
April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page i

Half-title page, prepared by publisher

i



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page ii

Publishers’ page

ii



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page iii

Full title page, prepared by publisher

iii



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page iv

Copyright page, prepared by publisher

iv



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page v

To my family

v



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page vi



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page vii

Preface

If he had only learnt a little
less, how infinitely better he
might have taught much more!

Charles Dickens [Dickens
(1854)], pg. 7

This book is a short introduction to algorithms, which are the methods

whereby we assign intellectual work to machines. Given a computational

problem, an algorithm is a procedure to solve it; this procedure is usually

implemented in a programming language, such as Python, to be run on

a computer. We present two intertwined concepts related to algorithms:

design technique, such as Greedy or Dynamic Programming; and analysis,

such as performance or correctness. Both are essential: we solve a problem

by designing an algorithm, but we justify our solution by analyzing the

algorithm.

The intended audience for this book consists of both undergraduate

and graduate students in Computer Science and Mathematics, but since

the presentation is self-contained, i.e., all background is given, this book

can serve as an introduction to algorithms for anyone.

We begin this book with a chapter of preliminaries, where we introduce

the framework of pre/post-conditions and loop invariants. We illustrate the

framework by proving the correctness of some classical algorithms, such

as Euclid’s procedure for computing the greatest common divisor of two

numbers. We conclude the preliminaries with three ranking algorithms:

Stable Marriage, PageRank and Pairwise Comparisons. As ranking comes

naturally to the human mind, and ranking procedures are practical, this is

a fitting way to start a foray into algorithms.

vii
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viii An introduction to the analysis of algorithms

We present three standard algorithm design techniques in eponymous

chapters: greedy algorithms, dynamic programming and the divide and

conquer paradigm. We are concerned with correctness of algorithms, rather

than, say, efficiency or the underlying data structures. For example, in the

chapter on the greedy paradigm we explore in depth the idea of a promising

partial solution, a powerful technique for proving the correctness of greedy

algorithms. We include online algorithms and competitive analysis, as well

as randomized algorithms with a section on cryptography.

The chapter on parallel algorithms is based on Linear Algebra. While

Calculus has become the standard for assessing mathematical maturity at

the university undergraduate level, Linear Algebra is perhaps even more

useful as a tool for engineering and computation. We bring an advanced

approach to Linear Algebra through algorithms that deploy parallelism

in order to compute the standard constructions, e.g., the determinant or

characteristic polynomial of a matrix.

The book finishes with two foundational chapters. The first one is an

exposition of the basics of the theory of computation. We approach this

field through manipulations of strings; thus, we present Finite Automata

and Turing Machines as implementations of rules for transforming strings.

The second foundational chapter covers the mathematical basics for this

book; the reader unfamiliar with discrete mathematics is encouraged to

start with this chapter (Chapter 9) and do all the problems therein.

Algorithms solve problems, and many of the problems in this book fall

under the category of optimization problems, whether cost minimization,

such as Kruskal’s algorithm for computing minimum cost spanning trees—

section 2.1, or profit maximization, such as selecting the most profitable

subset of activities—section 4.4.

The book is sprinkled with exercises (problems), many theoretical,

but a significant number require an implementation of an algorithm in

Python; consider the following introductions to Pyhon: [Dierbach (2013)]

or [Downey (2015)]1. The Python programming language is relatively easy,

especially for short snippets of code. The solutions to most problems are

included in the “Answers to selected problems” at the end of each chapter.

The solutions to most of the programming exercises will be available for

download from the author’s web page.2

1The PDFs of earlier versions, up to 2.0.17 at the time of writing, are available for free
download from Green Tea Press, http://greenteapress.com/wp/think-python .
2http://www.msoltys.com
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Preface ix

This book draws on many sources. First of all, [Cormen et al. (2009)] is a

fantastic reference for anyone who is learning algorithms. I have also used as

reference the elegantly written [Kleinberg and Tardos (2006)]. A classic in

the field is [Knuth (1997)], and I base my presentation of online algorithms

on the material in [Borodin and El-Yaniv (1998)]. I have learned greedy

algorithms, dynamic programming and logic from Stephen A. Cook at the

University of Toronto. Section 9.3, a digest of relations, is based on lectures

given by Ryszard Janicki in 2008 at McMaster University. Section 9.4 is

based on logic lectures by Stephen A. Cook taught at the University of

Toronto in the 1990s. I am grateful to Ryan McIntyre who proof-read

the 3rd edition manuscript, and updated the Python solutions, during the

summer of 2017. I am grateful to the many students who improved the

manuscript by reading it carefuly and pointing out typos, omissions, errors

and gaps, including (but not limitted to) Skyler Atchison, Greg Herman,

and Christopher Kuske.

As stated at the beginning of this Preface, we aim to present a concise,

mathematically rigorous, introduction to the beautiful field of Algorithms. I

agree strongly with [Su (2010)] that the purpose of education is to cultivate

the yawp: “I sound my barbaric yawp over the root(top)s of the world!”

words of John Keating, quoting a Walt Whitman poem ([Whitman (1892)]),

in the movie Dead Poets Society. This yawp is the deep yearning inside each

of us for an aesthetic experience ([Scruton (2011)]). Hopefully, this book

will supply a yawp or two.
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Chapter 1

Preliminaries

It is commonly believed that
more than 70% (!) of the effort
and cost of developing a
complex software system is
devoted, in one way or another,
to error correcting.

Algorithms, pg. 107 [Harel
(1987)]

1.1 What is correctness?

To show that an algorithm is correct, we must show somehow that it does

what it is supposed to do. The difficulty is that the algorithm unfolds in

time, and it is tricky to work with a variable number of steps, i.e., while-

loops. We are going to introduce a framework for proving algorithm (and

program) correctness that is called Hoare’s logic. This framework uses

induction and invariance (see section 9.1), and logic (see section 9.4). In

this section the proofs are informal; for a formal example see section 9.4.4.

We make two assertions, called the pre-condition and the post-condition;

by correctness we mean that whenever the pre-condition holds before the

algorithm executes, the post-condition will hold after it executes. By termi-

nation we mean that whenever the pre-condition holds, the algorithm will

stop running after finitely many steps. Correctness without termination is

called partial correctness, and correctness per se is partial correctness with

termination. All this terminology is there to connect a given problem with

some algorithm that purports to solve it. Hence we pick the pre and post

condition in a way that reflects this relationship and proves it valid.

1
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2 An introduction to the analysis of algorithms

The requisite concepts can be made precise, but we need to introduce

some standard notation: Boolean connectives: ∧ is “and,” ∨ is “or” and

¬ is “not.” We also use → as Boolean implication, i.e., x → y is logically

equivalent to ¬x ∨ y, and ↔ is Boolean equivalence, and α ↔ β expresses

((α → β) ∧ (β → α)). ∀ is the “for-all” universal quantifier, and ∃ is the

“there exists” existential quantifier. We use “⇒” to abbreviate the word

“implies,” i.e., 2|x⇒ x is even, while “ ̸⇒” abbreviates “does not imply.”

Let A be an algorithm, and let IA be the set of all well-formed inputs

for A; the idea is that if I ∈ IA then it “makes sense” to give I as an input

to A. The concept of a “well-formed” input can also be made precise,

but it is enough to rely on our intuitive understanding—for example, an

algorithm that takes a pair of integers as input will not be “fed” a matrix.

