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Number theory

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

N = {0, 1, 2, . . .}

We say that x divides y , and write x |y if y = qx .

If x |y we say that x is divisor (also factor) of y .

x |y iff y = div(x , y) · x .

We say that a number p is prime if its only divisors are itself and 1.
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Claim: If p is a prime, and p|a1a2 . . . an, then p|ai for some i .

Proof: It is enough to show that if p|ab then p|a or p|b. Let
g = gcd(a, p). Then g |p, and since p is a prime, there are two
cases.

Case 1, g = p, then since g |a, p|a.

Case 2, g = 1, so there exist u, v such that au + pv = 1, so
abu + pbv = b.

Since p|ab, and p|p, it follows that p|(abu + pbv), so p|b.
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Fundamental Theorem of Arithmetic

For a ≥ 2, a = pe11 pe22 · · · perr , where pi are prime numbers, and
other than rearranging primes, this factorization is unique.

Proof: We first show the existence of the factorization, and then
its uniqueness.

The proof of existence is by complete induction; the basis case is
a = 2, where 2 is a prime.

Consider an integer a > 2; if a is prime then it is its own
factorization (just as in the basis case).

Otherwise, if a is composite, then a = b · c , where 1 < b, c < a;
apply the induction hypothesis to b and c .
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To show uniqueness suppose that a = p1p2 . . . ps = q1q2 . . . qt
where we have written out all the primes, that is, instead of writing
pe we write p · p · · · p, e times.

Since p1|a, it follows that p1|q1q2 . . . qt . So p1|qj for some j , but
then p1 = qj since they are both primes.

Now delete p1 from the first list and qj from the second list, and
continue.

Obviously we cannot end up with a product of primes equal to 1,
so the two list must be identical.
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Let m ≥ 1 be an integer. We say that a and b are congruent
modulo m, and write a ≡ b (mod m) (or sometimes a ≡m b) if
m|(a− b).

Another way to say this is that a and b have the same remainder
when divided by m; we can say that a ≡ b (mod m) if and only if
rem(m, a) = rem(m, b).

Facts: a1 ≡m a2 and b1 ≡m b2, then a1 ± b1 ≡m a2 ± b2 and
a1 · b1 ≡m a2 · b2.
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Proposition: If m ≥ 1, then a · b ≡m 1 for some b if and only if
gcd(a,m) = 1.

Proof: (⇒) If there exists a b such that a · b ≡m 1, then we have
m|(ab − 1) and so there exists a c such that ab − 1 = cm, i.e.,
ab − cm = 1.

And since gcd(a,m) divides both a and m, it also divides ab − cm,
and so gcd(a,m)|1 and so it must be equal to 1.

(⇐) Suppose that gcd(a,m) = 1. By the extended Euclid’s
algorithm there exist u, v such that au + mv = 1, so
au − 1 = −mv , so m|(au − 1), so au ≡m 1. So let b = u.
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Let Zm = {0, 1, 2, . . . ,m − 1}.

We call Zm the set of integers modulo m.

To add or multiply in the set Zm, we add and multiply the
corresponding integers, and then take the reminder of the division
by m as the result.

Let Z∗m = {a ∈ Zm| gcd(a,m) = 1}.

Z∗m is the subset of Zm consisting of those elements which have
multiplicative inverses in Zm.
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The function φ(n) is called the Euler totient function, and it is the
number of elements less than n that are co-prime to n, i.e.,
φ(n) = |Z∗n|.

If we are able to factor, we are also able to compute φ(n): suppose
that n = pk11 pk22 · · · p

kl
l , then it is not hard to see that

φ(n) =
∏l

i=1 p
ki−1
i (pi − 1).
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Fermat’s Little Theorem Let p be a prime number and
gcd(a, p) = 1. Then ap−1 ≡ 1 (mod p).

Proof: For any a such that gcd(a, p) = 1 the following products

1a, 2a, 3a, . . . , (p − 1)a, (1)

all taken mod p, are pairwise distinct.

To see this suppose that ja ≡ ka (mod p). Then (j − k)a ≡ 0
(mod p), and so p|(j − k)a.

But since by assumption gcd(a, p) = 1, it follows that p 6 |a, and so
it must be the case that p|(j − k).

