
Intro to Analysis of Algorithms
Computational Foundations

Chapter 8

Michael Soltys

CSU Channel Islands

[ Git Date:2022-09-12 Hash:5e91c43 Ed:3rd ]

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Introduction - 1/153



Outline

Part I: Alphabets, strings and languages
Part II: Regular languages
Part III: Context-free languages
Part IV: Turing machines
Part V: λ-calculus (not in textbook)
Part VI: Recursive functions (not in textbook)
Part VII: Conclusion

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Introduction - 2/153



Part I
Alphabets, strings and languages

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 3/153



Since long ago “markings” have been used to store & process
information. The following pictures are from the Smithsonian
Museum of Natural History, Washington D.C.

Engraved ocher plaque
Blombos Cave, South Africa
77,000–75,000 years old

Ishango bone
Congo, 25,000–20,000 years old
leg bone from a baboon; 3 rows of
tally marks, to add or multiply (?)

Reindeer antler with tally marks
La Madeleine, France
17,000–11,500 years old

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 4/153



About 8,000 years ago, humans were using symbols to represent
words and concepts. True forms of writing developed over the next
few thousand years.

Cylinder seals were rolled
accross wet clay tablets to
produce raised designs

cylinder seal in lapis lazuli,
Assyrian culture, Babylon,
Iraq, 4,100–3,600 years ago

Cuneiform symbols stood for
concepts and later for sounds and
syllables

cuneiform clay tablet, Chakma,
Chalush, near Babylon, Iraq,
4,000–2,600 years ago

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 5/153



IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 6/153



An alphabet is a finite, non-empty set of distinct symbols, denoted
usually by Σ.

e.g., Σ = {0, 1} (binary alphabet)
Σ = {a, b, c , . . . , z} (lower-case letters alphabet)

A string, also called word, is a finite ordered sequence of symbols
chosen from some alphabet.

e.g., 010011101011

|w | denotes the length of the string w .

e.g., |010011101011| = 12

The empty string, ε, |ε| = 0, is in any Σ by default.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 7/153



Σk is the set of strings over Σ of length exactly k.

e.g., If Σ = {0, 1}, then

Σ0 = {ε}
Σ1 = Σ

Σ2 = {00, 01, 10, 11}, etc. |Σk |?

Kleene’s star Σ∗ is the set of all strings over Σ.

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪ . . .︸ ︷︷ ︸
=Σ+

Concatenation If x , y are strings, and x = a1a2 . . . am &

y = b1b2 . . . bn ⇒ x · y = xy︸︷︷︸
juxtaposition

= a1a2 . . . amb1b2 . . . bn

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 8/153



Stephen Cole Kleene

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 9/153

http://en.wikipedia.org/wiki/Stephen_Cole_Kleene


A language L is a collection of strings over some alphabet Σ, i.e.,
L ⊆ Σ∗. E.g.,

L = {ε, 01, 0011, 000111, . . .} = {0n1n|n ≥ 0} (1)

Note:

▶ wε = εw = w .

▶ {ε} ≠ ∅; one is the language consisting of the single string ε,
and the other is the empty language.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 10/153



Two fundamental questions:

▶ How do we describe a language? (1) is just an informal
set-theoretic description.

▶ Given a language L ⊆ Σ∗ and a string x ∈ Σ∗, how do we
check if x ∈ L? E.g.,

L = { 10︸︷︷︸
2

, 11︸︷︷︸
3

, 101︸︷︷︸
5

, 111︸︷︷︸
7

, . . .} ⊆ {0, 1}∗

w ∈ L iff w ∈ {0, 1}∗ encodes a prime number in standard
binary notation.

▶ What is an algorithm?

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Basics - 11/153



Part II
Regular languages

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 12/153



Deterministic Finite Automaton (DFA)

A = (Q,Σ, δ, q0,F )

▶ Finite set of states Q

▶ Finite set of input symbols Σ

▶ Transition fn δ : Q × Σ −→ Q; given q ∈ Q, a ∈ Σ,
δ(q, a) = p ∈ Q

▶ Start state q0
▶ A set of final (accepting) states.

To see whether A accepts a string w , we “run” A on
w = a1a2 . . . an as follows:

δ(q0, a1) = q1, δ(q1, a2) = q2, until δ(qn−1, an) = qn.

Accept iff qn ∈ F .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 13/153



John von Neumann

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 14/153

http://en.wikipedia.org/wiki/John_von_Neumann


Consider L = {w | w is of the form x01y ∈ Σ∗ } where Σ = {0, 1}.

We want to specify a DFA A = (Q,Σ, δ, q0,F ) that accepts all and
only the strings in L.

Σ = {0, 1}, Q = {q0, q1, q2}, and F = {q1}.

Transition diagram
q

1 0 0,1

10
q0 q2 1

Transition table

0 1

q0 q2 q0
q1 q1 q1
q2 q2 q1

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 15/153



Extended Transition Function (ETF) given δ, its ETF is δ̂ defined
inductively:

Basis Case: δ̂(q, ε) = q

Induction Step: if w = xa, w , x ∈ Σ∗ and a ∈ Σ, then

δ̂(q,w) = δ̂(q, xa) = δ(δ̂(q, x), a)

Thus: δ̂ : Q × Σ∗ −→ Q.

w ∈ L(A) ⇐⇒ δ̂(q0,w) ∈ F

Here L(A) is the set of all those strings (and only those) which are
accepted by A.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 16/153



Language of a DFA: L(A) = {w |δ̂(q0,w) ∈ F}

Note that

▶ A is a syntactic object

▶ while L(A) is a semantic object

Thus L is a function that assigns a meaning or interpretation to a
syntactic object.

Regular Languages: L is regular iff there exists a DFA A such that
L = L(A).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 17/153



Nondeterministic Finite Automata (NFA)

The transition function δ becomes a transition relation, i.e.,
δ ⊆ Q × Σ× Q, i.e., on the same pair (q, a) there may be more
than one possible new state (or none).

Equivalently, we can look at δ as δ : Q × Σ −→ P(Q), where
P(Q) is the power set of Q.

Ln = {w | n-th symbol from the end is 1 }
What is an NFA for Ln

0,1
0,1

1 0,1 0,1

At least how many states does any DFA recognizing Ln require?

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 18/153



NFA with ε transitions: ε-NFA: δ : Q × (Σ ∪ {ε}) −→ P(Q)

4

0,1,...,9

0,1,...,9

0,1,...,9

0,1,...,9

,+, .

.

0q q1 q2 q 3 q5

q

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 19/153



To define δ̂ for ε-NFAs we need the concept of ε-closure.

Given q, ε-close(q) is the set of all states p which are reachable
from q by following arrows labeled by ε.

Formally, q ∈ ε-close(q), and if p ∈ ε-close(q), and p
ε−→ r , then

r ∈ ε-close(q).

δ̂(q, ε) = ε-close(q)

Suppose w = xa, δ̂(q, x) = {p1, p2, . . . , pn},
and ∪ni=1δ(pi , a) = {r1, r2, . . . , rm},
then

δ̂(q,w) = ∪mi=1ε-close(ri )

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 20/153



Theorem: DFAs and ε-NFAs are equivalent.

Proof: Slightly modified subset construction.

qD0 = ε-close({qN0 })

δD(R, a) = ∪r∈Rε-close(δN(r , a))

Given a set of states S , its ε-closure is the union of the ε-closures
of its members.

The states of D are those subsets S ⊆ QN which are equal to their
ε-closures.

Corollary: A language is regular
⇐⇒ it is recognized by some DFA
⇐⇒ it is recognized by some NFA
⇐⇒ it is recognized by some ε-NFA

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 21/153



Union: L ∪M = {w |w ∈ L or w ∈ M}
Concatenation: LM = {xy |x ∈ L and y ∈ M}
Star (or closure): L∗ = {w |w = x1x2 . . . xn and xi ∈ L}

Regular Expressions

Basis Case: a ∈ Σ, ε, ∅

Induction Step: If E ,F are regular expressions, the so are
E + F ,EF , (E )∗, (E ).

What are L(a), L(ε), L(∅), L(E + F ), L(EF ), L(E ∗)?

Ex. Give a reg exp for the set of strings of 0s and 1s not
containing 101 as a substring:

(ε+ 0)(1∗ + 00∗0)∗(ε+ 0)

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 22/153



Theorem: A language is regular iff it is given by some regular
expression.

Proof: reg exp =⇒ ε-NFA & DFA =⇒ reg exp

[=⇒]

Use structural induction to convert R to an ε-NFA with 3
properties:

1. Exactly one accepting state

2. No arrow into the initial state

3. No arrow out of the accepting state

Basis Case: ε, ∅, a ∈ Σ

a

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 23/153



Induction Step: R + S ,RS ,R∗, (R)

R

S

R S

R

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 24/153



[⇐=] Convert DFA to reg exp.

Method 1

Suppose A has n states. R
(k)
ij denotes the reg exp whose language

is the set of strings w such that:
w takes A from state i to state j with all intermediate
states ≤ k

What is R such that L(R) = L(A)?

R = R
(n)
1j1

+ R
(n)
1j2

+ · · ·+ R
(n)
1jk

where F = {j1, j2, . . . , jk}

Build R
(k)
ij by induction on k .

