ≡p ga, c1 ≡p gb, c2 ≡p mAb〉 (4)

outputs m.

We want to show that we can break Diffie-Hellman, i.e., solve
DHP efficiently, if and only if we can break ElGamal, i.e., solve
ELGP efficiently.

The key-word here is efficiently, meaning in polynomial time.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 39/55

(⇒) Suppose we can solve DHP efficiently; we give an efficient
procedure for solving ELGP: given the input (4) to ELGP, we
obtain gab (mod p) from A ≡p ga and c1 ≡ gb using the efficient
solver for DHP.

We then use the extended Euclidean algorithm to obtain (gab)−1

(mod p).

c2 · (gab)−1 ≡p mgab(gab)−1 ≡p m = m

where the last equality follows from m ∈ Zp.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 40/55

(⇐) Suppose we have an efficient solver for the ELGP. To solve
the DHP, we construct the following input to ELGP:

〈p, g ,A ≡p ga, c1 ≡p gb, c2 = 1〉.

Note that c2 = 1 ≡p (gab)−1︸ ︷︷ ︸
=m

Ab, so using the efficient solver for

ELGP we obtain m ≡p (gab)−1, and now using the extended
Euclid’s algorithm we obtain the inverse of (gab)−1 (mod p),
which is just gab (mod p), so we output that.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 41/55

ElGamal signature scheme

We sign the hash value of message.

Z∗p = 〈g〉 and a is the secret key

k is random and h : N −→ Zp is a hash function

1 < g , a, k < p − 1, and gcd(k , p − 1) = 1.

Compute:

r := gk (mod p)

s := k−1(h(m)− ar) (mod (p − 1))

If s is zero, start over again, by selecting a different k

The signature of m is the (ordered) pair of numbers (r , s).

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 42/55

For example, with the following values:

m = A message. h(m) = 5 p = 11 g = 6 a = 3 k = 7

the signature of ‘A message.’ will be:

r = 67 (mod 11) = 8

s = 7−1(5− 3 · 8) (mod (11− 1))

= 3 · (−19) (mod 10) = 3 · 1 (mod 10) = 3

i.e., sign(A message.) = (8, 3).

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 43/55

Suppose h(m) is obtained by multiplying the ASCII values of the
symbols in the message modulo 11.

Messages “A mess” and “L message” have the same hash value.

In general, by its nature, any hash function is going to have such
collisions, i.e., messages such that:

h(A message.) = h(A mess) = h(L message) = 5,

but there are hash functions which are collision-resistant in the
sense that it is computationally hard to find two messages m,m′

such that h(m) = h(m′).

A good hash function is also a one-way function in the sense that
given a value y it is computationally hard to find an m such that
h(m) = y .

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 44/55

If you receive a message m, and a signature pair (r , s), and you
only know p, g and A = ga (mod p), i.e., p, g ,A are the public
information, how can you “verify” the signature—and what does it
mean to verify the signature?

Verifying the signature means checking that it was the person in
possession of a that signed the document m.

Two subtle things: first we say “in possession of a” rather than the
“legitimate owner of a,” simply because a may have been
compromised (e.g., stolen). This is not an authentication scheme!

Second, and this is why this scheme is so brilliant, we can check
that “someone in possession of a” signed the message, even
without knowing what a is!

We know A, where A = ga (mod p), but for large p, it is difficult
to compute a from A (DLP).

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 45/55

Here is how we verify that “someone in possession of a” signed the
message m ∈ N.

First we check 0 < r < p and 0 < s < p − 1.

Then we compute

v := gh(m) (mod p)

w := Ar r s (mod p)

Remember that g , p are public, m is known, and the function
h : N −→ [p − 1] is also known, and r , s is the given signature.

If v = w then the signature is valid.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 46/55

To see that this works note that we defined

s := k−1(h(m)− ar) (mod p − 1)

⇒ h(m) ≡ ar + sk (mod p − 1) (∗)

Fermat’s Little Theorem says that gp−1 ≡ 1 (mod p), and
therefore

gh(m) (∗∗)
≡ gar+sh ≡ (ga)r (gk)s ≡ Ar r s (mod p).

The FLT is applied in the (∗∗) equality: from (∗) it follows that
(p − 1)|(h(m)− (ar + sk)), which means that
(p − 1)z = h(m)− (ar + sk) for some z , and since
g (p−1)z = (g (p−1))z = 1z = 1 (mod p), it follows that
gh(m)−(ar+sk) = 1 (mod p), and so gh(m) = gar+sk (mod p).