But since j , k ∈ {1, 2, . . . , p − 1}, it follows that
−(p − 2) ≤ j − k ≤ (p − 2), so j − k = 0, i.e., j = k .
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Thus the numbers in the list (1) are just a reordering of the list
{1, 2, . . . , p − 1}.

Therefore

ap−1(p − 1)! ≡p

p−1∏
j=1

j · a ≡p

p−1∏
j=1

j ≡p (p − 1)!. (2)

Since all the numbers in {1, 2, . . . , p − 1} have inverses in Zp, as
gcd(i , p) = 1 for 1 ≤ i ≤ p − 1, their product also has an inverse.

That is, (p − 1)! has an inverse, and so multiplying both sides
of (2) by ((p − 1)!)−1 we obtain the result.
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Exercise: Give a second proof of Fermat’s Little theorem using the
binomial expansion, i.e., (x + y)n =

∑n
j=0

(n
j

)
x jyn−j applied to

(a + 1)p.
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Group theory

We say that (G , ∗) is a group if G is a set and ∗ is an operation,
such that if a, b ∈ G , then a ∗ b ∈ G ; this property is called closure.

The operation ∗ has to satisfy the following 3 properties:

1. identity law: There exists an e ∈ G such that
e ∗ a = a ∗ e = a for all a ∈ G .

2. inverse law: For every a ∈ G there exists an element b ∈ G
such that a ∗ b = b ∗ a = e. This element b is called an
inverse and it can be shown that it is unique; hence it is often
denoted as a−1.

3. associative law: For all a, b, c ∈ G , we have
a ∗ (b ∗ c) = (a ∗ b) ∗ c .

If (G , ∗) also satisfies the commutative law, that is, if for all
a, b ∈ G , a ∗ b = b ∗ a, then it is called a commutative or Abelian.
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Typical examples of groups are (Zn,+) (integers mod n under
addition)

(Z∗n, ·) (integers mod n under multiplication).

Note that both these groups are Abelian.

These are, of course, the two groups of concern for us; but there
are many others: (Q,+) is an infinite group (rationals under
addition),

GL(n,F) (which is the group of n × n invertible matrices over a
field F),

and Sn (the symmetric group over n elements, consisting of
permutations of [n] where ∗ is function composition).

IAA Chp 9 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Group theory - 14/25



Exercise: Show that (Zn,+) and (Z∗n, ·) are groups, by checking
that the corresponding operation satisfies the three axioms of a
group.
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We let |G | denote the number of elements in G (note that G may
be infinite, but we are concerned mainly with finite groups).

If g ∈ G and x ∈ N, then g x = g ∗ g ∗ · · · ∗ g , x times.

If it is clear from the context that the operation is ∗, we use
juxtaposition ab instead of a ∗ b.

Suppose that G is a finite group and a ∈ G ; then the smallest
d ∈ N such that ad = e is called the order of a, and it is denoted
as orderG (a) (or just order(a) if the group G is clear from the
context).
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Proposition: If G is a finite group, then for all a ∈ G there exists a
d ∈ N such that ad = e. If d = orderG (a), and ak = e, then d |k .

Proof: Consider the list a1, a2, a3, . . ..

If G is finite there must exist i < j such that ai = aj .

Then, (a−1)i applied to both sides yields ai−j = e.

Let d = order(a) (by the LNP we know that it must exist!).

Suppose that k ≥ d , ak = e. Write k = dq + r where 0 ≤ r < d .

Then e = ak = adq+r = (ad)qar = ar .

Since ad = e it follows that ar = e, contradicting the minimality of
d = order(a), unless r = 0.
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If (G , ∗) is a group we say that H is a subgroup of G , and write
H ≤ G , if H ⊆ G and H is closed under ∗.

That is, H is a subset of G , and H is itself a group.

Note that for any G it is always the case that {e} ≤ G and
G ≤ G ; these two are called the trivial subgroups of G .

If H ≤ G and g ∈ G , then gH is called a left coset of G , and it is
simply the set {gh|h ∈ H}.

Note that gH is not necessarily a subgroup of G .

IAA Chp 9 - Michael Soltys c© February 5, 2019 (f93cc40; ed3) Group theory - 18/25



Lagrange If G is a finite group and H ≤ G , then |H| divides |G |,
i.e., the order of H divides the order of G .

Proof: If g1, g2 ∈ G , then the two cosets g1H and g2H are either
identical or g1H ∩ g2H = ∅.