Basis Case: k = 0, R
(0)
ij = x + a1 + a2 + · · ·+ ak where i

al−→ j
and x = ∅ if i ̸= j and x = ε if i = j

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 25/153



Induction Step: k > 0

R
(k)
ij = R

(k−1)
ij︸ ︷︷ ︸

path does not visit k

+ R
(k−1)
ik

(
R
(k−1)
kk

)∗
R
(k−1)
kj︸ ︷︷ ︸

visits k at least once

Method 2: DFA =⇒ Gε-NFA =⇒ Reg Exp

Generalized ε-NFA:

δ : (Q − {qaccept})× (Q − {qstart}) −→ R

where the start and accept states are unique.

G accepts w = w1w2 . . .wn, wi ∈ Σ∗, if there exists a sequence of
states

q0 = qstart, q1, . . . , qn = qaccept

such that for all i , wi ∈ L(Ri ) where Ri = δ(qi−1, qi ).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 26/153



When translating from DFA to Gε-NFA, if there is no arrow
i −→ j , we label it with ∅.

For each i , we label the self-loop with ε.

Eliminate states from G until left with just qstart
R−→ qaccept:

+
q

q

q q
q

i j

ji

R

R4

R31R

2

(R )1 2 3 4
*(R  )(R  ) (R  )

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 27/153



Algebraic Laws for Reg Exps

L+M = M + L (commutativity of +)
(L+M) + N = L+ (M + N) (associativity of +)
(LM)N = L(MN) (associativity of concatenation)
LM = ML ?

∅+ L = L+ ∅ = L (∅ identity for +)
εL = Lε = L (ε identity for concatenation)
∅L = L∅ = ∅ (∅ annihilator for concatenation)

L(M + N) = LM + LN (left-distributivity)
(M + N)L = ML+ NL (right-distributivity)

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 28/153



L+ L = L (idempotent law for union)

Laws with closure:

(L∗)∗ = L∗

∅∗ = ε
ε∗ = ε
L+ = LL∗ = L∗L
L∗ = L+ + ε

Test for Reg Exp Algebraic Law:

To test whether E = F , where E ,F are reg exp with variables
(L,M,N, . . .), convert E ,F to concrete reg exp C ,D by replacing
variables by symbols. If L(C ) = L(D), then E = F .

Ex. To show (L+M)∗ = (L∗M∗)∗ replace L,M by a, b, to obtain
(a+ b)∗ = (a∗b∗)∗.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) DFAs - 29/153



Pumping Lemma: Let L be a regular language. Then there exists
a constant n (depending on L) such that for all w ∈ L, |w | ≥ n, we
can break w into three parts w = xyz such that:

1. y ̸= ε

2. |xy | ≤ n

3. For all k ≥ 0, xykz ∈ L

Proof: Suppose L is regular. Then there exists a DFA A such that
L = L(A). Let n be the number of states of A. Consider any
w = a1a2 . . . am, m ≥ n:

↑
p0

x︷ ︸︸ ︷
a1 ↑
p1
a2 ↑
p2
a3 . . . ai ↑

pi

y︷ ︸︸ ︷
ai+1 . . . aj ↑

pj

z︷ ︸︸ ︷
aj+1 . . . am ↑

pm

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Pumping Lemma - 30/153



Ex. Show L = {0n1n|n ≥ 0} is not regular.

Suppose it is. By PL ∃p. Consider s = 0p1p = xyz . Since
|xy | ≤ p, y ̸= ε, y = 0j , j > 0. And xy2z = 0p+j1p ∈ L, which is a
contradiction.

Ex. Show L = {1p| p is prime } is not regular.

Suppose it is. By PL ∃n. Consider some prime p ≥ n + 2.

Let 1p = xyz , |y | = m > 0. So |xz | = p −m.

Consider xy (p−m)z which must be in L.

But
|xy (p−m)z | = |xz |+|y |(p−m) = (p−m)+m(p−m) = (p−m)(1+m)

Now 1 +m > 1 since y ̸= ε, and p −m > 1 since p > n + 2 and
m = |y | ≤ |xy | ≤ n. So the length of xy (p−m)z is not prime, and
hence it cannot be in L — contradiction.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Pumping Lemma - 31/153



R is a relation on two sets A,B if R ⊆ A× B.

e.g. R = {(m, n)| m − n is even } ⊆ Z× Z.
So (3, 5), (2,−4) ∈ R, but (−2, 1) /∈ R.

R is an equivalence relation if it is

1. Reflexive: for all a, (a, a) ∈ R

2. Symmetric: for all a, b, (a, b) ∈ R ⇒ (b, a) ∈ R

3. Transitive: for all a, b, c , (a, b) ∈ R and (b, c) ∈ R, implies
that (a, c) ∈ R.

If R is an equivalence relation, and (a, b) ∈ R, then we write
a ≡R b or just a ≡ b.

Equivalence class: [a] = {x |x ≡ a}

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 32/153



Theorem: For any equivalence relation:

1. a ∈ [a]

2. a ≡ b ⇐⇒ [a] = [b]

3. a ̸≡ b then [a] ∩ [b] = ∅
4. any two equivalence classes are either equal or disjoint.

Proof: 3. prove the contra-positive: suppose [a] ∩ [b] ̸= ∅, so
there exists an x ∈ [a] ∩ [b].

By definition, x ≡ a and x ≡ b.

By symmetry and transitivity, a ≡ b.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 33/153



L ⊆ Σ∗; given x , y ∈ Σ∗ we say that they are distinguishable if
∃z ∈ Σ∗ such that exactly one of xz , yz is in L.

E.g., L = {w ∈ {0, 1}∗| w has an even number of 1s }, and
x = 00, y = 10. Then x , y are distinguishable because letting
z = 1, xz = 001 ̸∈ L but yz = 101 ∈ L.

Given L, let ≡L be the relation: x ≡L y iff x , y are not
distinguishable. Then ≡L is an equivalence relation.

Myhill-Nerode Theorem: L is regular ⇐⇒ ≡L has finitely many
equivalence classes.

Moreover, the number of states in the smallest DFA recognizing L
is equal to the number of equivalence classes of ≡L.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 34/153



Closure Properties of Regular Languages

Union: If L,M are regular, so is L ∪M.

Proof: L = L(R) and M = L(S), so L ∪M = L(R + S).

Complementation: If L is regular, so is Lc = Σ∗ − L.

Proof: L = L(A), so Lc = L(A′), where A′ is the DFA obtained
from A as follows: FA′ = Q − FA.

Intersection: If L,M are regular, so is L ∩M.

Proof: L ∩M = L ∪M.

Reversal: If L is regular, so is LR = {wR |w ∈ L}, where
(w1w2 . . .wn)

R = wnwn−1 . . .w1.

Proof: Given a reg exp E , define ER by structural induction. The
only trick is that (E1E2)

R = ER
2 ER

1 .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 35/153



Homomorphism: h : Σ∗ −→ Σ∗, where
h(w) = h(w1w2 . . .wn) = h(w1)h(w2) . . . h(wn).

Ex. h(0) = ab, h(1) = ε, then h(0011) = abab.

h(L) = {h(w)|w ∈ L}

If L is regular, then so is h(L).

Proof: Given a reg exp E , define h(E ).

Inverse Homomorphism: h−1(L) = {w |h(w) ∈ L}.

Proof: Let A be the DFA for L; construct a DFA for h−1(L) as
follows: δ(q, a) = δ̂A(q, h(a)).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 36/153



Complexity of converting among representations

ε-NFA −→ DFA is O(n32n)
O(n3) for computing the ε closures of all states – Warshall’s
algorithm, and 2n states

DFA −→ NFA is O(n)

DFA −→ Reg Exp is O(n34n)

There are n3 expressions R
(k)
ij , and at each stage the size

quadruples (as we need four stage (k − 1) expressions to build one
for stage k)

Reg Exp −→ ε-NFA is O(n)
The trick here is to use an efficient parsing method for the reg exp;
O(n) methods exist

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 37/153



Decision Properties

▶ Is a language empty?
Automaton representation: Compute the set of reachable
states from q0. If at least one accepting state is reachable,
then it is not empty.
What about reg exp representation?

▶ Is a string in a language?
Translate any representation to a DFA, and run the string on
the DFA.

▶ Are two languages actually the same language?
Equivalence and minimization of Automata.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 38/153



Equivalence and Minimization of Automata

Take a DFA, and find an equivalent one with a minimal number of
states.

Two states are equivalent iff for all strings w ,

δ̂(p,w) is accepting ⇐⇒ δ̂(q,w) is accepting

If two states are not equivalent, they are distinguishable.

Find pairs of distinguishable states: Basis Case: if p is accepting
and q is not, then {p, q} is a pair of distinguishable states.

Induction Step: if r = δ(p, a) and s = δ(q, a), where a ∈ Σ and
{r , s} are distinguishable, then {p, q} are distinguishable.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 39/153



Table Filling Algorithm

A recursive algorithm for finding distinguishable pairs of states.

1

A C

E F G H

B D

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

A B C D E F G

B x
C x x
D x x x
E x x x
F x x x x
G x x x x x x
H x x x x x x

Distinguishable states are marked by “x”; the table is only filled
below the diagonal (above is symmetric).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 40/153



Theorem: If two states are not distinguished by the algorithm,
then the two states are equivalent.

