Intro to Analysis of Algorithms Mathematical Foundations Chapter 9

Michael Soltys

CSU Channel Islands
[Git Date:2018-11-20 Hash:f93cc40 Ed:3rd]

Number theory

$$
\begin{aligned}
& \mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
& \mathbb{N}=\{0,1,2, \ldots\}
\end{aligned}
$$

We say that x divides y, and write $x \mid y$ if $y=q x$.
If $x \mid y$ we say that x is divisor (also factor) of y.
$x \mid y$ iff $y=\operatorname{div}(x, y) \cdot x$.
We say that a number p is prime if its only divisors are itself and 1 .

Claim: If p is a prime, and $p \mid a_{1} a_{2} \ldots a_{n}$, then $p \mid a_{i}$ for some i.
Proof: It is enough to show that if $p \mid a b$ then $p \mid a$ or $p \mid b$. Let $g=\operatorname{gcd}(a, p)$. Then $g \mid p$, and since p is a prime, there are two cases.

Case $1, g=p$, then since $g|a, p| a$.
Case $2, g=1$, so there exist u, v such that $a u+p v=1$, so $a b u+p b v=b$.

Since $p \mid a b$, and $p \mid p$, it follows that $p \mid(a b u+p b v)$, so $p \mid b$.

Fundamental Theorem of Arithmetic

For $a \geq 2, a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$, where p_{i} are prime numbers, and other than rearranging primes, this factorization is unique.

Proof: We first show the existence of the factorization, and then its uniqueness.

The proof of existence is by complete induction; the basis case is $a=2$, where 2 is a prime.

Consider an integer $a>2$; if a is prime then it is its own factorization (just as in the basis case).

Otherwise, if a is composite, then $a=b \cdot c$, where $1<b, c<a$; apply the induction hypothesis to b and c.

To show uniqueness suppose that $a=p_{1} p_{2} \ldots p_{s}=q_{1} q_{2} \ldots q_{t}$ where we have written out all the primes, that is, instead of writing p^{e} we write $p \cdot p \cdots p, e$ times.

Since $p_{1} \mid a$, it follows that $p_{1} \mid q_{1} q_{2} \ldots q_{t}$. So $p_{1} \mid q_{j}$ for some j, but then $p_{1}=q_{j}$ since they are both primes.

Now delete p_{1} from the first list and q_{j} from the second list, and continue.

Obviously we cannot end up with a product of primes equal to 1 , so the two list must be identical.

Let $m \geq 1$ be an integer. We say that a and b are congruent modulo m, and write $a \equiv b(\bmod m)\left(\right.$ or sometimes $\left.a \equiv_{m} b\right)$ if $m \mid(a-b)$.

Another way to say this is that a and b have the same remainder when divided by m; we can say that $a \equiv b(\bmod m)$ if and only if $\operatorname{rem}(m, a)=\operatorname{rem}(m, b)$.

Facts: $a_{1} \equiv_{m} a_{2}$ and $b_{1} \equiv_{m} b_{2}$, then $a_{1} \pm b_{1} \equiv_{m} a_{2} \pm b_{2}$ and $a_{1} \cdot b_{1} \equiv_{m} a_{2} \cdot b_{2}$.

Proposition: If $m \geq 1$, then $a \cdot b \equiv_{m} 1$ for some b if and only if $\operatorname{gcd}(a, m)=1$.

Proof: (\Rightarrow) If there exists a b such that $a \cdot b \equiv_{m} 1$, then we have $m \mid(a b-1)$ and so there exists a c such that $a b-1=c m$, i.e., $a b-c m=1$.

And since $\operatorname{gcd}(a, m)$ divides both a and m, it also divides $a b-c m$, and so $\operatorname{gcd}(a, m) \mid 1$ and so it must be equal to 1 .
(\Leftarrow) Suppose that $\operatorname{gcd}(a, m)=1$. By the extended Euclid's algorithm there exist u, v such that $a u+m v=1$, so $a u-1=-m v$, so $m \mid(a u-1)$, so $a u \equiv_{m} 1$. So let $b=u$.