To see this, suppose that g ∈ g1H ∩ g2H, so g = g1h1 = g2h2.

In particular, g1 = g2h2h
−1
1 .

Thus, g1H = (g2h2h
−1
1 )H, and since it can be easily checked that

(ab)H = a(bH) and that hH = H for any h ∈ H, it follows that
g1H = g2H.

Therefore, for a finite G = {g1, g2, . . . , gn}, the collection of sets
{g1H, g2H, . . . , gnH} is a partition of G into subsets that are
either disjoint or identical; from among all subcollections of
identical cosets we pick a representative, so that
G = gi1H ∪ gi2H ∪ · · · ∪ gimH, and so |G | = m|H|, and we are done.
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Exercise: Let H ≤ G . Show that if h ∈ H, then hH = H, and that
in general for any g ∈ G , |gH| = |H|. Finally, show that
(ab)H = a(bH).

Exercise: If G is a group, and {g1, g2, . . . , gk} ⊆ G , then the set
〈g1, g2, . . . , gk〉 is defined as follows

{x1x2 · · · xp|p ∈ N, xi ∈ {g1, g2, . . . , gk , g−11 , g−12 , . . . , g−1k }}.

Show that 〈g1, g2, . . . , gk〉 ≤ G , and it is called the subgroup
generated by {g1, g2, . . . , gk}. Also show that when G is finite
|〈g〉| = orderG (g).
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An example of “reification.”

Euler: For every n and every a ∈ Z∗n, that is, for every pair a, n
such that gcd(a, n) = 1, we have aφ(n) ≡ 1 (mod n).

Proof: First it is easy to check that (Z∗n, ·) is a group.

Then by definition φ(n) = |Z∗n|, and since 〈a〉 ≤ Z∗n, it follows by
Lagrange’s theorem that order(a) = |〈a〉| divides φ(n).

Note that Fermat’s Little theorem is an immediate consequence of
Euler’s theorem, since when p is a prime, Z∗p = Zp − {0}, and
φ(p) = (p − 1).
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Chinese Remainder Given two sets of numbers of equal size,
r0, r1, . . . , rn, and m0,m1, . . . ,mn, such that

0 ≤ ri < mi 0 ≤ i ≤ n (3)

and gcd(mi ,mj) = 1 for i 6= j , then there exists an r such that
r ≡ ri (mod mi ) for 0 ≤ i ≤ n.
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Proof: The proof we give is by counting; we show that the distinct
values of r , 0 ≤ r < Πmi , represent distinct sequences.

To see that, note that if r ≡ r ′ (mod mi ) for all i , then mi |(r − r ′)
for all i , and so (Πmi )|(r − r ′), since the mi ’s are pairwise co-prime.

So r ≡ r ′ (mod (Πmi )), and so r = r ′ since both
r , r ′ ∈ {0, 1, . . . , (Πmi )− 1}.

But the total number of sequences r0, . . . , rn such that (3) holds is
precisely Πmi .

Hence every such sequence must be a sequence of remainders of
some r , 0 ≤ r < Πmi .
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Exercise The proof of CRT just given is non-constructive. Show
how to obtain efficiently the r that meets the requirement of the
theorem, i.e., in polytime in n—so in particular not using brute
force search.
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Given two groups (G1, ∗1) and (G2, ∗2), a mapping h : G1 −→ G2

is a homomorphism if it respects the operation of the groups;
formally, for all g1, g

′
1 ∈ G1, h(g1 ∗1 g ′1) = h(g1) ∗2 h(g ′1).

If the homomorphism h is also a bijection, then it is called an
isomorphism.

If there exists an isomorphism between two groups G1 and G2, we
call them isomorphic, and write G1

∼= G2.

If (G1, ∗1) and (G2, ∗2) are two groups, then their product, denoted
(G1 × G2, ∗) is simply {(g1, g2) : g1 ∈ G1, g2 ∈ G2}, where
(g1, g2) ∗ (g ′1, g

′
2) is (g1 ∗1 g ′1, g2 ∗2 g ′2).

The product of n groups, G1 × G2 × · · · × Gn can be defined
analogously; using this notation, the CRT can be stated in the
language of group theory as follows:

If m0,m1, . . . ,mn are pairwise co-prime integers, then
Zm0·m1·...·mn

∼= Zm0 × Zm1 × · · · × Zmn .
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