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 47/55

Without a (good) hash function, ElGamal’s signature scheme is
existentially forgeable; i.e., an adversary Eve can construct a
message m and a valid signature (r , s) for m.

To see this, let b, c be numbers s.t. gcd(c , p − 1) = 1, and set

r := gbAc

s := −rc−1 (mod p − 1)

m := −rbc−1 (mod p − 1)

Then (m, r , s) satisfies gm = Ar r s .

Since in practice a hash function h is applied to the message, and
it is the hash value that is signed, to forge a signature for a
meaningful message is not easy:

An adversary has to find a meaningful message m such that
h(m) ≡ −rbc−1 (mod p − 1), which is hard.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 48/55

In practice k is a random number; it is absolutely necessary to
choose a new random number for each message.

If the same random number k is used in two different messages
m 6= m′, then it is possible to compute k as follows:

s − s ′ = (h(m)− h(m′))k−1 (mod p − 1), and hence

k = (s − s ′)−1(h(m)− h(m′)) (mod p − 1)

Once we have k, we can compute a.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 49/55

In the verification it is essential to check that 1 ≤ r ≤ p − 1.

Otherwise E would be able to sign a message of his choice,
provided he knows one valid signature (r , s) for some message m,
where m is such that 1 ≤ m ≤ p − 1 and gcd(m, p − 1) = 1.

Let m′ be a message of E ’s
choice,

u ≡ m′m−1 (mod p − 1)

s ′ ≡ su (mod p − 1)

Let r ′ be any integer such that

r ′ ≡ r (mod p)

r ′ ≡ ru (mod p − 1)

such an r ′ can be obtained by
Chinese Reminder Theorem.

Exercise: Show (m′, r ′, s ′) passes the verification.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 50/55

RSA2

I The most commonly used key length for RSA is 1024 bits.

I The plaintext block must be smaller than the key.

I The ciphertext block will be the length of the key.

I RSA is much slower than secret key algorithms such as DES
and IDEA.

I It is mostly used to secuerly exchange a secret key which is
then used for symmetric key encryption.

I Security: to factor a 512-bit number takes, with today’s
technology, 30 thousand MIPS-years.

I RFC 2437

2Rivest-Shamir-Adleman

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 51/55

Choose two odd primes p, q, and set n = pq.

Choose k ∈ Z∗φ(n), k > 1.

Advertise f , where f (m) ≡ mk (mod n).

Compute l , the inverse of k in Z∗φ(n).

Now 〈n, k〉 are public, and the key l is secret, and so is the
function g , where g(C) ≡ C l (mod n).

Note that g(f (m)) ≡n mkl ≡n m.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 52/55

Why mkl ≡n m?

Observe that kl = 1 + (−t)φ(n), where (−t) > 0, and so
mkl ≡n m1+(−t)φ(n) ≡n m · (mφ(n))(−t) ≡n m, because mφ(n) ≡n 1.

Note that this last statement does not follow directly from Euler’s
theorem because m ∈ Zn, and not necessarily in Z∗n.

To make sure that m ∈ Z∗n it is enough to insist that we have
0 < m < min{p, q}; so we break a large message into small pieces.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 53/55

It is interesting to note that we can bypass Euler’s theorem, and
just use Fermat’s Little theorem:

We know that m(p−1) ≡p 1 and m(q−1) ≡q 1, so m(p−1)(q−1) ≡p 1
and m(q−1)(p−1) ≡q 1, thus mφ(n) ≡p 1 and mφ(n) ≡q 1.

This means that p|(mφ(n) − 1) and q|(mφ(n) − 1), so, since p, q are
distinct primes, it follows that (pq)|(mφ(n)− 1), and so mφ(n) ≡n 1.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 54/55

Clifford Cocks, a British mathematician working for the UK
intelligence agency GCHQ, described an equivalent system in an
internal document in 1973, but given the relatively expensive
computers needed to implement it at the time, it was mostly
considered a curiosity and, as far as is publicly known, was never
deployed.

His discovery, however, was not revealed until 1997 due to its
top-secret classification, and Rivest, Shamir, and Adleman devised
RSA independently of Cocks’s work.

IAA Chp 6 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Public keys - 55/55

	Introduction
	Introduction
	Primality testing
	Introduction to Crypto
	History
	Public keys
	Diffie-Hellman
	ElGamal
	Reductions
	ElGamal signature scheme
	RSA