Let $\mathbb{Z}_{m}=\{0,1,2, \ldots, m-1\}$.
We call \mathbb{Z}_{m} the set of integers modulo m.
To add or multiply in the set \mathbb{Z}_{m}, we add and multiply the corresponding integers, and then take the reminder of the division by m as the result.

Let $\mathbb{Z}_{m}^{*}=\left\{a \in \mathbb{Z}_{m} \mid \operatorname{gcd}(a, m)=1\right\}$.
\mathbb{Z}_{m}^{*} is the subset of \mathbb{Z}_{m} consisting of those elements which have multiplicative inverses in \mathbb{Z}_{m}.

The function $\phi(n)$ is called the Euler totient function, and it is the number of elements less than n that are co-prime to n, i.e., $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$.

If we are able to factor, we are also able to compute $\phi(n)$: suppose that $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{1}^{k_{1}}$, then it is not hard to see that $\phi(n)=\prod_{i=1}^{l} p_{i}^{k_{i}-1}\left(p_{i}-1\right)$.

Fermat's Little Theorem Let p be a prime number and $\operatorname{gcd}(a, p)=1$. Then $a^{p-1} \equiv 1(\bmod p)$.

Proof: For any a such that $\operatorname{gcd}(a, p)=1$ the following products

$$
\begin{equation*}
1 a, 2 a, 3 a, \ldots,(p-1) a, \tag{1}
\end{equation*}
$$

all taken $\bmod p$, are pairwise distinct.
To see this suppose that $j a \equiv k a(\bmod p)$. Then $(j-k) a \equiv 0$ $(\bmod p)$, and so $p \mid(j-k) a$.

But since by assumption $\operatorname{gcd}(a, p)=1$, it follows that $p \nmid a$, and so it must be the case that $p \mid(j-k)$.

But since $j, k \in\{1,2, \ldots, p-1\}$, it follows that $-(p-2) \leq j-k \leq(p-2)$, so $j-k=0$, i.e., $j=k$.

Thus the numbers in the list (1) are just a reordering of the list $\{1,2, \ldots, p-1\}$.

Therefore

$$
\begin{equation*}
a^{p-1}(p-1)!\equiv_{p} \prod_{j=1}^{p-1} j \cdot a \equiv_{p} \prod_{j=1}^{p-1} j \equiv_{p}(p-1)!. \tag{2}
\end{equation*}
$$

Since all the numbers in $\{1,2, \ldots, p-1\}$ have inverses in \mathbb{Z}_{p}, as $\operatorname{gcd}(i, p)=1$ for $1 \leq i \leq p-1$, their product also has an inverse.

That is, $(p-1)$! has an inverse, and so multiplying both sides of (2) by $((p-1)!)^{-1}$ we obtain the result.

Exercise: Give a second proof of Fermat's Little theorem using the binomial expansion, i.e., $(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j} y^{n-j}$ applied to $(a+1)^{p}$.

Group theory

We say that $(G, *)$ is a group if G is a set and $*$ is an operation, such that if $a, b \in G$, then $a * b \in G$; this property is called closure.

The operation $*$ has to satisfy the following 3 properties:

1. identity law: There exists an $e \in G$ such that $e * a=a * e=a$ for all $a \in G$.
2. inverse law: For every $a \in G$ there exists an element $b \in G$ such that $a * b=b * a=e$. This element b is called an inverse and it can be shown that it is unique; hence it is often denoted as a^{-1}.
3. associative law: For all $a, b, c \in G$, we have $a *(b * c)=(a * b) * c$.

If $(G, *)$ also satisfies the commutative law, that is, if for all $a, b \in G, a * b=b * a$, then it is called a commutative or Abelian.

Typical examples of groups are $\left(\mathbb{Z}_{n},+\right)$ (integers mod n under addition)
$\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ (integers mod n under multiplication).
Note that both these groups are Abelian.
These are, of course, the two groups of concern for us; but there are many others: $(\mathbb{Q},+)$ is an infinite group (rationals under addition),

GL (n, \mathbb{F}) (which is the group of $n \times n$ invertible matrices over a field \mathbb{F}),
and S_{n} (the symmetric group over n elements, consisting of permutations of $[n]$ where $*$ is function composition).