Proof: Use the Least Number Principle (LPN): any set of natural
numbers has a least element.

Let {p, q} be a distinguishable pair, for which the algorithm left
the corresponding square empty, and furthermore, of all such
“bad” pairs {p, q} has a shortest distinguishing string w .

Let w = a1a2 . . . an, δ̂(p,w) is accepting & δ̂(q,w) isn’t.

w ̸= ε, as then p, q would be found out in the Basis Case of the
algorithm.

Let r = δ(p, a1) and s = δ(q, a1). Then, {r , s} are distinguished by
w ′ = a2a3 . . . an, and since |w ′| < |w |, they were found out by the
algorithm.

But then {p, q} would have been found in the next stage.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 41/153



Equivalence of DFAs

Suppose D1,D2 are two DFAs. To see if they are equivalent, i.e.,
L(D1) = L(D2), run the table-filling algorithm on their “union”,
and check if qD1

0 and qD2
0 are equivalent.

Complexity of the Table Filling Algorithm: there are n(n − 1)/2
pairs of states. In one round we check all the pairs of states to
check if their successor pairs have been found distinguishable; so a
round takes O(n2) many steps. If in a round no “x” is added, the
procedure ends, so there can be no more than O(n2) rounds, so
the total running time is O(n4).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 42/153



Minimization of DFAs

Note that the equivalence of states is an equivalence relation. We
can use this fact to minimize DFAs.

For a given DFA, we run the Table Filling Algorithm, to find all the
equivalent states, and hence all the equivalence classes. We call
each equivalence class a block.

In our last example, the blocks would be:

{E ,A}, {H,B}, {C}, {F ,D}, {G}

The states within each block are equivalent, and the blocks are
disjoint.

We now build a minimal DFA with states given by the blocks as
follows: γ(S , a) = T , where δ(p, a) ∈ T for p ∈ S .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 43/153



We must show that γ is well defined; suppose we choose a
different q ∈ S . Is it still true that δ(q, a) ∈ T?

Suppose not, i.e., δ(q, a) ∈ T ′, so δ(p, a) = t ∈ T , and
δ(q, a) = t ′ ∈ T ′. Since T ̸= T ′, {t, t ′} is a distinguishable pair.
But then so is {p, q}, which contradicts that they are both in S .

Theorem: We obtain a minimal DFA from the procedure.

Proof: Consider a DFA A on which we run the above procedure to
obtain M. Suppose that there exists an N such that
L(N) = L(M) = L(A), and N has fewer states than M.

Run the Table Filling Algorithm on M,N together (renaming the
states, so they don’t have states in common). Since L(M) = L(N)
their initial states are indistinguishable. Thus, each state in M is
indistinguishable from at least one state in N. But then, two states
of M are indistinguishable from the same state of N . . .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) Myhill-Nerode Theorem - 44/153



Part III
Context-free languages

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 45/153



A context-free grammar (CFG) is G = (V ,T ,P, S) — Variables,
Terminals, Productions, Start variable

Ex. P −→ ε|0|1|0P0|1P1.

Ex. G = ({E , I},T ,P,E ) where T = {+, ∗, (, ), a, b, 0, 1} and P is
the following set of productions:

E −→ I |E + E |E ∗ E |(E )
I −→ a|b|Ia|Ib|I0|I1

If αAβ ∈ (V ∪ T )∗, A ∈ V , and A −→ γ is a production, then

αAβ ⇒ αγβ. We use
∗⇒ to denote 0 or more steps.

L(G ) = {w ∈ T ∗|S ∗⇒ w}

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 46/153



Lemma: L(({P}, {0, 1}, {P −→ ε|0|1|0P0|1P1},P)) is the set of
palindromes over {0, 1}.

Proof: Suppose w is a palindrome; show by induction on |w | that
P

∗⇒ w .

BS: |w | ≤ 1, so w = ε, 0, 1, so use P −→ ε, 0, 1.

IS: For |w | ≥ 2, w = 0x0, 1x1, and by IH P
∗⇒ x .

Suppose that P
∗⇒ w ; show by induction on the number of steps in

the derivation that w = wR .

BS: Derivation has 1 step.
IS: P ⇒ 0P0

∗⇒ 0x0 = w (or with 1 instead of 0).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 47/153



If S
∗⇒ α, then α ∈ (V ∪ T )∗, and α is called a sentential form.

L(G ) is the set of those sentential forms which are in T ∗.

Given G = (V ,T ,P, S), the parse tree for (G ,w) is a tree with S
at the root, the symbols of w are the leaves (left to right), and
each interior node is of the form:

n

A

X X X X1 2 3

whenever we have a rule A −→ X1X2X3 . . .Xn

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 48/153



Derivation: head −→ body
Recursive Inference: body −→ head

The following five are all equivalent:

1. Recursive Inference

2. Derivation

3. Left-most derivation

4. Right-most derivation

5. Yield of a parse tree.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 49/153



Ambiguity of Grammars

E ⇒ E + E ⇒ E + E ∗ E
E ⇒ E ∗ E ⇒ E + E ∗ E

Two different parse trees! Different meaning.

A grammar is ambiguous if there exists a string w with two
different parse trees.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 50/153



A Pushdown Automaton (PDA) is an ε-NFA with a stack.

Two (equivalent) versions: (i) accept by final state, (ii) accept by
empty stack.

PDAs describe CFLs.

The PDA pushes and pops symbols on the stack; the stack is
assumed to be as big as necessary.

Ex. What is a simple PDA for {wwR |w ∈ {0, 1}∗} ?

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 51/153



Formal definition of a PDA:

P = (Q,Σ, Γ, δ, q0,Z0,F )

Q finite set of states

Σ finite input alphabet

Γ finite stack alphabet, Σ ⊆ Γ

δ(q, a,X ) = {(p1, γ1), . . . , (pn, γn)}

if γ = ε, then the stack is popped, if γ = X , then the stack is
unchanged, if γ = YZ then X is replaced Z , and Y is pushed onto
the stack

q0 initial state

Z0 start symbol

F accepting states

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 52/153



A configuration is a tuple (q,w , γ): state, remaining input,
contents of the stack

If (p, α) ∈ δ(q, a,X ), then (q, aw ,Xβ)→ (p,w , αβ)

Theorem: If (q, x , α)→∗ (p, y , β), then
(q, xw , αγ)→∗ (p, yw , βγ)

Acceptance by final state:
L(P) = {w |(q0,w ,Z0)→∗ (q, ε, α), q ∈ F}

Acceptance by empty stack: L(P) = {w |(q0,w ,Z0)→∗ (q, ε, ε)}

Theorem: L is accepted by PDA by final state iff it is accepted by
PDA by empty stack.

Proof: When Z0 is popped, enter an accepting state. For the other
direction, when an accepting state is entered, pop all the stack.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 53/153



Theorem: CFGs and PDAs are equivalent.

Proof: From Grammar to PDA: A left sentential form is x︸︷︷︸
∈T∗

tail︷︸︸︷
Aα

The tail appears on the stack, and x is the prefix of the input that
has been consumed so far.

Total input is w = xy , and hopefully Aα
∗⇒ y .

Suppose PDA is in (q, y ,Aα). It guesses A −→ β, and enters
(q, y , βγ).

The initial segment of β, if it has any terminal symbols, they are
compared against the input and removed, until the first variable of
β is exposed on top of the stack.

Accept by empty stack.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 54/153



Ex. Consider P −→ ε|0|1|0P0|1P1

The PDA has transitions:
δ(q0, ε,Z0) = {(q,PZ0)}
δ(q, ε,P) = {(q, 0P0), (q, 0), (q, ε), (q, 1P1), (q, 1)}
δ(q, 0, 0) = δ(q, 1, 1) = {(q, ε)}
δ(q, 0, 1) = δ(q, 1, 0) = ∅
δ(q, ε,Z0) = (q, ε)

Consider: P ⇒ 1P1⇒ 10P01⇒ 100P001⇒ 100001

0Z
Z

Z

P
P
1

1 Z
1
P 0

P
0
1
Z

P
0
1
Z

Z
1
0
0
P
0 P

0
0
1
Z

0
0
1
Z

Z
Z

Z
1

1

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 55/153



From PDA to grammar:

Idea: “net popping” of one symbol of the stack, while consuming
some input.

Variables: A[pXq], for p, q ∈ Q, X ∈ Γ.

A[pXq]
∗⇒ w iff w takes PDA from state p to state q, and pops X

off the stack.

Productions: for all p, S −→ A[q0Z0p], and whenever we have:

(r ,Y1Y2 . . .Yk) ∈ δ(q, a,X )

A[qXrk ] −→ aA[rY1r1]A[r1Y2r2] . . .A[rk−1Yk rk ]

where a ∈ Σ ∪ {ε}, r1, r2, . . . , rk ∈ Q are all possible lists of states.

If (r , ε) ∈ δ(q, a,X ), then we have A[qXr ] −→ a.

Claim: A[qXp]
∗⇒ w ⇐⇒ (q,w ,X )→∗ (p, ε, ε).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 56/153



A PDA is deterministic if |δ(q, a,X )| ≤ 1, and the second condition
is that if for some a ∈ Σ |δ(q, a,X )| = 1, then |δ(q, ε,X )| = 0.