Let O = A(I) be the output of A on I, if it exists. Let αA be a pre-

condition and βA a post-condition of A; if I satisfies the pre-condition we

write αA(I) and if O satisfies the post-condition we write βA(O). Then,

partial correctness of A with respect to pre-condition αA and post-condition

βA can be stated as:

(∀I ∈ IA)[(αA(I) ∧ ∃O(O = A(I)))→ βA(A(I))]. (1.1)

In words: for any well formed input I, if I satisfies the pre-condition and

A(I) produces an output (i.e., terminates), then this output satisfies the

post-condition.

Full correctness is (1.1) together with the assertion that for all I ∈ IA,

A(I) terminates (and hence there exists an O such that O = A(I)).

Problem 1.1. Modify (1.1) to express full correctness.

A fundamental notion in the analysis of algorithms is that of a loop

invariant; it is an assertion that stays true after each execution of a “while”

(or “for”) loop. Coming up with the right assertion, and proving it, is a

creative endeavor. If the algorithm terminates, the loop invariant is an

assertion that helps to prove the implication αA(I)→ βA(A(I)).

Once the loop invariant has been shown to hold, it is used for proving

partial correctness of the algorithm. So the criterion for selecting a loop

invariant is that it helps in proving the post-condition. In general many

different loop invariants (and for that matter pre and post-conditions) may

yield a desirable proof of correctness; the art of the analysis of algorithms

consists in selecting them judiciously. We usually need induction to prove

that a chosen loop invariant holds after each iteration of a loop, and usually

we also need the pre-condition as an assumption in this proof.
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Preliminaries 3

1.1.1 Complexity

Given an algorithm A, and an input x, the running time of A on x is the

number of steps it takes A to terminate on input x. The delicate issue here

is to define a “step,” but we are going to be informal about it: we assume

a Random Access Machine (a machine that can access memory cells in a

single step), and we assume that an assignment of the type x ← y is a

single step, and so are arithmetical operations, and the testing of Boolean

expressions (such as x ≥ y ∧ y ≥ 0). Of course this simplification does

not reflect the true state of affairs if for example we manipulate numbers

of 4,000 bits (as in the case of cryptographic algorithms). But then we

redefine steps appropriately to the context.

We are interested in worst-case complexity. That is, given an algorithm

A, we let TA(n) to be the maximal running time of A on any input x of size

n. Here “size” means the number of bits in a reasonable fixed encoding of x.

We tend to write T (n) instead of TA(n) as the algorithm under discussion

is given by the context. It turns out that even for simple algorithms T (n)

may be very complicated, and so we settle for asymptotic bounds on T (n).

In order to provide asymptotic approximations to T (n) we introduce

the Big O notation, pronounced as “big-oh.” Consider functions f and

g from N to R, that is, functions whose domain is the natural numbers

but can range over the reals. We say that g(n) ∈ O(f(n)) if there exist

constants c, n0 ∈ N such that for all n ≥ n0, g(n) ≤ cf(n), and the little o

notation, g(n) ∈ o(f(n)), which denotes that limn→∞ g(n)/f(n) = 0. We

also say that g(n) ∈ Ω(f(n)) if there exist constants c, n0 such that for

all n ≥ n0, g(n) ≥ cf(n). Finally, we say that g(n) ∈ Θ(f(n)) if it is

the case that g(n) ∈ O(f(n)) ∩ Ω(f(n)). If g(n) ∈ Θ(f(n)), then f(n) is

called an asymptotically tight bound for g(n), and it means that f(n) is

a very good approximation to g(n). Note that in practice we will often

write g(n) = O(f(n)) instead of the formal g(n) ∈ O(f(n)); a slight but

convenient abuse of notation.

For example, an2 + bn+ c = Θ(n2), where a > 0. To see this, note that

an2 + bn+ c ≤ (a+ |b|+ |c|)n2, for all n ∈ N, and so an2 + bn+ c = O(n2),

where we took the absolute value of b, c because they may be negative. On

the other hand, an2 + bn + c = a((n + c1)2 − c2) where c1 = b/2a and

c2 = (b2 − 4ac)/4a2, so we can find a c3 and an n0 so that for all n ≥ n0,

c3n
2 ≤ a((n + c1)2 − c2), and so an2 + bn + c = Ω(n2).

Problem 1.2. Find c3 and n0 in terms of a, b, c. Then prove that for k ≥ 0,∑k
i=0 ain

i = Θ(nk); this shows the simplifying advantage of the Big O.
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4 An introduction to the analysis of algorithms

1.1.2 Division

What could be simpler than integer division? We are given two integers,

x, y, and we want to find the quotient and remainder of dividing x by y.

For example, if x = 25 and y = 3, then q = 8 and r = 1. Note that the q

and r returned by the division algorithm are usually denoted as div(x, y)

(the quotient) and rem(x, y) (the remainder), respectively.

Algorithm 1 Division

Pre-condition: x ≥ 0 ∧ y > 0 ∧ x, y ∈ N
1: q ← 0

2: r ← x

3: while y ≤ r do

4: r ← r − y

5: q ← q + 1

6: end while

7: return q, r

Post-condition: x = (q · y) + r ∧ 0 ≤ r < y

We propose the following assertion as the loop invariant:

x = (q · y) + r ∧ r ≥ 0, (1.2)

and we show that (1.2) holds after each iteration of the loop. Basis case

(i.e., zero iterations of the loop—we are just before line 3 of the algorithm):

q = 0, r = x, so x = (q · y) + r and since x ≥ 0 and r = x, r ≥ 0.

Induction step: suppose x = (q · y) + r ∧ r ≥ 0 and we go once more

through the loop, and let q′, r′ be the new values of q, r, respectively (com-

puted in lines 4 and 5 of the algorithm). Since we executed the loop one

more time it follows that y ≤ r (this is the condition checked for in line 3

of the algorithm), and since r′ = r − y, we have that r′ ≥ 0. Thus,

x = (q · y) + r = ((q + 1) · y) + (r − y) = (q′ · y) + r′,

and so q′, r′ still satisfy the loop invariant (1.2).

Now we use the loop invariant to show that (if the algorithm terminates)

the post-condition of the division algorithm holds, if the pre-condition

holds. This is very easy in this case since the loop ends when it is no

longer true that y ≤ r, i.e., when it is true that r < y. On the other

hand, (1.2) holds after each iteration, and in particular the last iteration.

Putting together (1.2) and r < y we get our post-condition, and hence

partial correctness.
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To show termination we use the least number principle (LNP). We need

to relate some non-negative monotone decreasing sequence to the algorithm;

just consider r0, r1, r2, . . ., where r0 = x, and ri is the value of r after the

i-th iteration. Note that ri+1 = ri−y. First, ri ≥ 0, because the algorithm

enters the while loop only if y ≤ r, and second, ri+1 < ri, since y > 0. By

LNP such a sequence “cannot go on for ever,” (in the sense that the set

{ri|i = 0, 1, 2, . . .} is a subset of the natural numbers, and so it has a least

element), and so the algorithm must terminate.

Thus we have shown full correctness of the division algorithm.

Problem 1.3. What is the running time of algorithm 1? That is, how

many steps does it take to terminate? Assume that assignments (lines 1

and 2), and arithmetical operations (lines 4 and 5) as well as testing “≤”

(line 3) all take one step.