Exercise: Show that $\left(\mathbb{Z}_{n},+\right)$ and $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ are groups, by checking that the corresponding operation satisfies the three axioms of a group.

We let $|G|$ denote the number of elements in G (note that G may be infinite, but we are concerned mainly with finite groups).

If $g \in G$ and $x \in \mathbb{N}$, then $g^{x}=g * g * \cdots * g, x$ times.
If it is clear from the context that the operation is $*$, we use juxtaposition $a b$ instead of $a * b$.

Suppose that G is a finite group and $a \in G$; then the smallest $d \in \mathbb{N}$ such that $a^{d}=e$ is called the order of a, and it is denoted as $\operatorname{order}_{G}(a)$ (or just order(a) if the group G is clear from the context).

Proposition: If G is a finite group, then for all $a \in G$ there exists a $d \in \mathbb{N}$ such that $a^{d}=e$. If $d=\operatorname{order}_{G}(a)$, and $a^{k}=e$, then $d \mid k$.

Proof: Consider the list $a^{1}, a^{2}, a^{3}, \ldots$.
If G is finite there must exist $i<j$ such that $a^{i}=a^{j}$.
Then, $\left(a^{-1}\right)^{i}$ applied to both sides yields $a^{i-j}=e$.
Let $d=\operatorname{order}(a)$ (by the LNP we know that it must exist!).
Suppose that $k \geq d$, $a^{k}=e$. Write $k=d q+r$ where $0 \leq r<d$.
Then $e=a^{k}=a^{d q+r}=\left(a^{d}\right)^{q} a^{r}=a^{r}$.
Since $a^{d}=e$ it follows that $a^{r}=e$, contradicting the minimality of $d=\operatorname{order}(a)$, unless $r=0$.

If $(G, *)$ is a group we say that H is a subgroup of G, and write $H \leq G$, if $H \subseteq G$ and H is closed under $*$.

That is, H is a subset of G, and H is itself a group.
Note that for any G it is always the case that $\{e\} \leq G$ and $G \leq G$; these two are called the trivial subgroups of G.

If $H \leq G$ and $g \in G$, then $g H$ is called a left coset of G, and it is simply the set $\{g h \mid h \in H\}$.

Note that $g H$ is not necessarily a subgroup of G.

Lagrange If G is a finite group and $H \leq G$, then $|H|$ divides $|G|$, i.e., the order of H divides the order of G.

Proof: If $g_{1}, g_{2} \in G$, then the two cosets $g_{1} H$ and $g_{2} H$ are either identical or $g_{1} H \cap g_{2} H=\emptyset$.

To see this, suppose that $g \in g_{1} H \cap g_{2} H$, so $g=g_{1} h_{1}=g_{2} h_{2}$.
In particular, $g_{1}=g_{2} h_{2} h_{1}^{-1}$.
Thus, $g_{1} H=\left(g_{2} h_{2} h_{1}^{-1}\right) H$, and since it can be easily checked that $(a b) H=a(b H)$ and that $h H=H$ for any $h \in H$, it follows that $g_{1} H=g_{2} H$.

Therefore, for a finite $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, the collection of sets $\left\{g_{1} H, g_{2} H, \ldots, g_{n} H\right\}$ is a partition of G into subsets that are either disjoint or identical; from among all subcollections of identical cosets we pick a representative, so that
$G=g_{i_{1}} H \cup g_{i_{2}} H \cup \cdots \cup g_{i_{m}} H$, and so $|G|=m|H|$, and we are done.

Exercise: Let $H \leq G$. Show that if $h \in H$, then $h H=H$, and that in general for any $g \in G,|g H|=|H|$. Finally, show that $(a b) H=a(b H)$.

Exercise: If G is a group, and $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\} \subseteq G$, then the set $\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle$ is defined as follows

$$
\left\{x_{1} x_{2} \cdots x_{p} \mid p \in \mathbb{N}, x_{i} \in\left\{g_{1}, g_{2}, \ldots, g_{k}, g_{1}^{-1}, g_{2}^{-1}, \ldots, g_{k}^{-1}\right\}\right\}
$$

Show that $\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle \leq G$, and it is called the subgroup generated by $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$. Also show that when G is finite $|\langle g\rangle|=\operatorname{order}_{G}(g)$.