Theorem: If L is regular, then L = L(P) for some deterministic
PDA P.

Proof: ignore the stack.

DPDAs that accept by final state are not equivalent to DPDAs
that accept by empty stack.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 57/153



L has the prefix property if there exists a pair (x , y), x , y ∈ L, such
that y = xz for some z .

Ex. {0}∗ has the prefix property.

Theorem: L is accepted by a DPDA by empty stack ⇐⇒ L is
accepted by a DPDA by final state and L does not have the prefix
property.

Theorem: If L is accepted by a DPDA, then L is unambiguous.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 58/153



Eliminating useless symbols from CFG:

X ∈ V ∪ T is useful if there exists a derivation such that
S

∗⇒ αXβ
∗⇒ w ∈ T ∗

X is generating if X
∗⇒ w ∈ T ∗

X is reachable if there exists a derivation S
∗⇒ αXβ

A symbol is useful if it is generating and reachable.

Generating symbols: Every symbol in T is generating, and if
A −→ α is a production, and every symbol in α is generating (or
α = ε) then A is also generating.

Reachable symbols: S is reachable, and if A is reachable, and
A −→ α is a production, then every symbol in α is reachable.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 59/153



If L has a CFG, then L−{ε} has a CFG without productions of the
form A −→ ε

A variable is nullable if A
∗⇒ ε

To compute nullable variables: if A −→ ε is a production, then A
is nullable, if B −→ C1C2 . . .Ck is a production and all the Ci ’s are
nullable, then so is B.

Once we have all the nullable variables, we eliminate ε-productions
as follows: eliminate all A −→ ε.

If A −→ X1X2 . . .Xk is a production, and m ≤ k of the Xi ’s are
nullable, then add the 2m versions of the rule the the nullable
variables present/absent (if m = k , do not add the case where they
are all absent).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 60/153



Eliminating unit productions: A −→ B
If A

∗⇒ B, then (A,B) is a unit pair.

Find all unit pairs: (A,A) is a unit pair, and if (A,B) is a unit pair,
and B −→ C is a production, then (A,C ) is a unit pair.

To eliminate unit productions: compute all unit pairs, and if (A,B)
is a unit pair and B −→ α is a non-unit production, add the
production A −→ α. Throw out all the unit productions.

A CFG is in Chomsky Normal Form if all the rules are of the form
A −→ BC and A −→ a.

Theorem: Every CFL without ε has a CFG in CNF.

Proof: Eliminate ε-productions, unit productions, useless symbols.
Arrange all bodies of length ≥ 2 to consist of only variables (by
introducing new variables), and finally break bodies of length ≥ 3
into a cascade of productions, each with a body of length exactly 2.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 61/153



Pumping Lemma for CFLs: There exists a p so that any s,
|s| ≥ p, can be written as s = uvxyz , and:

1. uv ixy iz is in the language, for all i ≥ 0,

2. |vy | > 0,

3. |vxy | ≤ p

Proof:

z

R

R

u v x y

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 62/153



Ex. The lang {0n1n2n|n ≥ 1} is not CF.

So CFL are not closed under intersection: L1 = {0n1n2i |n, i ≥ 1}
and L2 = {0i1n2n|n, i ≥ 1} are CF, but L1 ∩ L2 = {0n1n2n|n ≥ 1}
is not.

Theorem: If L is a CFL, and R is a regular language, then L ∩ R
is a CFL.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 63/153



L = {ww : w ∈ {0, 1}∗} is not CF, but Lc is CF. So CFLs are not
close under complementation either.

We design a CFG for Lc . First note that no odd strings are of the
form ww , so the first rule should be:

S −→ O|E
O −→ a|b|aaO|abO|baO|bbO

here O generates all the odd strings.

E generates even length strings not of the form ww , i.e., all strings
of the form:

X=|_____0__|_____1__| or Y=|_____1__|_____0__|

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 64/153



We need the rule:
E −→ X |Y

and now
X −→ PQ Y −→ VW
P −→ RPR V −→ SVS
P −→ a V −→ b
Q −→ RQR W −→ SWS
Q −→ b W −→ a
R −→ a|b S −→ a|b

Ex.

X ⇒ PQ ⇒ RPRQ ⇒ RRPRRQ ⇒ RRRPRRRQ ⇒ RRRRPRRRRQ

⇒ RRRRRPRRRRRQ ⇒ RRRRRaRRRRRQ ⇒ RRRRRaRRRRRRQR

⇒ RRRRRaRRRRRRRQRR ⇒ RRRRRaRRRRRRRbRR

and now the R’s can be replaced at will by a’s and b’s.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 65/153



CFL are closed under substitution: for every a ∈ Σ we choose La,
which we call s(a). For any w ∈ Σ∗, s(w) is the language of
x1x2 . . . xn, xi ∈ s(ai ).

Theorem: If L is a CFL, and s(a) is a CFL ∀a ∈ Σ, then
s(L) = ∪w∈Ls(w) is also CF.

Proof:

CFL are closed under union, concatenation, ∗ and +,
homomorphism (just define s(a) = {h(a)}, so h(L) = s(L)), and
reversal (just replace each A −→ α by A −→ αR).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 66/153



We can test for emptiness: just check whether S is generating.
Test for membership: use CNF of the CYK algorithm (more
efficient).

However, there are many undecidable properties of CFL:

1. Is a given CFG G ambiguous?

2. Is a given CFL inherently ambiguous?

3. Is the intersection of two CFL empty?

4. Given G1,G2, is L(G1) = L(G2)?

5. Is a given CFL everything?

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 67/153



CYK1 alg: Given G in CNF, and w = a1a2 . . . an, build an n × n
table. w ∈ L(G ) if S ∈ (1, n). (X ∈ (i , j) ⇐⇒ X

∗⇒ aiai+1 . . . aj .)

Let V = {X1,X2, . . . ,Xm}. Initialize T as follows:
for (i = 1; i ≤ n; i ++)

for (j = 1; j ≤ m; j ++) Put Xj in (i , i) iff ∃Xj −→ ai
Then, for i < j :
for (k = i ; k < j ; k ++)

if (∃ Xp ∈ (i , k) & Xq ∈ (k + 1, j) & Xr −→ XpXq)
Put Xr in (i , j)

x (2,2) (2,3) (2,4) (2,5)
x x (3,5)

x x x (4,5)

x x x x (5,5)

1Cocke-Kasami-Younger

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 68/153



Context-sensitive grammars (CSG) have rules of the form:

α→ β

where α, β ∈ (T ∪ V )∗ and |α| ≤ |β|. A language is context
sensitive if it has a CSG.

Fact: It turns out that CSL = NTIME(n)

A rewriting system (also called a Semi-Thue system) is a grammar
where there are no restrictions; α→ β for arbitrary
α, β ∈ (V ∪ T )∗.

Fact: It turns out that a rewriting system corresponds to the most
general model of computation; i.e., a language has a rewriting
system iff it is “computable.”

Enter Turing machines . . .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 69/153



Chomsky-Schutzenberger Theorem: If L is a CFL, then there
exists a regular language R, an n, and a homomorphism h, such
that L = h(PARENn ∩ R).

Parikh’s Theorem: If Σ = {a1, a2, . . . , an}, the signature of a
string x ∈ Σ∗ is (#a1(x), #a2(x), . . . , #an(x)), i.e., the number of
ocurrences of each symbol, in a fixed order. The signature of a
language is defined by extension; regular and CFLs have the same
signatures.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 70/153



Automata and Computability
Dexter Kozen

Intro to the theory of Computation
Third edition
Michael Sipser

Intro to automata theory, languages and computation
Second edition
John Hopcroft, Rajeev Motwani, Jeffrey Ullman
There is now a 3rd edition!

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) CFGs - 71/153



Part IV
Turing machines

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 72/153



Finite control and an infinite tape.

Initially the input is placed on the tape, the head of the tape is
reading the first symbol of the input, and the state is q0.

The other squares contain blanks.

Formally, a Turing machine is a tuple (Q,Σ, Γ, δ)

where Q is a finite set of states (always including the three special
states qinit, qaccept and qreject)

Σ is a finite input alphabet

Γ is a finite tape alphabet, and it is always the case that Σ ⊆ Γ (it
is convenient to have symbols on the tape which are never part of
the input),

δ : Q × Γ→ Q × Γ× {Left,Right}

is the transition function

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 73/153



Alan Turing

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 74/153

http://en.wikipedia.org/wiki/Alan_Turing


A configuration is a tuple (q,w , u) where q ∈ Q is a state, and
where w , u ∈ Γ∗, the cursor is on the last symbol of w , and u is
the string to the right of w .

A configuration (q,w , u) yields (q′,w ′, u′) in one step, denoted as

(q,w , u)
M→ (q′,w ′, u′) if one step of M on (q,w , u) results in

(q′,w ′, u′).

Analogously, we define
Mk

→, yields in k steps, and
M∗
→, yields in any

number of steps, including zero steps.

The initial configuration, Cinit, is (qinit, ▷, x) where qinit is the
initial state, x is the input, and ▷ is the left-most tape symbol,
which is always there to indicate the left-end of the tape.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 75/153



Given a string w as input, we “turn on” the TM in the initial
configuration Cinit, and the machine moves from configuration to
configuration.