Problem 1.4. Suppose that the precondition in algorithm 1 is changed to

say: “x ≥ 0 ∧ y > 0 ∧ x, y ∈ Z,” where Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Is

the algorithm still correct in this case? What if it is changed to to the

following: “y > 0 ∧ x, y ∈ Z”? How would you modify the algorithm to

work with negative values?

Problem 1.5. Write a program that takes as input x and y, and outputs

the intermediate values of q and r, and finally the quotient and remainder

of the division of x by y.

1.1.3 Euclid

Given two positive integers a, b, their greatest common divisor, denoted

as gcd(a, b), is the greatest integer that divides both. Euclid’s algorithm,

presented as algorithm 2, is a procedure for finding the greatest common

divisor of two numbers. It is one of the oldest known algorithms; it appeared

in Euclid’s Elements (Book 7, Propositions 1 and 2) around 300 BC.

Note that to compute rem(n,m) in lines 1 and 3 of Euclid’s algorithm

we need to use algorithm 1 (the division algorithm) as a subroutine; this

is a typical “composition” of algorithms. Also note that lines 1 and 3 are

executed from left to right, so in particular in line 3 we first do m ← n,

then n← r, and finally r ← rem(m,n). This is important for the algorithm

to work correctly, because when we are executing r ← rem(m,n), we are

using the newly updated values of m,n.
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Algorithm 2 Euclid

Pre-condition: a > 0 ∧ b > 0 ∧ a, b ∈ Z
1: m← a ; n← b ; r ← rem(m,n)

2: while (r > 0) do

3: m← n ; n← r ; r ← rem(m,n)

4: end while

5: return n

Post-condition: n = gcd(a, b)

To prove the correctness of Euclid’s algorithm we are going to show that

after each iteration of the while loop the following assertion holds:

m > 0, n > 0 and gcd(m,n) = gcd(a, b), (1.3)

that is, (1.3) is our loop invariant. We prove this by induction on the

number of iterations. Basis case: after zero iterations (i.e., just before the

while loop starts—so after executing line 1 and before executing line 2) we

have that m = a > 0 and n = b > 0, so (1.3) holds trivially. Note that

a > 0 and b > 0 by the pre-condition.

For the induction step, suppose m,n > 0 and gcd(a, b) = gcd(m,n),

and we go through the loop one more time, yielding m′, n′. We want to

show that gcd(m,n) = gcd(m′, n′). Note that from line 3 of the algorithm

we see that m′ = n, n′ = r = rem(m,n), so in particular m′ = n > 0 and

n′ = r = rem(m,n) > 0 since if r = rem(m,n) were zero, the loop would

have terminated (and we are assuming that we are going through the loop

one more time). So it is enough to prove the assertion in Problem 1.6.

Problem 1.6. Show that for all m,n > 0, gcd(m,n) = gcd(n, rem(m,n)).

Now the correctness of Euclid’s algorithm follows from (1.3), since the

algorithm stops when r = rem(m,n) = 0, so m = q·n, and so gcd(m,n) = n.

Problem 1.7. Show that Euclid’s algorithm terminates, and establish its

Big O complexity.

Problem 1.8. How would you make the algorithm more efficient? This

question is asking for simple improvements that lower the running time by

a constant factor.

Problem 1.9. Modify Euclid’s algorithm so that given integers m,n as

input, it outputs integers a, b such that am + bn = g = gcd(m,n). This is

called the extended Euclid’s algorithm. Follow this outline:
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(a) Use the LNP to show that if g = gcd(m,n), then there exist a, b such

that am + bn = g.

(b) Design Euclid’s extended algorithm, and prove its correctness.

(c) The usual Euclid’s extended algorithm has a running time polynomial

in min{|(m)b|, |(n)b|}, where (m)b is the binary representation of m,

and |(m)b| is the number of bits in the binary representation of m.

Prove this.

Problem 1.10. Implement Euclid’s extended algorithm, and then perform

the following experiment: run it on a random selection of inputs of a given

size, for sizes bounded by some parameter N ; compute the average number

of steps of the algorithm for each input size n ≤ N , and plot the result1.

What can you say about Tavg(n), the “average number of steps” of Euclid’s

extended algorithm on input size n?

1.1.4 Palindromes

Algorithm 3 tests if a string is a palindrome, which is a word that reads the

same backwards as forwards, e.g., madamimadam or racecar.

In order to present this algorithm we need to introduce a little bit of

notation. The floor and ceil functions are defined, respectively, as follows:

⌊x⌋ = max{n ∈ Z|n ≤ x} and ⌈x⌉ = min{n ∈ Z|n ≥ x}, and ⌊x⌉ refers to

the “rounding” of x, and it is defined as ⌊x⌉ = ⌊x + 1
2⌋.

Algorithm 3 Palindromes

Pre-condition: n ≥ 1 ∧A[0 . . . n− 1] is a character array

1: i← 0

2: while (i < ⌊n2 ⌋) do

3: if (A[i] ̸= A[n− i− 1]) then

4: return F

5: end if

6: i← i + 1

7: end while

8: return T

Post-condition: return T iff A is a palindrome

1Gnuplot is a command-line driven graphing utility (http://www.gnuplot.info). Also,
Python has a plotting library matplotlib (https://matplotlib.org).
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Let the loop invariant be: after the k-th iteration, i = k + 1 and for

all j such that 1 ≤ j ≤ k, A[j] = A[n − j + 1]. We prove that the loop

invariant holds by induction on k. Basis case: before any iterations take

place, i.e., after zero iterations, there are no j’s such that 1 ≤ j ≤ 0, so the

second part of the loop invariant is (vacuously) true. The first part of the

loop invariant holds since i is initially set to 1.

Induction step: we know that after k iterations, A[j] = A[n−j+1] for all

1 ≤ j ≤ k; after one more iteration we know that A[k+1] = A[n−(k+1)+1],

so the statement follows for all 1 ≤ j ≤ k+1. This proves the loop invariant.

Problem 1.11. Using the loop invariant argue the partial correctness of

the palindromes algorithm. Show that the algorithm terminates.

It is easy to manipulate strings in Python; a segment of a string is

called a slice. Consider the word palindrome; if we set the variables s to

this word,

s = ’palindrome’

then we can access different slices as follows:

print s[0:5] palin

print s[5:10] drome

print s[5:] drome

print s[2:8:2] lnr

where the notation [i:j] means the segment of the string starting from the

i-th character (and we always start counting at zero!), to the j-th character,

including the first but excluding the last. The notation [i:] means from

the i-th character, all the way to the end, and [i:j:k] means starting from

the i-th character to the j-th (again, not including the j-th itself), taking

every k-th character.

One way to understand the string delimiters is to write the indices “in

between” the numbers, as well as at the beginning and at the end. For

example

0p1a2l3i4n5d6r7o8m9e10

and to notice that a slice [i:j] contains all the symbols between index i

and index j.

Problem 1.12. Using Python’s inbuilt facilities for manipulating slices of

strings, write a succinct program that checks whether a given string is a

palindrome.
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1.1.5 Further examples

In this section we provide more examples of algorithms that take integers

as input, and manipulate them with a while-loop. We also present an

example of an algorithm that is very easy to describe, but for which no proof

of termination is known (algorithm 6). This supports further the notion

that proofs of correctness are not just pedantic exercises in mathematical

formalism but a real certificate of validity of a given algorithmic solution.