An example of "reification."
Euler: For every n and every $a \in \mathbb{Z}_{n}^{*}$, that is, for every pair a, n such that $\operatorname{gcd}(a, n)=1$, we have $a^{\phi(n)} \equiv 1(\bmod n)$.

Proof: First it is easy to check that $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ is a group.
Then by definition $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$, and since $\langle a\rangle \leq \mathbb{Z}_{n}^{*}$, it follows by Lagrange's theorem that $\operatorname{order}(a)=|\langle a\rangle|$ divides $\phi(n)$.

Note that Fermat's Little theorem is an immediate consequence of Euler's theorem, since when p is a prime, $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p}-\{0\}$, and $\phi(p)=(p-1)$.

Chinese Remainder Given two sets of numbers of equal size, $r_{0}, r_{1}, \ldots, r_{n}$, and $m_{0}, m_{1}, \ldots, m_{n}$, such that

$$
\begin{equation*}
0 \leq r_{i}<m_{i} \quad 0 \leq i \leq n \tag{3}
\end{equation*}
$$

and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for $i \neq j$, then there exists an r such that $r \equiv r_{i}\left(\bmod m_{i}\right)$ for $0 \leq i \leq n$.

Proof: The proof we give is by counting; we show that the distinct values of $r, 0 \leq r<\Pi m_{i}$, represent distinct sequences.

To see that, note that if $r \equiv r^{\prime}\left(\bmod m_{i}\right)$ for all i, then $m_{i} \mid\left(r-r^{\prime}\right)$ for all i, and so $\left(\Pi m_{i}\right) \mid\left(r-r^{\prime}\right)$, since the m_{i} 's are pairwise co-prime.

So $r \equiv r^{\prime}\left(\bmod \left(\Pi m_{i}\right)\right)$, and so $r=r^{\prime}$ since both
$r, r^{\prime} \in\left\{0,1, \ldots,\left(\Pi m_{i}\right)-1\right\}$.
But the total number of sequences r_{0}, \ldots, r_{n} such that (3) holds is precisely Πm_{i}.

Hence every such sequence must be a sequence of remainders of some $r, 0 \leq r<\Pi m_{i}$.

Exercise The proof of CRT just given is non-constructive. Show how to obtain efficiently the r that meets the requirement of the theorem, i.e., in polytime in n-so in particular not using brute force search.

Given two groups $\left(G_{1}, *_{1}\right)$ and $\left(G_{2}, *_{2}\right)$, a mapping $h: G_{1} \longrightarrow G_{2}$ is a homomorphism if it respects the operation of the groups; formally, for all $g_{1}, g_{1}^{\prime} \in G_{1}, h\left(g_{1} *_{1} g_{1}^{\prime}\right)=h\left(g_{1}\right) *_{2} h\left(g_{1}^{\prime}\right)$.

If the homomorphism h is also a bijection, then it is called an isomorphism.

If there exists an isomorphism between two groups G_{1} and G_{2}, we call them isomorphic, and write $G_{1} \cong G_{2}$.

If $\left(G_{1}, *_{1}\right)$ and $\left(G_{2}, *_{2}\right)$ are two groups, then their product, denoted $\left(G_{1} \times G_{2}, *\right)$ is simply $\left\{\left(g_{1}, g_{2}\right): g_{1} \in G_{1}, g_{2} \in G_{2}\right\}$, where $\left(g_{1}, g_{2}\right) *\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ is $\left(g_{1} *_{1} g_{1}^{\prime}, g_{2} *_{2} g_{2}^{\prime}\right)$.

The product of n groups, $G_{1} \times G_{2} \times \cdots \times G_{n}$ can be defined analogously; using this notation, the CRT can be stated in the language of group theory as follows:

If $m_{0}, m_{1}, \ldots, m_{n}$ are pairwise co-prime integers, then
$\mathbb{Z}_{m_{0} \cdot m_{1} \cdot \ldots \cdot m_{n}} \cong \mathbb{Z}_{m_{0}} \times \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{n}}$.

