Intro to Analysis of Algorithms Linera Algebra / Parallel Chapter 7

Michael Soltys

CSU Channel Islands
[Git Date:2021-08-30 Hash:551530e Ed:3rd]

Row-echelon form

Elementary matrices

one of the following three forms:

$$
\begin{aligned}
& I+a T_{i j} \quad i \neq j \\
& I+T_{i j}+T_{j i}-T_{i i}-T_{j j} \\
& I+(c-1) T_{i i} \quad c \neq 0
\end{aligned}
$$

(elementary of type 1)
(elementary of type 2)
(elementary of type 3)

Gaussian Elimination is a divide and conquer algorithm, with a recursive call to smaller matrices.

If A is a $1 \times m$ matrix, $A=\left[a_{11} a_{12} \ldots a_{1 m}\right]$, then:
$G E(A)= \begin{cases}{\left[1 / a_{1 i}\right]} & \text { where } i=\min \{1,2, \ldots, m\} \text { such that } a_{i 1} \neq 0 \\ {[1]} & \text { if } a_{11}=a_{12}=\cdots=a_{1 m}=0\end{cases}$

Suppose now that $n>1$. If $A=0$, let $G E(A)=I$. Otherwise, let:

$$
G E(A)=\left[\begin{array}{cc}
1 & 0 \\
0 & G E((E A)[1 \mid 1])
\end{array}\right] E
$$

where E is a product of at most $n+1$ elementary matrices. Note that $C[i \mid j]$ denotes the matrix C with row i and j.

1: if $n=1$ then
2: if $a_{11}=a_{12}=\cdots=a_{1 m}=0$ then
3:
4:
5:
6:
7: else
8:
9:
10: else
11:
12:
13:
14:
15:
16:
17: end if
18: end if

Gram-Schmidt

Pre-condition: $\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for \mathbb{R}^{n}
1: $v_{1}^{*} \longleftarrow v_{1}$
2: for $i=2,3, \ldots, n$ do
3: \quad for $j=1,2, \ldots,(i-1)$ do
4: $\quad \mu_{i j} \longleftarrow\left(v_{i} \cdot v_{j}^{*}\right) /\left\|v_{j}^{*}\right\|^{2}$
5: \quad end for
6: $\quad v_{i}^{*} \longleftarrow v_{i}-\sum_{j=1}^{i-1} \mu_{i j} v_{j}^{*}$
7: end for
Post-condition: $\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}$ an orthogonal basis for \mathbb{R}^{n}

Gauss lattice reduction

```
Pre-condition: \(\left\{v_{1}, v_{2}\right\}\) are linearly independent in \(\mathbb{R}^{2}\)
    1: loop
    2: \(\quad\) if \(\left\|v_{2}\right\|<\left\|v_{1}\right\|\) then
    3: \(\quad\) swap \(v_{1}\) and \(v_{2}\)
    4: end if
    5: \(\quad m \longleftarrow\left\lfloor v_{1} \cdot v_{2} /\left\|v_{1}\right\|^{2}\right\rceil\) (note that \(\lfloor x\rceil=\lfloor x+1 / 2\rfloor\) )
    6: \(\quad\) if \(m=0\) then
    7: return \(v_{1}, v_{2}\)
    8: else
    9: \(\quad v_{2} \longleftarrow v_{2}-m v_{1}\)
    10: end if
    11: end loop
```


Csanky

Given a matrix A, its trace is defined as the sum of the diagonal entries, i.e., $\operatorname{tr}(A)=\sum_{i} a_{i i}$. Using traces we can compute the Newton's symmetric polynomials which are defined as follows: $s_{0}=1$, and for $1 \leq k \leq n$, by:

$$
s_{k}=\frac{1}{k} \sum_{i=1}^{k}(-1)^{i-1} s_{k-i} \operatorname{tr}\left(A^{i}\right)
$$

Then, it turns out that $p_{A}(x)=s_{0} x^{n}-s_{1} x^{n-1}+s_{2} x^{n-2}-\cdots \pm s_{n} x^{0}$, that is, Newton's symmetric polynomials compute the coefficients of the characteristic polynomial, $p_{A}(x)=\operatorname{det}(x I-A)$.

$$
\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & \cdots \\
\frac{1}{2} \operatorname{tr}(A) & 0 & 0 & \cdots \\
\frac{1}{3} \operatorname{tr}\left(A^{2}\right) & \frac{1}{3} \operatorname{tr}(A) & 0 & \cdots \\
\frac{1}{4} \operatorname{tr}\left(A^{3}\right) & \frac{1}{4} \operatorname{tr}\left(A^{2}\right) & \frac{1}{4} \operatorname{tr}(A) & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad\left(\begin{array}{l}
\operatorname{tr}(A) \\
\frac{1}{2} \operatorname{tr}\left(A^{2}\right) \\
\vdots \\
\frac{1}{n} \operatorname{tr}\left(A^{n}\right)
\end{array}\right)
$$

Berkowitz

Berkowitz's algorithm is also Divide and Conquer, and it computes the characteristic polynomial of A from the characteristic polynomial of its principal minor, i.e., the matrix M obtained from deleting the first row and column of A :

$$
A=\left(\begin{array}{cc}
a_{11} & R \\
S & M
\end{array}\right)
$$

R is an $1 \times(n-1)$ row matrix and S is a $(n-1) \times 1$ column matrix and M is $(n-1) \times(n-1)$. Let $p(x)$ and $q(x)$ be the characteristic polynomials of A and M respectively. Suppose that the coefficients of p form the column vector:

$$
p=\left(\begin{array}{llll}
p_{n} & p_{n-1} & \ldots & p_{0}
\end{array}\right)^{t}
$$

where p_{i} is the coefficient of x^{i} in $\operatorname{det}(x I-A)$, and similarly for q. Then:

$$
p=C_{1} q
$$

where C_{1} is an $(n+1) \times n$ Toeplitz lower triangular matrix (Toeplitz means that the values on each diagonal are constant)
where the entries in the first column are defined as follows: $c_{i 1}=1$ if $i=1, c_{i 1}=-a_{11}$ if $i=2$, and $c_{i 1}=-\left(R M^{i-3} S\right)$ if $i \geq 3$. Berkowitz's algorithm consists in repeating this for q, and continuing so that p is expressed as a product of matrices. Thus:

$$
p_{A}^{\mathrm{BERK}}=C_{1} C_{2} \cdots C_{n},
$$

where C_{i} is an $(n+2-i) \times(n+1-i)$ Toeplitz matrix defined as above except A is replaced by its i-th principal sub-matrix. Note that $C_{n}=\left(\begin{array}{ll}1 & -a_{n n}\end{array}\right)^{t}$.