Problem 1.13. Give an algorithm which takes as input a positive integer

n, and outputs “yes” if n = 2k (i.e., n is a power of 2), and “no” otherwise.

Prove that your algorithm is correct.

Problem 1.14. What does algorithm 4 compute? Prove your claim.

Algorithm 4 See Problem 1.14

1: x← m ; y ← n ; z ← 0

2: while (x ̸= 0) do

3: if (rem(x, 2) = 1) then

4: z ← z + y

5: end if

6: x← div(x, 2)

7: y ← y · 2
8: end while

9: return z

Problem 1.15. What does algorithm 5 compute? Assume that a, b are

positive integers (i.e., assume that the pre-condition is that a, b > 0). For

Algorithm 5 See Problem 1.15

1: while (a > 0) do

2: if (a < b) then

3: (a, b)← (2a, b− a)

4: else

5: (a, b)← (a− b, 2b)

6: end if

7: end while

which starting a, b does this algorithm terminate? In how many steps does

it terminate, if it does terminate?
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Consider algorithm 6 given below.

Algorithm 6 Ulam’s algorithm

Pre-condition: a > 0

x←− a

while last three values of x not 4, 2, 1 do

if x is even then

x←− x/2

else

x←− 3x + 1

end if

end while

This algorithm is different from all the algorithms that we have seen thus

far in that there is no known proof of termination, and therefore no known

proof of correctness. Observe how simple it is: for any positive integer a, set

x = a, and repeat the following: if x is even, divide it by 2, and if it is odd,

multiply it by 3 and add 1. Repeat this until the last three values obtained

were 4, 2, 1. For example, if a = 22, then one can check that x takes on the

following values: 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8,4,2,1, and algo-

rithm 6 terminates. It is conjectured that regardless of the initial value of

a, as long as a is a positive integer, algorithm 6 terminates. This conjecture

is known as “Ulam’s problem,”2 and despite decades of work no one has

been able to solve this problem.

In fact, recent work shows that variants of Ulam’s problem have been

shown undecidable. We will look at undecidability in Chapter 9, but [Lehto-

nen (2008)] showed that for a very simple variant of the problem where we

let x be 3x+ t for x in a particular set At (for details see the paper), there

simply is no algorithm whatsoever that will decide for which initial a’s the

new algorithm terminates and for which it does not.

Problem 1.16. Write a program that takes a as input and displays all the

values of Ulam’s problem until it sees 4, 2, 1 at which point it stops. Now

on input N , compute Ψ(N): max number of steps to reach 4, 2, 1 for all

a < N . Propose an estimate for Ψ(N).

2It is also called “Collatz Conjecture,” “Syracuse Problem,” “Kakutani’s Problem,”
or “Hasse’s Algorithm.” While it is true that a rose by any other name would smell

just as sweet, the preponderance of names shows that the conjecture is a very alluring
mathematical problem.
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1.2 Ranking algorithms

The algorithms we have seen so far in the book are classical, but to some

extent they are “toy examples.” In this section we want to demonstrate

the power and usefulness of three very well known “grown up” algorithms

for ranking items. Ranking is a primordial human activity3, and we will

take a brief look at ranking procedures that range from the ancient, such

as Ramon Llull’s, a 13-th century mystic and philosopher, to old, such as

Marquis de Condorcet’s work discussed in section 1.2.3, to the state of the

art in Google’s simple and elegant PageRank discussed in the next section.

1.2.1 PageRank

In 1945, Vannevar Bush wrote an article in the Atlantic Monthly entitled

As we may think [Bush (1945)], where he demonstrated an eerie prescience

of the ideas that became the World Wide Web. In that gem of an article

Bush pointed out that information retrieval systems are organized in a lin-

ear fashion (whether books, databases, computer memory, etc.), but that

human conscious experience exhibits what he called “an associative mem-

ory.” That is, the human mind has a semantic network, where we think of

one thing, and that reminds us of another, etc. Bush proposed a blueprint

for a human-like machine, the “Memex,” which had ur-web characteristics:

digitized human knowledge interconnected by associative links.

When in the early 1990s Tim Berners-Lee finally implemented the ideas

of Bush in the form of HTML, and ushered in the World Wide Web, the web

pages were static and the links had a navigational function. Today links

often trigger complex programs such as Perl, PHP, MySQL, and while some

are still navigational, many are transactional, implementing actions such as

“add to shopping cart,” or “update my calendar.”

As there are now billions of active web pages, how does one search them

to find relevant high-quality information? We accomplish this by ranking

those pages that meet the search criteria; pages of a good rank will appear

at the top—this way the search results will make sense to a human reader

who only has to scan the first few results to (hopefully) find what he wants.

These top pages are called authoritative pages.

3There is an unspeakable primordial calculator, deep within you, at the very foundation
of your brain, far below your thoughts and feelings. It monitors exactly where you are

positioned in society—on a scale of one to ten, for the sake of argument. (pg. 15,
[Peterson (2018)])
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In order to rank authoritative pages at the top, we make use of the fact

that the web consists not only of pages, but also of hyperlinks that connect

these pages. This hyperlink structure (which can be naturally modeled by a

directed graph) contains a lot of latent human annotation that can be used

to automatically infer authority. This is a profound observation: after all,

items ranked highly by a user are ranked so in a subjective manner; exploit-

ing the hyperlink structure allows us to connect the subjective experience

of the users with the output of an algorithm!

More specifically, by creating a hyperlink, the author gives an implicit

endorsement to a page. By mining the collective judgment expressed by

these endorsements we get a picture of the quality (or subjective perception

of the quality) of a given web page. This is very similar to our perception

of the quality of scholarly citations, where an important publication is cited

by other important publications. The question now is how do we convert

these ideas into an algorithm. A seminal answer was given by the now

famous PageRank algorithm, authored by S. Brin and L. Page, the founders

of Google—see [Brin and Page (1998)]. PageRank mines the hyperlink

structure of the web in order to infer the relative importance of the pages.

Given a web page P , let C(P ) be the number of distinct links that leave

P , i.e., these are links anchored in P that point to a page outside of P . Let

PR(P ) be the page rank of P . Consider Figure 1.1 which depicts a web

page X, and all the pages T1, T2, T3, . . . , Tn that point to it.

T1

''

T2

  

T3

��

. . . Tn

ww
X

Fig. 1.1 Computing the rank of page A.

Then, the page rank of X can be computed as follows:

PR(X) = (1− d) + d

[
PR(T1)

C(T1)
+

PR(T2)

C(T2)
+ · · ·+ PR(Tn)

C(Tn)

]
. (1.4)

We now explain (1.4): the damping factor d is a constant 0 ≤ d ≤ 1, and

usually set to .85. The formula posits the behavior of a “random surfer” who

starts clicking on links on a random page, following a link out of that page,

and clicking on links (never hitting the “back button”) until the random

surfer gets bored, and starts the process from the beginning by going to a
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random page. Thus, in (1.4) the (1 − d) is the probability of choosing X

at random, while PR(Ti)/C(Ti) is the probability of reaching X by coming

from Ti, normalized by the number of outlinks from Ti.

We make a slight adjustment to (1.4): we normalize it by the size of the

web, N , that is, we divide (1− d) by N . This way, the chance of stumbling

on X is adjusted to the overall size of the web.