The computation ends when either the state qaccept is entered, in
which case we say that the TM accepts w , or the state qreject is
entered, in which case we say that the TM rejects w . It is possible
for the TM to never enter qaccept or qreject, in which case the
computation does not halt.

Given a TM M we define L(M) to be the set of strings accepted by
M, i.e., L(M) = {x |M accepts x}, or, put another way, L(M) is
the set of precisely those strings x for which (qinit, ▷, x) yields an
accepting configuration.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 76/153



Alan Turing showed the existence of a so called Universal Turing
machine (UTM); a UTM is capable of simulating any TM from its
description.

A UTM is what we mean by a computer, capable of running any
algorithm. The proof is not difficult, but it requires care in defining
a consistent way of presenting TMs and inputs.

Every Computer Scientist should at some point write a UTM in
their favorite programming language . . .

This exercise really means: designing your own programming
language (how you present descriptions of TMs); designing your
own compiler (how your machine interprets those “descriptions”);
etc.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 77/153



NTM

N s.t. L(N) = {w ∈ {0, 1}∗| last symbol of w is 1 }.

δ(q0, 0) = {(q0, 0,→), (q, 0,→)}
δ(q0, 1) = {(q0, 1,→), (r , 1,→)}
δ(r ,□) = {(qaccept,□,→)}

δ(r , 0/1) = {(q, 0,→)}

q0011

0q011

01q01

011q0

×

011r

011□qaccept

01r1

010q

×

0q11

×

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 78/153



Different variants of TMs are equivalent (robustness): tape infinite
in only one direction, or several tapes.

TM = NTM: D maintains a sequence of config’s on tape 1:

· · · config1 config2 config∗3 · · ·

and uses a second tape for scratch work.

The marked config (*) is the current config. D copies it to the
second tape, and examines it to see if it is accepting. If it is, it
accepts.

If it is not, and N has k possible moves, D copies the k new
config’s resulting from these moves at the end of tape 1, and
marks the next config as current.

If max nr of choices of N is m, and N makes n moves, D examines
1 +m +m2 +m3 + · · ·+mn ≈ nmn many configs.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 79/153



Undecidability

We can encode every Turing machine with a string over {0, 1}. For
example, if M is a TM:

({q1, q2}, {0, 1}, δ, . . .)

and δ(q1, 1) = (q2, 0,→) is one of the transitions, then it could be
encoded as:

0︸︷︷︸
q1

1 00︸︷︷︸
1

1 00︸︷︷︸
q2

1 0︸︷︷︸
0

1 0︸︷︷︸
→

11 . . . . . . . . . . . . . . . . . .︸ ︷︷ ︸
encoding of other
transitions

Not every string is going to be a valid encoding of a TM (for
example the string 1 does not encode anything in our convention).

Let all “bad strings” encode a default TM Mdefault which has one
state, and halts immediately, so L(Mdefault) = ∅.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 80/153



The intuitive notion of algorithm is captured by the formal
definition of a TM.

ATM = {⟨M,w⟩ : M is a TM and M accepts w},

called the universal language

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 81/153



Theorem 6.63: ATM is undecidable.

Suppose that it is decidable, and that H decides it. Then,
L(H) = ATM, and H always halts (observe that L(H) = L(U), but
U, as we already mentioned, is not guaranteed to be a decider).
Define a new machine D (here D stands for “diagonal,” since this
argument follows Cantor’s “diagonal argument”):

D(⟨M⟩) :=

{
accept if H(⟨M, ⟨M⟩⟩) = reject

reject if H(⟨M, ⟨M⟩⟩) = accept

that is, D does the “opposite.” Then we can see that D(⟨D⟩)
accepts iff it rejects. Contradiction; so ATM cannot be decidable.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 82/153



It turns out that all nontrivial properties of RE languages are
undecidable, in the sense that the language consisting of codes of
TMs having this property is not recursive.

E.g., the language consisting of codes of TMs whose languages are
empty (i.e., Le) is not recursive.

A property of RE languages is simply a subset of RE. A property is
trivial if it is empty or if it is everything.

If P is a property of RE languages, the language LP is the set of
codes for TMs Mi s.t. L(Mi ) ∈ P.

When we talk about the decidability of P, we formally mean the
decidability of LP .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 83/153



Rice’s Theorem: Every nontrivial property of RE languages is
undecidable.

Proof: Suppose P is nontrivial. Assume ∅ ̸∈ P (if it is, consider P
which is also nontrivial).

Since P is nontrivial, some L ∈ P, L ̸= ∅.

Let ML be the TM accepting L.

For a fixed pair (M,w) consider the TM M ′: on input x , it first
simulates M(w), and if it accepts, it simulates ML(x), and if that
accepts, M ′ accepts.

∴ L(M ′) = ∅ ̸∈ P if M does not accept w , and L(M ′) = L ∈ P if
M accepts w .

Thus, L(M ′) ∈ P ⇐⇒ (M,w) ∈ ATM, ∴ P is undecidable.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 84/153



Post’s Correspondence Problem (PCP)

An instance of PCP consists of two finite lists of strings over some
alphabet Σ. The two lists must be of equal length:

A = w1,w2, . . . ,wk

B = x1, x2, . . . , xk

For each i , the pair (wi , xi ) is said to be a corresponding pair. We
say that this instance of PCP has a solution if there is a sequence
of one or more indices:

i1, i2, . . . , im m ≥ 1

such that:
wi1wi2 . . .wim = xi1xi2 . . . xim

The PCP is: given (A,B), tell whether there is a solution.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 85/153



Emil Leon Post

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 86/153

http://en.wikipedia.org/wiki/Emil_Leon_Post


Aside: To express PCP as a language, we let LPCP be the
language:

{⟨A,B⟩|(A,B) instance of PCP with solution}

Example: Consider (A,B) given by:

A = 1, 10111, 10
B = 111, 10, 0

Then 2, 1, 1, 3 is a solution as:

10111︸ ︷︷ ︸
w2

1︸︷︷︸
w1

1︸︷︷︸
w1

10︸︷︷︸
w3

= 10︸︷︷︸
x2

111︸︷︷︸
x1

111︸︷︷︸
x1

0︸︷︷︸
x3

Note that 2, 1, 1, 3, 2, 1, 1, 3 is another solution.

On the other hand, you can check that: A = 10, 011, 101 &
B = 101, 11, 011 Does not have a solution.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 87/153



The MPCP has an additional requirement that the first pair in the
solution must be the first pair of (A,B).

So i1, i2, . . . , im, m ≥ 0, is a solution to the (A,B) instance of
MPCP if:

w1wi1wi2 . . .wim = x1xi1xi2 . . . xim

We say that i1, i2, . . . , ir is a partial solution of PCP if one of the
following is the prefix of the other:

wi1wi2 . . .wir xi1xi2 . . . xir

Same def holds for MPCP, but w1, x1 must be at the beginning.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 88/153



We now show:

1. If PCP is decidable, then so is MPCP.

2. If MPCP is decidable, then so is ATM.

3. Since ATM is not decidable, neither is (M)PCP.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 89/153



PCP decidable =⇒ MPCP decidable

We show that given an instance (A,B) of MPCP, we can construct
an instance (A′,B ′) of PCP such that:

(A,B) has solution ⇐⇒ (A′,B ′) has solution

Let (A,B) be an instance of MPCP over the alphabet Σ. Then
(A′,B ′) is an instance of PCP over the alphabet Σ′ = Σ ∪ {∗, $}.

If A = w1,w2,w3, . . . ,wk , then
A′ = ∗w1∗,w1∗,w2∗,w3∗, . . . ,wk∗, $.

If B = x1, x2, x3, . . . , xk , then B ′ = ∗x1, ∗x1, ∗x2, ∗x3, . . . , ∗xk , ∗$.

where if x = a1a2a3 . . . an ∈ Σ∗, then x = a1 ∗ a2 ∗ a3 ∗ . . . ∗ an.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 90/153



For example: If (A,B) is an instance if MPCP given as:

A = 1, 10111, 10
B = 111, 10, 0

Then (A′,B ′) is an instance of PCP given as follows:

A′ = ∗1∗, 1∗, 1 ∗ 0 ∗ 1 ∗ 1 ∗ 1∗, 1 ∗ 0∗, $
B ′ = ∗1 ∗ 1 ∗ 1, ∗1 ∗ 1 ∗ 1, ∗1 ∗ 0, ∗0, ∗$

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 91/153



MPCP decidable =⇒ ATM decidable

Given a pair (M,w) we construct an instance (A,B) of MPCP
such that:

TM M accepts w ⇐⇒ (A,B) has a solution.

Idea: The MPCP instance (A,B) simulates, in its partial solutions,
the computation of M on w .

That is, partial solutions will be of the form:

#α1#α2#α3# . . .

where α1 is the initial config of M on w , and for all i , αi → αi+1.

