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Row-echelon form



1 ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
1 ∗ . . . ∗ ∗ ∗ . . . ∗ ∗

. . . 1 ∗ . . . ∗ ∗
0 1 . . .

. . .
...

. . .


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Elementary matrices

one of the following three forms:

I + aTij i ̸= j (elementary of type 1)

I + Tij + Tji − Tii − Tjj (elementary of type 2)

I + (c − 1)Tii c ̸= 0 (elementary of type 3)
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Gaussian Elimination is a divide and conquer algorithm, with a
recursive call to smaller matrices.

If A is a 1×m matrix, A = [a11a12 . . . a1m], then:

GE (A) =

{
[1/a1i ] where i = min{1, 2, . . . ,m} such that ai1 ̸= 0

[1] if a11 = a12 = · · · = a1m = 0

Suppose now that n > 1. If A = 0, let GE (A) = I . Otherwise, let:

GE (A) =

[
1 0
0 GE ((EA)[1|1])

]
E

where E is a product of at most n + 1 elementary matrices. Note
that C [i |j ] denotes the matrix C with row i and j .
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1: if n = 1 then
2: if a11 = a12 = · · · = a1m = 0 then
3: return [1]
4: else
5: return [1/a1ℓ] where ℓ = mini∈[n]{a1i ̸= 0}
6: end if
7: else
8: if A = 0 then
9: return I

10: else
11: if first column of A is zero then
12: Compute E as in Case 1.
13: else
14: Compute E as in Case 2.
15: end if

16: return

[
1 0
0 GE ((EA)[1|1])

]
E

17: end if
18: end if
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Gram-Schmidt

Pre-condition: {v1, . . . , vn} a basis for Rn

1: v∗1 ←− v1
2: for i = 2, 3, . . . , n do
3: for j = 1, 2, . . . , (i − 1) do
4: µij ←− (vi · v∗j )/∥v∗j ∥2
5: end for
6: v∗i ←− vi −

∑i−1
j=1 µijv

∗
j

7: end for
Post-condition: {v∗1 , . . . , v∗n} an orthogonal basis for Rn
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Gauss lattice reduction

Pre-condition: {v1, v2} are linearly independent in R2

1: loop
2: if ∥v2∥ < ∥v1∥ then
3: swap v1 and v2
4: end if
5: m←− ⌊v1 · v2/∥v1∥2⌉ (note that ⌊x⌉ = ⌊x + 1/2⌋)
6: if m = 0 then
7: return v1, v2
8: else
9: v2 ←− v2 −mv1

10: end if
11: end loop
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Csanky

Given a matrix A, its trace is defined as the sum of the diagonal
entries, i.e., tr(A) =

∑
i aii . Using traces we can compute the

Newton’s symmetric polynomials which are defined as follows:
s0 = 1, and for 1 ≤ k ≤ n, by:

sk =
1

k

k∑
i=1

(−1)i−1sk−i tr(A
i ).

Then, it turns out that
pA(x) = s0x

n − s1x
n−1 + s2x

n−2 − · · · ± snx
0, that is, Newton’s

symmetric polynomials compute the coefficients of the
characteristic polynomial, pA(x) = det(xI − A).
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
s1
s2
...
sn

 ,



0 0 0 . . .

1
2tr(A) 0 0 . . .

1
3tr(A

2) 1
3tr(A) 0 . . .

1
4tr(A

3) 1
4tr(A

2) 1
4tr(A) . . .

...
...

...
. . .


,


tr(A)

1
2tr(A

2)
...

1
n tr(A

n)


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Berkowitz

Berkowitz’s algorithm is also Divide and Conquer, and it computes
the characteristic polynomial of A from the characteristic
polynomial of its principal minor, i.e., the matrix M obtained from
deleting the first row and column of A:

A =

(
a11 R
S M

)
,
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R is an 1× (n − 1) row matrix and S is a (n − 1)× 1 column
matrix and M is (n − 1)× (n − 1). Let p(x) and q(x) be the
characteristic polynomials of A and M respectively. Suppose that
the coefficients of p form the column vector:

p =
(
pn pn−1 . . . p0

)t
,

where pi is the coefficient of x i in det(xI − A), and similarly for q.
Then:

p = C1q,

where C1 is an (n + 1)× n Toeplitz lower triangular matrix
(Toeplitz means that the values on each diagonal are constant)
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where the entries in the first column are defined as follows: ci1 = 1
if i = 1, ci1 = −a11 if i = 2, and ci1 = −(RM i−3S) if i ≥ 3.
Berkowitz’s algorithm consists in repeating this for q, and
continuing so that p is expressed as a product of matrices. Thus:

pberkA = C1C2 · · ·Cn,

where Ci is an (n + 2− i)× (n + 1− i) Toeplitz matrix defined as
above except A is replaced by its i-th principal sub-matrix. Note
that Cn = (1 − ann)

t .
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