The problem with (1.4) is that it appears to be circular. How do we

compute PR(Ti) in the first place? The algorithm works in stages, refining

the page rank of each page at each stage. Initially, we take the egalitarian

approach and assign each page a rank of 1/N , where N is the total number

of pages on the web. Then recompute all page ranks using (1.4) and the

initial page ranks, and continue. After each stage PR(X) gets closer to the

actual value, and in fact converges fairly quickly. There are many technical

issues here, such as knowing when to stop, and handling a computation

involving N which may be over a trillion, but this is the PageRank algorithm

in a nut shell.

Of course the web is a vast collection of heterogeneous documents,

and (1.4) is too simple a formula to capture everything, and so Google

search is a lot more complicated. For example, not all outlinks are treated

equally: a link in larger font, or emphasized with a “<STRONG>” tag, will

have more weight. Documents differ internally in terms of language, format

such as PDF, image, text, sound, video; and externally in terms of reputa-

tion of the source, update frequency, quality, popularity, and other variables

that are now taken into account by a modern search engine. The reader is

directed to [Franceschet (2011)] for more information about PageRank.

Furthermore, the presence of search engines also affects the web. As

the search engines direct traffic, they themselves shape the ranking of the

web. A similar effect in Physics is known as the observer effect, where

instruments alter the state of what they observe. As a simple example,

consider measuring the pressure in your tires: you have to let some air out,

and therefore change the pressure slightly, in order to measure it. All these

fascinating issues are the subject matter of Big Data Analytics.

Problem 1.17. Consider the network depicted in Figure 1.2, and calculate

the PageRank of pages A,B,C,D,E, F using formula (1.4) with damping

factor d = 1, that is, assuming all navigation is done by following links, i.e.,

no random jumps to other pages.

Problem 1.18. Write a program which computes the ranks of all the pages

in a given network of size N . Let the network be given as a 0-1 matrix,
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// A // B

~~ �� ��

// C

��
D // E

??

F

Fig. 1.2 A small six node network for Problem 1.17.

where a 1 in position (i, j) means that there is a link from page i to page

j. Otherwise, there is a 0 in that position. Use (1.4) to compute the page

rank, starting with a value of 1/N . You should stop when all values have

converged—does this algorithm always terminate? Also, keep track of all

the values as fractions a/b, where gcd(a, b) = 1; Python has a convenient

fractions library: import fractions.

PageRank is an elegant algorithm, based on Markov Chains, and Google

is of course synonymous with Internet searching, and a fantastic success

story that started in the late 1990s at Stanford and now is a company worth

a trillion dollars. Unfortunately, a company once known for innovation is

now also known for efforts in information censorship [Hasson (2020)].

1.2.2 A stable marriage

Suppose that we want to match interns with hospitals, or students with

colleges; both are instances of the admission process problem, and both

have a solution that optimizes, to a certain degree, the overall satisfaction

of all the parties concerned. The solution to this problem is an elegant

algorithm to solve the so called “stable marriage problem,” which has been

used since the 1960s for the college admission process and for matching

interns with hospitals.

An instance of the stable marriage problem of size n consists of two

disjoint finite sets of equal size; a set of boys B = {b1, b2, . . . , bn}, and a set

of girls G = {g1, g2, . . . , gn}. Let “<i” denote the ranking of boy bi; that

is, g <i g
′ means that boy bi prefers g over g′. Similarly, “<j” denotes the

ranking of girl gj . Each boy bi has such a ranking (linear ordering) <i of G

which reflects his preference for the girls that he wants to marry. Similarly

each girl gj has a ranking (linear ordering—see section 9.3.3) <j of B which

reflects her preference for the boys she would like to marry.

A matching (marriage) M is a bijective correspondence between B and
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G. We say that b and g are partners in M if they are matched in M and

write pM (b) = g and also pM (g) = b. A matching M is unstable if there

is a pair (b, g) from B × G such that b and g are not partners in M but b

prefers g to pM (b) and g prefers b to pM (g). Such a pair (b, g) is said to

block the matching M and is called a blocking pair for M (see figure 1.3).

A matching M is stable if it contains no blocking pairs.

b

$$

g

zz
pM (g) pM (b)

Fig. 1.3 A blocking pair: b and g prefer each other to their partners pM (b) and pM (g).

It turns out that there always exists a stable marriage solution to the

matching problem. This solution can be computed with the celebrated

algorithm due to Gale and Shapley ([Gale and Shapley (1962)]) that outputs

a stable marriage for any input B,G, regardless of the ranking4.

The matching M is produced in stages Ms so that bt always has a

partner at the end of stage s, where t ≤ s. However, the partners of bt do not

get better, i.e., pMt
(bt) ≤t pMt+1

(bt) ≤t · · · . On the other hand, for each

g ∈ G, if g has a partner at stage t, then g will have a partner at each stage

s ≥ t and the partners do not get worse, i.e., pMt
(g) ≥t pMt+1

(g) ≥t . . ..

Thus, as s increases, the partners of bt become less preferable and the

partners of g become more preferable.

At the end of stage s, assume that we have produced a matching

Ms = {(b1, g1,s), . . . , (bs, gs,s)},

where the notation gi,s means that gi,s is the partner of boy bi after the

end of stage s. We will say that partners in Ms are engaged. The idea is

that at stage s + 1, bs+1 will try to get a partner by proposing to the girls

in G in his order of preference. When bs+1 proposes to a girl gj , gj accepts

his proposal if either gj is not currently engaged or is currently engaged to

a less preferable boy b, i.e., bs+1 <j b. In the case where gj prefers bs+1

over her current partner b, then gj breaks off the engagement with b and b

then has to search for a new partner.

4In 2012, the Nobel Prize in Economics was awarded to Lloyd S. Shapley and Alvin E.

Roth “for the theory of stable allocations and the practice of market design,” i.e., for
the stable marriage algorithm.
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Algorithm 7 Gale-Shapley

1: Stage 1: b1 chooses his top g and M1 ←− {(b1, g)}
2: for s = 1, . . . , s = |B| − 1, Stage s + 1: do

3: M ←−Ms

4: b∗ ←− bs+1

5: for b∗ proposes to all g’s in order of preference: do

6: if g was not engaged: then

7: Ms+1 ←−M ∪ {(b∗, g)}
8: end current stage

9: else if g was engaged to b but g prefers b∗: then

10: M ←− (M − {(b, g)}) ∪ {(b∗, g)}
11: b∗ ←− b

12: repeat from line 5

13: end if

14: end for

15: Ms+1 ←−M

16: end for

17: return M|B|

Problem 1.19. Show that each b need propose at most once to each g.

From problem 1.19 we see that we can make each boy keep a bookmark

on his list of preference, and this bookmark is only moving forward. When

a boy’s turn to choose comes, he starts proposing from the point where

his bookmark is, and by the time he is done, his bookmark moved only

forward. Note that at stage s+ 1 each boy’s bookmark cannot have moved

beyond the girl number s on the list without choosing someone (after stage

s only s girls are engaged). As the boys take turns, each boy’s bookmark

is advancing, so some boy’s bookmark (among the boys in {b1, . . . , bs+1})
will advance eventually to a point where he must choose a girl.

The above discussion shows that stage s + 1 must end. The concern

here was that case (ii) of stage s + 1 might end up being circular. But the

fact that the bookmarks are advancing shows that this is not possible.