The string from the B list will always be one config ahead of the A
list; the A list will be allowed to “catch-up” only when M accepts
w .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 92/153



To simplify things, we may assume that our TM M:

1. Never prints a blank.

2. Never moves left from its initial head position.

The configs of M will always be of the form αqβ, where α, β are
non-blank tape symbols and q is a state.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 93/153



Let M be a TM and w ∈ Σ∗. We construct an instance (A,B) of
MPCP as follows:

1. A: #
B: #q0w#

2. A: X1,X2, . . . ,Xn, #
B: X1,X2, . . . ,Xn, #
where the Xi are all the tape symbols.

3. To simulate a move of M, for all non-accepting q ∈ Q:

list A list B
qX Yp if δ(q,X ) = (p,Y ,→)
ZqX pZY if δ(q,X ) = (p,Y ,←)
q# Yp# if δ(q,B) = (p,Y ,→)
Zq# pZY # if δ(q,B) = (p,Y ,←)

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 94/153



4. If the config at the end of B has an accepting state, then we
need to allow A to catch up with B. So we need for all
accepting states q, and all symbols X ,Y :

list A list B
XqY q
Xq q
qY q

5. Finally, after using 4 and 3 above, we end up with x# and
x#q#, where x is a long string. Thus we need q## in A and #

in B to complete the catching up.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 95/153



Ex. δ(q1, 0) = (q2, 1,→), δ(q1, 1) = (q2, 0,←), δ(q1,B) = (q2, 1,←)
δ(q2, 0) = (q3, 0,←), δ(q2, 1) = (q1, 0,→), δ(q2,B) = (q2, 0,→)

Rule list A list B Source

1 # #q101#

2 0 0
1 1
# #

3 q10 1q2 δ(q1, 0) = (q2, 1,→)
0q11 q200 δ(q1, 1) = (q2, 0,←)
1q11 q210 δ(q1, 1) = (q2, 0,←)
0q1# q201# δ(q1,B) = (q2, 1,←)
1q1# q211# δ(q1,B) = (q2, 1,←)
0q20 q300# δ(q2, 0) = (q3, 0,←)
1q20 q310# δ(q2, 0) = (q3, 0,←)
q21 0q1 δ(q2, 1) = (q1, 0,→)
q2# 0q2# δ(q2,B) = (q2, 0,→)

4 0q30 q3
0q31 q3
1q30 q3
1q31 q3
0q3 q3
1q3 q3
q30 q3
q31 q3

5 q3## #

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 96/153



The TM M accepts the input 01 by the sequence of moves:

q101→ 1q21→ 10q1 → 1q201→ q3101

We examine the sequence of partial solutions that mimics this
computation of M and eventually leads to a solution.

We must start with the first pair (MPCP):

A: #
B: #q101#

The only way to extend this partial solution is with the
corresponding pair (q10, 1q2), so we obtain:

A: #q10
B: #q101#1q2

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 97/153



Now using copying pairs we obtain:

A: #q101#1
B: #q101#1q21#1

Next corresponding pair is (q21, 0q1):

A: #q101#1q21
B: #q101#1q21#10q1

Now careful! We only copy the next two symbols to obtain:

A: #q101#1q21#1
B: #q101#1q21#10q1#1

because we need the 0q1 as the head now moves left, and use the next
appropriate corresponding pair which is (0q1#, q201#) and obtain:

A: #q101#1q21#10q1#

B: #q101#1q21#10q1#1q201#

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 98/153



We can now use another corresponding pair (1q20, q310) right away to obtain:

A: #q101#1q21#10q1#1q20
B: #q101#1q21#10q1#1q201#q310

and note that we have an accepting state! We use two copying pairs to get:

A: #q101#1q21#10q1#1q201#
B: #q101#1q21#10q1#1q201#q3101#

and we can now start using the rules in 4. to make A catch up with B:

A: . . . #q31
B: . . . #q3101#q3

and we copy three symbols:

A: . . . #q3101#

B: . . . #q3101#q301#

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 99/153



And again catch up a little:

A: . . . #q3101#q30
B: . . . #q3101#q301#q3

Copy two symbols:

A: . . . #q3101#q301#
B: . . . #q3101#q301#q31#

and catch up:

A: . . . #q3101#q301#q31
B: . . . #q3101#q301#q31#q3

and copy:

A: . . . #q3101#q301#q31#
B: . . . #q3101#q301#q31#q3#

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 100/153



And now end it all with the corresponding pair (q3##, #) given by
rule 5. to get matching strings:

A: . . . #q3101#q301#q31#q3##
B: . . . #q3101#q301#q31#q3##

THEREFORE: we reduced ATM to the MPCP. Now, we can solve
ATM by producing a carefully crafted instance of MPCP (A,B),
and asking if it has a solution. If yes, then we know that M
accepts w .

Since we have already shown that ATM is undecidable, MPCP
must also be undecidable. Thus, PCP is undecidable.

NEXT: We can now use the fact that PCP is undecidable to show
that a number of questions about CFLs are undecidable.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 101/153



Let A = w1,w2, . . . ,wk , let GA be the related CFG given by:

A −→ w1Aa1|w2Aa2| · · · |wkAak |w1a1|w2a2| · · · |wkak

Let LA = L(GA), the language of the list A, and a1, a2, . . . , ak are
distinct index symbols not in alphabet of A.

The terminal strings of GA are of the form:

wi1wi2 . . .wimaim . . . ai2ai1

Let GAB be a CFG consisting of GA,GB , with S −→ A|B.

∴ GAB is ambiguous ⇐⇒ the PCP (A,B) has a solution.

Theorem: It is undecidable whether a CFG is ambiguous.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 102/153



LA is also a CFL; we show this by giving a PDA P.

ΓP = ΣA ∪ {a1, a2, . . . , ak}.

As long as P sees a symbol in ΣA it stores it on the stack.

As soon as P sees ai , it pops the stack to see if top of string is
wR
i . (i) if not, then accept no matter what comes next. (ii) if yes,

there are two subcases:

(iia) if stack is not yet empty, continue.

(iib) if stack is empty, and the input is finished, reject.

If after an ai , P sees a symbol in ΣA, it accepts.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 103/153



Theorem: G1,G2 are CFGs, and R is a reg. exp., then the
following are undecidable problems:

1. L(G1) ∩ L(G2)
?
= ∅

2. L(G1)
?
= L(G2)

3. L(G1)
?
= L(R)

4. L(G1)
?
= T ∗

5. L(G1)
?
⊆ L(G2)

6. L(R)
?
⊆ L(G2)

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 104/153



Proofs: 1. Let L(G1) = LA and L(G2) = LB , then
L(G1) ∩ L(G2) ̸= ∅ iff PCP (A,B) has a solution.

2. Let G1 be the CFG for LA ∪ LB (CFGs are closed under union).
Let G2 be the CFG for the reg. lang. (Σ ∪ {a1, a2, . . . , ak})∗.

Note L(G1) = LA ∪ LB = LA ∩ LB = everything but solutions to
PCP (A,B).

∴ L(G1) = L(G2) iff (A,B) has no solution.

3. Shown in 2.

4. Again, shown in 2.

5. Note that A = B iff A ⊆ B and B ⊆ A, so it follows from 2.

6. By 3. and 5.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) TMs - 105/153



Part V
λ-calculus

(not in textbook)

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 106/153



The set Λ of λ-terms is the smallest set such that:

▶ x , y , z . . . ∈ Λ (variables are in Λ)

▶ if x is a variable and M is λ-term, then so is (λx .M)
(abstraction)

▶ if M,N are λ-terms then so is (MN) (application)

FV(M) is the set of free variables of M. It is defined recursively as
follows: FV(x) = {x}, and FV(λx .M) = FV(M)− {x} and
FV(MN) = FV(M) ∪ FV(N).

Terms without free variables are closed terms (also called
combinators), i.e., M is closed iff FV(M) = ∅.

BV(M) is the set of bounded variables of M. BV(x) = ∅,
BV(λx .M) = {x} ∪ BV(M) and BV(M) ∪ BV(N).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 107/153



Ex. λz .z is closed, and FV(zλx .x) = {z} while BV(zλx .x) = {x}.
On the other hand BV(xλx .x) = BV(xλx .x) = {x}.

It is important to realize that two formulas are essentially the same
if they only differ in the names of bounded variables, e.g., λx .x
and λy .y represent (in some sense) the same object. To make this
concept precise, we introduce the notion of α-equality, denoted
=α.

M=αN if M = N = x

Note that the equalith on the right (M = N = x) is syntactic
equality and x can be any variable.

M=αN if M = M1M2 and N = N1N2 and M1=αN1 and M2=αN2.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 108/153



Also, M=αN if M = λx .M1 and N = λx .N1 and M1=αN1.

Finally, M=αN if M = λx .M1 and N = λy .N1 and there is a new
variable z such that M1{x 7→ z}=αN1{y 7→ z}.

Here M{x 7→ N} denotes the λ-term M where every free instance
of x has been replaced by the λ-term N, in such a way that no free
variable u of N has been “caught” in the scope of some λu. If z is
new, it will never be caught.

We shall soon give a formal definition of substitution.

But first: =α is an equivalence relation.

Ex. λx .x=αλy .y , λx .λy .xy=αλz1.λz2.z1z2 and
(λx .x)z=α(λy .y)z .