Furthermore, this gives an upper bound of (s+1)2 steps at stage (s+1)

in the procedure. This means that there are n stages, and each stage takes

O(n2) steps, and hence algorithm 7 takes O(n3) steps altogether. The

question, of course, is what do we mean by a step? In this case we take

each line of the algorithm to be a single step. Thus assigning values, testing

if a g is engaged and updating the matching in lines 7, 10, 15 is a single step.



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 17

Preliminaries 17

Problem 1.20. Show that there is exactly one girl that was not engaged

at stage s but is engaged at stage (s + 1) and that, for each girl gj that is

engaged in Ms, gj will be engaged in Ms+1 and that pMs+1
(gj) <

j pMs
(gj).

(Thus, once gj becomes engaged, she will remain engaged and her partners

will only gain in preference as the stages proceed.)

Problem 1.21. Suppose that |B| = |G| = n. Show that at the end of

stage n, Mn will be a stable marriage.

We say that a pair (b, g) is feasible if there exists a stable matching in

which b, g are partners. We say that a matching is boy-optimal if every boy

is paired with his highest ranked feasible partner. We say that a matching is

boy-pessimal if every boy is paired with his lowest ranking feasible partner.

Similarly, we define girl-optimal/pessimal.

Problem 1.22. Show that our version of the algorithm produces a boy-

optimal and girl-pessimal stable matching. Does this mean that they or-

dering of the boys is irrelevant?

Problem 1.23. Implement algorithm 7.

1.2.3 Pairwise Comparisons

A fundamental application of algorithmic procedures is to choose the best

option from among many. The selection requires a ranking procedure that

guides it, but given the complexity of the world in the Information Age, the

ranking procedure and selection are often done based on an extraordinary

number of criteria. It may also require the chooser to provide a justification

for the selection and to convince someone else that the best option has

indeed been chosen. For example, imagine the scenario where a team of

doctors must decide whether or not to operate on a patient [Kakiashvili

et al. (2012)], and how important it is to both select the optimal course of

action and provide a strong justification for the final selection. Indeed, a

justification in this case may be as important as selecting the best option.

Considerable effort has been devoted to research in search engine rank-

ing [Easley and Kleinberg (2010)], in the case of massive amount of highly

heterogeneous items. On the other hand, relatively little work has been

done in ranking smaller sets of highly similar (homogeneous) items, differ-

entiated by a large number of criteria. Today’s state of the art consists of
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an assortment of domain-specific ad hoc procedures, which are highly do-

main dependent: one approach in the medical profession [Kakiashvili et al.

(2012)]; another in the world of management [Koczkodaj et al. (2014)], etc.

Pairwise Comparisons (PC) has a surprisingly old history for a method

that to a certain degree is not widely known. The ancient beginnings are

often attributed to a thirteenth century mystic and philosopher Ramon

Lull. In 2001 a manuscript of Llull’s was discovered, titled Ars notandi,

Ars eleccionis, and Alia ars eleccionis (see [Hägele and Pukelsheim (2001);

Faliszewski et al. (2010)]) where he discussed voting systems and prefigures

the PC method. The modern beginnings are attributed to the Marquis

de Condorcet (see [Condorcet (1785)], written four years before the French

Revolution, and nine years before losing his head to the same). Just as

Llull, Condorcet applied the PC method to analyzing voting outcomes.

Almost a century and a half later, Thurstone [Thurstone (1927)] refined

the method and employed a psychological continuum with the scale values

as the medians of the distributions of judgments.

Modern PC can be said to have started with the work of Saaty in 1977

[Saaty (1977)], who proposed a finite nine-point scale of measurements. Fur-

thermore, Saaty introduced the Analytic Hierarchy Process (AHP), which

is a formal method to derive ranking orders from numerical pairwise com-

parisons. AHP is widely used around the world for decision making, in ed-

ucation, industry, government, etc. [Koczkodaj (1993)] proposed a smaller

five-point scale, which is less fine-grained than Saaty’s nine-point, but eas-

ier to use. Note that while AHP is a respectable tool for practical appli-

cations, it is nevertheless considered by many [Dyer (1990); Janicki (2011)]

as a flawed procedure that produces arbitrary rankings.

Let X = {x1, x2, . . . , xn} be a finite set of objects to be ranked. Let

aij express the numerical preference between xi and xj . The idea is that

aij estimates “how much better” xi is compared to xj . Clearly, for all i, j,

aij > 0 and aij = 1/aji. The intuition is that if aij > 1, then xi is preferred

over xj by that factor. So, for example, Apple’s Retina display has four

times the resolution of the Thunderbolt display, and so if x1 is Retina,

and x2 is Thunderbolt, we could say that the image quality of x1 is four

times better than the image quality of x2, and so a12 = 4, and a21 = 1/4.

The assignment of values to the aij ’s are often done subjectively by human

judges. Let A = [aij ] be a pairwise comparison matrix, also known as a

preference matrix. We say that a pairwise comparison matrix is consistent

if for all i, j, k we have that aijajk = aik. Otherwise, it is inconsistent.
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Theorem 1.24 (Saaty). A pairwise comparison matrix A is consistent if

and only if there exist w1, w2, . . . , wn such that aij = wi/wj.

Problem 1.25. Note that the wi’s that appear in Theorem 1.24 create a

ranking, in that xj is preferable to xi if and only if wi < wj . Suppose that

A is a consistent PC matrix. How can you extract the wi’s from A?

In practice, the subjective evaluations aij are seldom consistent, which

poses a set of problems ([Janicki and Zhai (2011)]), namely, how do we:

(i) measure inconsistency and what level is acceptable? (ii) remove incon-

sistencies, or lower them to an acceptable level? (iii) derive the values wi

starting with an inconsistent ranking A? (iv) justify a certain method for

removing inconsistencies? An inconsistent matrix has value in that the

degree of inconsistency measures, to some extent, the degree of subjective-

ness of the referees. But we need to be able to answer the questions in the

above paragraph before we can take advantage in a meaningful way of an

inconsistent matrix.

Problem 1.26. [Bozóki and Rapcsák (2008)] propose several methods for

measuring inconsistencies in a matrix (see especially Table 1 on page 161

of their article). Consider implementing some of these measures. Can you

propose a method for resolving inconsistencies in a PC matrix?

1.3 Answers to selected problems

Problem 1.1. (∀I ∈ IA)[∃O(O = A(I))∧(αA(I)→ βA(A(I)))]. This says

that for any well formed input I, there is an output, i.e., the algorithm A

terminates. This is expressed with ∃O(O = A(I)). Also, it says that if the

well formed input I satisfies the pre-condition, stated as the antecendent

αA(I), then the output satisfies the post-condition, stated as the consequent

βA(A(I)).

Problem 1.2. Clearly,

an2 + bn + c ≥ an2 − |b|n− |c| = n2(a− |b|/n− |c|/n2) (1.5)

|b| is finite, so ∃nb ∈ N such that |b|/nb ≤ a/4. Similarly, ∃nc ∈ N such

that |c|/n2
c ≤ a/4. Let n0 = max{nb, nc}. For n ≥ n0, a−|b|/n0−|c|/n2

0 ≥
a− a/4− a/4 = a/2. This, combined with (1.5), grants:

a

2
n2 ≤ an2 + bn + c
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for all n ≥ n0. We need only to assign c3 the value a/2 to complete the

proof that an2 + bn + c ∈ Ω(n2).

Next we deal with the general polynomial with a positive leading coef-

ficient. Let

p(n) =

k∑
i=1

ain
i = nk

k∑
i=1

ai/n
k−i,

where ak > 0. Clearly p(n) ≤ nk
∑k

i=1 |ai| for all n ∈ N, so p(n) = O(nk).

Moreover, every ai is finite, so for each i ∈ N such that 0 ≤ i ≤ k − 1, ∃ni

such that ai/n
k−i ≤ ak/2k for all n ≥ ni. Let n0 be the maximum of these

ni’s. p(n) can be rewritten as nk(ak +
∑k−1

i=0 ai/n
k−i), so

p(n) ≥ nk(ak −
k−1∑
i=0

ai/n
k−i).

We have shown that for n ≥ n0,
∑k−1

i=0 ai/n
k−i ≤ ak − k(ak/2k) = ak/2,

so let c = ak/2. For all n ≥ n0, p(n) ≥ (ak − ak/2)nk = cnk. Thus,

p(n) = Ω(nk).

We have shown that p(n) ∈ O(nk) and p(n) ∈ Ω(nk), so p(n) = Θ(nk).

Problem 1.3. The while loop starts with r = x, and then y is subtracted

each time; this is bounded by x (the slowest case, when y = 1). Each time

the while loop executes, it tests y ≤ r, and recomputes r, q, and so it costs

3 steps. Adding the original two assignments (q ← 0,r ← x), we get a total

of 3x + 2 steps. Note that we assume that x, y are presented in binary

(the usual encoding), and that it takes log2 x bits to encode x, and so the

running time is 3 · 2log2 x + 2. Thus, if n = |x|, i.e., n is the length of the

encoding of x, then the running time is O(2n), and so it is exponential in the

length of the input! This is not a desirable running time; if x were big, say

1,000 bits, and y small, this algorithm would take longer than the lifetime

of the sun (10 billion years) to end. There are much faster algorithms for

division such as the Newton-Raphson method.

Problem 1.4. The original precondition (under which the algorithm is

correct) is:

x ≥ 0 ∧ y > 0 ∧ x, y ∈ N

where N = {0, 1, 2, . . . }. So in the first case our work has already been done

for us; any member of Z which is ≥ 0 is also in N (and any member of N is

in Z), so these preconditions are equivalent. Given that the algorithm was

correct under the original precondition, it is also correct under the new one.

In the second case it is not correct: consider x = −5 and y = 2, so initially
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r = −5, and the loop would not execute, and r ≥ 0 in the post-condition

would not be true.

Problem 1.6. First observe that if u divides x and y, then for any a, b ∈ Z
u also divides ax + by. Thus, if i|m and i|n, then

i|(m− qn) = r = rem(m,n).

So i divides both n and rem(m,n), and so i has to be bounded by their

greatest common divisor, i.e., i ≤ gcd(n, rem(m,n)). As this is true

for every i, it is in particular true for i = gcd(m,n); thus gcd(m,n) ≤
gcd(n, rem(m,n)). Conversely, suppose that i|n and i|rem(m,n). Then

i|m = qn + r, so i ≤ gcd(m,n), and again, gcd(n, rem(m,n)) meets the

condition of being such an i, so we have gcd(n, rem(m,n)) ≤ gcd(m,n).

Both inequalities taken together give us gcd(m,n) = gcd(n, rem(m,n)).

Problem 1.7. Let ri be r after the i-th iteration of the loop. Note that

r0 = rem(m,n) = rem(a, b) ≥ 0, and in fact every ri ≥ 0 by definition of

remainder. Furthermore:

ri+1 = rem(mi+1, ni+1)

= rem(ni, ri),

and so ni = q ·ni + ri where ri+1 < ri. Thus we have a decreasing, and yet

non-negative, sequence of numbers; by the LNP this must terminate. To

establish the complexity, we count the number of iterations of the while-

loop, ignoring the swaps (so to get the actual number of iterations we should

multiply the result by two).

Suppose that m = qn + r. If q ≥ 2, then m ≥ 2n, and since m ← n,

m decreases by at least a half. If q = 1, then m = n + r where 0 < r < n,

and we examine two cases: r ≤ n/2, so n decreases by at least a half as

n ← r, or r > n/2, in which case m = n + r > n + n/2 = 3/2n, so since

m← n, m decreases by 1/3. Thus, it can be said that in all cases at least

one element in the pair decreases by at least 1/3, and so it can be said

that the running time is bounded by k such that 3k = m · n, and so by

O(log(m · n)) = O(logm + log n). As inputs are assumed to be given in

binary, we can conclude from this that the running time is linear in the size

of the input.

A tighter analysis, known as Lamé’s theorem, can be found in [Cormen

et al. (2009)] (theorem 31.11), which states that for any integer k ≥ 1,

if a > b ≥ 1 and b < Fk+1, where Fi is the i-th Fibonacci number (see

Problem 9.5), then it takes fewer than k iterations of the while-loop (not

counting swaps) to run Eucild’s algorithm.
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Problem 1.8. When m < n then rem(m,n) = m, and so m′ = n and

n′ = m. Thus, when m < n we execute one iteration of the loop only

to swap m and n. In order to be more efficient, we could add line 2.5 in

algorithm 2 saying if (m < n) then swap(m,n).

Problem 1.9. (a) We show that if d = gcd(a, b), then there exist u, v such

that au + bv = d. Let S = {ax + by|ax + by > 0}; clearly S ̸= ∅. By LNP

there exists a least g ∈ S. We show that g = d. Let a = q · g+ r, 0 ≤ r < g.

Suppose that r > 0; then

r = a− q · g = a− q(ax0 + by0) = a(1− qx0) + b(−qy0).

Thus, r ∈ S, but r < g—contradiction. So r = 0, and so g|a, and a similar

argument shows that g|b. It remains to show that g is greater than any

other common divisor of a, b. Suppose c|a and c|b, so c|(ax0 + by0), and so

c|g, which means that c ≤ g. Thus g = gcd(a, b) = d.

(b) Euclid’s extended algorithm is algorithm 8. Note that in the al-

gorithm, the assignments in line 1 and line 8 are evaluated left to right.

Algorithm 8 Extended Euclid’s algorithm.