Thus, we think of λ-terms in terms of their equivalence classes wrt
=α relation.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 109/153



We now define the notion of computation: a redex is a term of the
form (λx .M)N. The idea is to apply the function λx .M to the
argument N. We do this as follows:

(λx .M)N→βM{x 7→ N}

This is the so called β-reduction rule. We write M→βM
′ to

indicate that M reduces to M ′.

Ex. (λx .x)y→βx{x 7→ y} = y

(again, note that the equality is a syntactic equality)

(λx .λy .x)(λx .x)u→β(λy .λz .z)u→βλz .z

(application associates to the left, i.e., MNP = (MN)P)

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 110/153



Ex. (λx .λy .xy)(λx .x)→βλy .(λx .x)y→βλy .y

The symbol →∗
β means zero or more applications of →β; from the

previous example, (λx .λy .xy)(λx .x)→∗
βλy .y .

We use the word reduce but this does not mean that the terms
necessarily get simpler/smaller.

Ex. (λx .xx)(λxyz .xz(yz))→β(λxyz .xz(yz))(λxyz .xz(yz))

(note that λxyz abbreviates λx .λy .λz , and that abstractions
associate to the right, i.e., λxyz .M is λx .(λy .(λz .M)))

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 111/153



(λx .xx)(λy .yx)z = ((λx .xx)(λy .yx))z
[application left associates]

→β((xx){x 7→ (λy .yx)})z [substitution]

= ((λy .yx)(λy .yx))z

→β((yx){y 7→ (λy .yx)})z [substitution]

= ((λy .yx)x)z

→β((yx){y 7→ x})z [substitution]

= (xx)z = xxz [application left associates]

(λx .(λy .(xy))y)z→β(λx .((xy){y 7→ y}))z
= (λx .(xy))z

→β(xy){x 7→ z} = zy

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 112/153



((λx .xx)(λy .y))(λy .y)→β((xx){x 7→ (λy .y)})(λy .y)
= ((λy .y)(λy .y))(λy .y)

→β(y{y 7→ (λy .y)})(λy .y)
= (λy .y)(λy .y)

= (λy .y) [just repeating previous line]

(((λx .λy(xy))(λy .y))w) = (((λx .λv .(xv))(λy .y))w)
[use =α so y not “caught” by λy ]

→β((λv .(xv)){x 7→ (λy .y)})w
= (λv .((λy .y)v))w

→β(λv .v)w

→βw

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 113/153



We now give a precise definition of substitution M{x 7→ N} by
structural induction on M.

x{x 7→ N}N = N

y{x 7→ N} = y

(PQ){x 7→ N} = (P{x 7→ N})(Q{x 7→ N})

(λx .P){x 7→ N} = λx .P

(λy .P){x 7→ N} = λy .(P{x 7→ N}) if y /∈ FV(N) or x /∈ FV(P)

(λy .P){x 7→ N} = (λz .P{y 7→ z}){x 7→ N} otherwise and z is a
new variable

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 114/153



Ex.

(λz .yz){y 7→ z}=α(λx .(yz){z 7→ x}){y 7→ z}
=α(λx .((y{z 7→ x})(z{z 7→ x}))){y 7→ z}
=α(λx .(yx)){y 7→ z}
=αλx .(yx){y 7→ z}
=αλx .((y{y 7→ z})(x{y 7→ z}))
=αλx .(zy)

Property: If x ∈ FV(P), then

(M{x 7→ N}){y 7→ P}=α(M{y 7→ P}){x 7→ N{y 7→ P}}

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 115/153



A normal form is a term that does not contain any redexes.

A term that can be reduced to normal form is called normalizable.

Ex. λabc.((λx .a(λy .xy))bc)→βλabc.(a(λy .by)c) where the last
term is in normal form (bec applications associate to the left)

Some terms are not normalizable, e.g., (λx .xx)(λx .xx).

A term M is strongly normalizable (or terminating) if all reduction
sequences starting from M are finite.

Weak head normal form: stop reducing when there are no redexe
left, but without reducing under an abstraction.

Ex. λabc.((λx .a(λxy))bc) is in weak head normal form.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 116/153



FACT: Our reduction relation →β is confluent because whenever
M→βM1 and M→βM2, then there exists a term M3 such that
M1→βM3 and M2→βM3.

Corollary: Each λ-term has at most one normal form.

Proof: Suppose that a term M has more than one normal form;
i.e., M →∗

β M1 and M →∗
β M2, where M1 and M2 are in normal

form. Then they should both be reducible to a common M3 (by
confluence), but if they are in normal form that cannot be done.
Contradiction—hence there can be at most one normal form.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 117/153



Church’s numerals:

0̄ = λx .λy .y

1̄ = λx .λy .xy

2̄ = λx .λy .x(xy)

3̄ = λx .λy .x(x(xy))

...

n̄ = λx .λy . x(x(x . . . (x︸ ︷︷ ︸
n

y) . . .))

...

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 118/153



Alonzo Church

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 119/153

http://en.wikipedia.org/wiki/Alonzo_Church


Consider S := λxyz .y(xyz)

Sn̄ = S(λxy x(x(x . . . (x︸ ︷︷ ︸
n

y) . . .)))

→βλyz .y(λxy . x(x(x . . . (x︸ ︷︷ ︸
n

y) . . .))yz)

=αλyz .y(λxw . x(x(x . . . (x︸ ︷︷ ︸
n

w) . . .))yz)

→βλyz .y(λw . y(y(y . . . (y︸ ︷︷ ︸
n

w) . . .))z)

→βλyz .

n+1︷ ︸︸ ︷
y(y(y(y . . . (y︸ ︷︷ ︸

n

z) . . .)))=αn + 1

so S(n̄) = n + 1, i.e., S is the successor fn.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 120/153



Define ADD := λxyab.(xa)(yab).

ADDn̄m̄→β(λyab.(n̄a)(yab))m̄

→βλab.( n̄a )( m̄a b)

→βλab.( λy a(a(a . . . (a︸ ︷︷ ︸
n

y) . . .)) )[( λy a(a(a . . . (a︸ ︷︷ ︸
m

y) . . .)) )b]

→βλab.( λy a(a(a . . . (a︸ ︷︷ ︸
n

y) . . .)) )[ a(a(a . . . (a︸ ︷︷ ︸
m

b) . . .)) ]

→βλab.(a(a(. . . (a︸ ︷︷ ︸
n

(a(a . . . (a︸ ︷︷ ︸
m︸ ︷︷ ︸

n+m

b) . . .))) . . .)))

=αn +m

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) λ - 121/153



Part VI
Recursive Functions
(not in textbook)

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 122/153



A partial function is a function

f : (N ∪ {∞})n −→ N ∪ {∞}, n ≥ 0

such that f (c1, . . . , cn) =∞ if some ci =∞.

Domain(f ) = {x⃗ ∈ Nn : f (x⃗) ̸=∞} where x⃗ = (x1, . . . , xn).

f is total if Domain(f ) = Nn, i.e., f is always defined if its
arguments are defined.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 123/153



A Register Machine (RM) is a computational model specified by a
program P = ⟨c0, c1, . . . , ch−1⟩, consisting of a finite sequence of
commands.

The commands operate on registers R1,R2,R3, . . ., each capable of
storing an arbitrary natural number.

command abbrev. parameters

Ri ← 0 Zi i = 1, 2, . . .
Ri ← Ri + 1 Si i = 1, 2, . . .
goto k if Ri = Rj Jijk i , j = 1, 2, . . . & k = 0, 1, 2, . . . h

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 124/153



An example RM program that copies Ri into Rj :

c0: Rj ← 0 Zj

c1: goto 4 if Ri = Rj Jij4
c2: Rj ← Rj + 1 Sj
c3: goto 1 if R1 = R1 J111
c4:

Formally, the program is ⟨Zj , Jij4,Sj , J111⟩.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 125/153



Semantics of RM’s

A state is an m + 1-tuple

⟨K ,R1, . . . ,Rm⟩

of natural numbers, where K is the instruction counter (i.e., the
number of the next command to be executed), and R1, . . . ,Rm are
the current values of the registers (m is the max register index
referred to in the program).

Given a state s = ⟨K ,R1, . . . ,Rm⟩ and a program
P = ⟨c0, c1, . . . , ch−1⟩, the next state, s ′ = NextP(s) is the state
resulting when command cK is applied to the register values given
by s.

We say that s is a halting state if K = h, and in this case s ′ = s.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 126/153



Suppose the state s = ⟨K ,R1, . . . ,Rm⟩ and the command ck is Sj ,
where 1 ≤ j ≤ m. Then,

NextP(s) = ⟨K + 1,R1, . . . ,Rj−1,Rj + 1,Rj+1, . . . ,Rm⟩

Ex. Give a formal definition of the function NextP for the cases in
which cK is Zi and Jijk .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 127/153



A computation of a program P is a finite or infinite sequence
s0, s1, . . . of states such that si+1 = NextP(si ).

If the sequence is finite, then the last state must be a halting state,
in which case that computation is halting—we say that P is
halting starting in state s0.

A program P computes a (partial) function f (a1, . . . , an) as
follows. Initially place a1, . . . , an in R1, . . . ,Rn and set all other
registers to 0. Start execution with c0, i.e., the initial state is

s0 = ⟨0, a1, . . . , an, 0, . . . , 0⟩

If P halts in s0, the final value of R1 must be f (a1, . . . , an) (which
then must be defined). If P fails to halt, then f (a1, . . . , an) =∞.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 128/153



We say f is RM-computable (or just computable) if f is computed
by some RM program.

Church’s Thesis: Every algorithmically computable function is
RM computable.

Ex. Show P = ⟨J234,S1,S3, J110⟩ computes f (x , y) = x + y .

Ex. Write RM programs that compute f1(x) = x
.
− 1 and

f2(x , y) = x · y . Be sure to respect the input/output conventions
for RMs.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 129/153



f is defined from g and h by primitive recursion (pr) if

f (x⃗ , 0) = g(x⃗)

f (x⃗ , y + 1) = h(x⃗ , y , f (x⃗ , y))

we allow n = 0 so x⃗ could be missing. The following high-level
program computes f from g , h by pr:

u ← g(x⃗)
for z : 0 . . . (y − 1)

u ← h(x⃗ , z , u)
end for

f+(x , y) = x + y can be define by pr as follows:

x + 0 = x

x + (y + 1) = (x + y) + 1

In this case g(x) = x and h(x , y , z) = z + 1.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 130/153



f is defined from g and h1, . . . , hm by composition if
f (x⃗) = g(h1(x⃗), . . . , hm(x⃗)), where f , h1, . . . , hm are each n-ary
and g is m-ary.

Initial functions:
Z 0-ary constant function equal to 0
S S(x) = x + 1
πn,i (x1, . . . , xn) = xi infinite class of projection functions

f is primitive recursive (pr) if f can be obtained from the initial
functions by finitely many applications of primitive recursion and
composition.

Proposition: Every pr function is total.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 131/153



Theorem: Every pr function is RM-computable.

Proof: We show every pr f is computable by a program which
upon halting leaves all registers 0 except R1 (which contains the
output). We do this by induction on the def of pr fns.

Base case: each initial fn is computable by such an RM program.

Z is just ⟨Z1⟩
S(x) = x + 1 is ⟨S1⟩
πn,i (x1, . . . , xn) depends on whether i = 1 or i ̸= 1. In the first
case the program is ⟨Z2, . . . ,Zn⟩. In the second case it is
⟨Z1, Ji14,S1, J111︸ ︷︷ ︸

“Copy Ri to R1”

,Z2, . . . ,Zn⟩.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 132/153



Induction step: Composition: Assume that g , h1, . . . , hm are
computable by programs Pg ,Ph1 , . . . ,Phm , where these programs
leave all registers zero except R1.

We must show that f is computable by a program Pf where
f (x⃗) = g(h1(x⃗), . . . , hm(x⃗)). At the start x⃗ = x1, . . . , xn are in
registers R1, . . . ,Rn, with all other registers zero.

Program Pf must proceed (at a high level) as follows: it must
move x⃗ out of the way, to some high-numbered registers. Then it
must compute hi (x⃗), for each i , by moving a x⃗ to R1, . . . ,Rn,
simulating Phi , and then moving the result from R1 out of the way.

At the end it must move the value of hi (x⃗) to Ri , for each i , and
simulate Pg .

Primitive recursion: implement the high-level program given
following the definition of pr.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 133/153



Is the converse true? Is every computable fn pr?

No. Some computable fns are not total.

Is every total computable fn pr?

No. We can show this by a diagonal argument: each pr fn can be
encoded as a number; let f1, f2, f3, . . . be the list of all pr functions.

We are only interested in unary fns, so if fi has arity greater than
one, we replace it by S (the unary successor function). Let the new
list be g1, g2, g3, . . ., where gi = fi if fi was unary, and gi = S
otherwise.

Let U(x , y) = gx(y), so U is a total computable fn. However, U is
not pr; for suppose that it is. Then so is D(x) = S(U(x , x)). If U
were pr, so would be D.

But if D is pr, then D = ge for some e. This gives us a
contradiction, since ge(e) = D(e) = ge(e) + 1.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 134/153



We can in fact give a concrete example of a total computable fn,
which is not primitive recursive.

The Ackermann function is defined as follows:

A0(x) =

{
x + 1 if x = 0 or x = 1

x + 2 otherwise

and An+1(0) = 1 and An+1(x + 1) = An(An+1(x)).

We can prove by induction on n that An(x) is total for all n, and
therefore so is A(n, x) = An(x). Also, A is computable since it can
be computed with an RM program following the recursion given
above.

Note that A2(x) = 2x while A3(x) = 22
2
. .

.2
}

of height x .

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 135/153



Lemma: For each n, An is pr.

Proof: By induction on n; the work is in the base case.

Fact: For every pr fn h(x⃗), there exists an n so that for sufficiently
large B, if min{x⃗} > B then h(x⃗) < An(max{x⃗}), i.e., An

dominates h.

Then, if A(n, x) = An(x), then A is not pr; in fact, F (x) = A(x , x)
is not pr, since A cannot dominate itself.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 136/153



We let µ denote the least number operator. More precisely,
f (x⃗) = µy [g(x⃗ , y) = 0] if

1. f (x⃗) is the least number b such that g(x⃗ , b) = 0,

2. g(x⃗ , y) ̸=∞ for i < b.

f (x⃗) =∞ if no such b exists.

If g is computable and f (x⃗) = µy [g(x⃗ , y) = 0] then f is also
computable:

for y = 0 . . .∞
if g(x⃗ , y) = 0 then
output y and exit

end if
end for

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 137/153



A function f is recursive if f can be obtained from the initial
functions by finitely many applications of composition, primitive
recursion, and minimization.

Theorem: Every recursive function is computable.

In the 1940s Kleene showed that the converse of the above
theorem is also true: every computable function is recursive.

We next prove this converse: every computable fn is recursive.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 138/153



First we assign a Gödel number #P to every program P:

command c Zi Si Jijm

code #c 2i 3i 5i7j11m

By the Fundamental Theorem of Arithmetic these codes are
unique.

Let p0 < p1 < p2 < · · · = 2 < 3 < 5 < · · · be the list of all primes,
in order. Then, if P = ⟨c0, c1, . . . , ch−1⟩,

#P = p#c00 p#c11 · · · p
#ch−1

h−1

Encode the state s of a program as follows:

#s = #⟨K ,R1, . . . ,Rm⟩ = pk0p
R1
1 · · · p

Rm
m

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 139/153



Kurt Gödel

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 140/153

http://en.wikipedia.org/wiki/Kurt_Godel


Gödel, Escher, Bach

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 141/153



A serious study of Gödel

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 142/153



Maurits Escher

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 143/153

http://en.wikipedia.org/wiki/M._C._Escher


IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 144/153



IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 145/153



IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 146/153



IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 147/153



IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 148/153



Ex.

#S1 = 31 = 3

#⟨S1⟩ = 2#S3 = 23 = 8

#⟨Z1, S1, J111⟩ = 2#Z1 · 3#S1 · 5#J111 = 22
1 · 331 · 5(5171111) = 4 · 27 · 5385

Distinct programs get distinct codes, and given a code we can
extract the (unique) program encoded by it
(or decide that it is not a code for any program).

Ex. Given the number 10871635968 we decompose it (uniquely) as
a product of primes:

10871635968 = 227 · 34 = 23
3 · 322 = 2#S3 · 3#Z2 = #⟨S3,Z2⟩

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 149/153



We let Prog(z) be a predicate that is true iff z is the code of some
program P. Prog(z) is a pr predicate.

We let

{z} =

{
program P such that z = #P if P exists

the empty program ⟨⟩ otherwise

The function Nex(u, z) = u′ is defined as follows: u′ is the state
resulting from a single step of {z} on state u. Nex is pr.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 150/153



If u0, u1, . . . , ut is the sequence of codes for the successive states in
a computation, then we code the entire computation by the
number y = pu00 pu11 · · · p

ut
t .

Kleene T predicate: for each n ≥ 1 we define the n+2-ary relation
Tn as follows: Tn(z , x⃗ , y) is true iff y codes the computation of
{z} on input x⃗ .

Theorem: For each n ≥ 1, Tn is pr.

Let {z}n be the n-ary fn computed by program {z}.

Kleene Normal Form Theorem: There is a pr fn U such that

∀n ≥ 1, {z}n(x⃗) = U(µyTn(z , x⃗ , y))

(U(y) extracts the contents of the first register in the last state of
computation y .) Thus, every computable fn is recursive.

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 151/153



Part VII
CONCLUSION

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 152/153



Church-Turing thesis: the following models of computation are
all equivalent:

▶ Rewriting systems

▶ Turing machines

▶ λ-calculus

▶ Recursive functions

▶ Register machines

▶ ZFC-computable

Even more evidence that we have captures the notion of
compation: ZFC is the Zarmelo-Fraenkel set theory together with
the Axiom of Choice. All of mathematics can be formalized in ZFC.

A language L is ZFC-computable if there exists a formula α(x)
such that if w ∈ L⇒ ZFC ⊢ α(w) and if w ̸∈ L⇒ ZFC ⊢ ¬α(w).

IAA Chp 8 - Michael Soltys © September 12, 2022 (5e91c43; ed3) RFs - 153/153


	Introduction
	Introduction
	Basics
	DFAs
	Pumping Lemma
	Myhill-Nerode Theorem
	CFGs
	TMs
	
	RFs