Pre-condition: m > 0, n > 0

1: a← 0; x← 1; b← 1; y ← 0; c← m; d← n

2: loop

3: q ← div(c, d)

4: r ← rem(c, d)

5: if r = 0 then

6: stop

7: end if

8: c←d; d←r; t←x; x←a; a← t− qa; t←y; y←b; b← t− qb

9: end loop

Post-condition: am + bn = d = gcd(m,n)

We can prove the correctness of algorithm 8 by using the following loop

invariant which consists of four assertions:

am + bn = d, xm + yn = c, d > 0, gcd(c, d) = gcd(m,n). (LI)

The basis case:

am + bn = 0 ·m + 1 · n = n = d

xm + yn = 1 ·m + 0 · n = m = c
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both by line 1. Then d = n > 0 by pre-condition, and gcd(c, d) = gcd(m,n)

by line 1. For the induction step assume that the “primed” variables are the

result of one more full iteration of the loop on the “un-primed” variables:

a′m + b′n = (x− qa)m + (y − qb)n by line 8

= (xm− yn)− q(am + bn)

= c− qd by induction hypothesis

= r by lines 3 and 4

= d′ by line 8

Then x′m = y′n = am+bn = d = c′ where the first equality is by line 8, the

second by the induction hypothesis, and the third by line 8. Also, d′ = r by

line 8, and the algorithm would stop in line 5 if r = 0; on the other hand,

from line 4, r = rem(c, d) ≥ 0, so r > 0 and so d′ > 0. Finally,

gcd(c′, d′) = gcd(d, r) by line 8

= gcd(d, rem(c, d)) by line 4

= gcd(c, d) see problem 1.6

= gcd(m,n). by induction hypothesis

For partial correctness it is enough to show that if the algorithm termi-

nates, the post-condition holds. If the algorithm terminates, then r = 0,

so rem(c, d) = 0 and gcd(c, d) = gcd(d, 0) = d. On the other hand,

by (LI), we have that am + bn = d, so am + bn = d = gcd(c, d) and

gcd(c, d) = gcd(m,n).

(c) On pp. 292–293 in [Delfs and Knebl (2007)] there is a nice analysis

of their version of the algorithm. They bound the running time in terms of

Fibonacci numbers, and obtain the desired bound on the running time.

Problem 1.11. For partial correctness of algorithm 3, we show that if

the pre-condition holds, and if the algorithm terminates, then the post-

condition will hold. So assume the pre-condition, and suppose first that A

is not a palindrome. Then there exists a smallest i0 (there exists one, and

so by the LNP there exists a smallest one) such that A[i0] ̸= A[n− i0 + 1],

and so, after the first i0 − 1 iteration of the while-loop, we know from the

loop invariant that i = (i0 − 1) + 1 = i0, and so line 4 is executed and the

algorithm returns F. Therefore, “A not a palindrome” ⇒ “return F.”

Suppose now that A is a palindrome. Then line 4 is never executed (as

no such i0 exists), and so after the k = ⌊n2 ⌋-th iteration of the while-loop,

we know from the loop invariant that i = ⌊n2 ⌋+ 1 and so the while-loop is
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not executed any more, and the algorithm moves on to line 8, and returns T.

Therefore, “A is a palindrome” ⇒ “return T.”

Therefore, the post-condition, “return T iff A is a palindrome,” holds.

Note that we have only used part of the loop invariant, that is we used the

fact that after the k-th iteration, i = k + 1; it still holds that after the k-th

iteration, for 1 ≤ j ≤ k, A[j] = A[n − j + 1], but we do not need this fact

in the above proof.

To show that the algorithm terminates, let di = ⌊n2 ⌋ − i. By the pre-

condition, we know that n ≥ 1. The sequence d1, d2, d3, . . . is a decreasing

sequence of positive integers (because i ≤ ⌊n2 ⌋), so by the LNP it is finite,

and so the loop terminates.

Problem 1.12. It is very easy once you realize that in Python the slice

[::-1] generates the reverse string. So, to check whether string s is a

palindrome, all we do is write s == s[::-1].

Problem 1.13. The solution is given by algorithm 9.

Algorithm 9 Powers of 2.

Pre-condition: n ≥ 1

x← n

while (x > 1) do

if (2|x) then

x← x/2

else

stop and return “no”

end if

end while

return “yes”

Post-condition: “yes” ⇐⇒ n is a power of 2

Let the loop invariant be: “x is a power of 2 iff n is a power of 2.”

We show the loop invariant by induction on the number of iterations

of the main loop. Basis case: zero iterations, and since x ← n, x = n, so

obviously x is a power of 2 iff n is a power of 2. For the induction step,

note that if we ever get to update x, we have x′ = x/2, and clearly x′ is a

power of 2 iff x is. Note that the algorithm always terminates (let x0 = n,

and xi+1 = xi/2, and apply the LNP as usual).

We can now prove correctness: if the algorithms returns “yes”, then

after the last iteration of the loop x = 1 = 20, and by the loop invariant n
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is a power of 2. If, on the other hand, n is a power of 2, then so is every x,

so eventually x = 1, and so the algorithm returns “yes”.

Problem 1.14. Algorithm 4 computes the product of m and n, that is,

the returned z = m · n. A good loop invariant is x · y + z = m · n.

Problem 1.17. We start by initializing all nodes to have rank 1/6, and

then repeatedly apply the following formulas, based on (1.4):

PR(A) = PR(F )

PR(B) = PR(A)

PR(C) = PR(B)/4 + PR(E)

PR(D) = PR(B)/4

PR(E) = PR(B)/4 + PR(D)

PR(F ) = PR(B)/4 + PR(C)

The result is given in Figure 1.4.

0 1 2 3 4 5 6 . . . 17

A 0.17 0.17 0.21 0.25 0.29 0.18 0.20 0.22

B 0.17 0.17 0.17 0.21 0.25 0.29 0.18 0.22

C 0.17 0.21 0.25 0.13 0.14 0.16 0.19 . . . 0.17

D 0.17 0.04 0.04 0.04 0.05 0.06 0.07 0.06

E 0.17 0.21 0.08 0.08 0.09 0.11 0.14 0.11

F 0.17 0.21 0.25 0.29 0.18 0.20 0.23 0.22

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . 1.00

Fig. 1.4 Pagerank convergence in Problem 1.17. Note that the table is obtained with

a spreadsheet: all values are rounded to two decimal places, but column 1 is obtained
by placing 1/6 in each row, column 2 is obtained from column 1 with the formulas, and

all the remaining columns are obtained by “dragging” column 2 all the way to the end.

The values converged (more or less) in column 17.

Problem 1.19. After b proposed to g for the first time, whether this

proposal was successful or not, the partners of g could have only gotten

better. Thus, there is no need for b to try again.

Problem 1.20. bs+1 proposes to the girls according to his list of preference;

a g ends up accepting, and if the g who accepted bs+1 was free, she is the new

one with a partner. Otherwise, some b∗ ∈ {b1, . . . , bs} became disengaged,

and we repeat the same argument. The g’s disengage only if a better b

proposes, so it is true that pMs+1
(gj) <

j pMs
(gj).
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Problem 1.21. Suppose that we have a blocking pair {b, g} (meaning that

{(b, g′), (b′, g)} ⊆Mn, but b prefers g to g′, and g prefers b to b′). Either b

came after b′ or before. If b came before b′, then g would have been with

b or someone better when b′ came around, so g would not have become

engaged to b′. On the other hand, since (b′, g) is a pair, no better offer has

been made to g after the offer of b′, so b could not have come after b′. In

either case we get an impossibility, and so there is no blocking pair {b, g}.
Problem 1.22. To show that the matching is boy-optimal, we argue by

contradiction. Let “g is an optimal partner for b” mean that among all the

stable matchings g is the best partner that b can get.

We run the Gale-Shapley algorithm, and let b be the first boy who is

rejected by his optimal partner g. This means that g has already been

paired with some b′, and g prefers b′ to b. Furthermore, g is at least as

desirable to b′ as his own optimal partner (since the proposal of b is the

first time during the run of the algorithm that a boy is rejected by his

optimal partner). Since g is optimal for b, we know (by definition) that

there exists some stable matching S where (b, g) is a pair. On the other

hand, the optimal partner of b′ is ranked (by b′ of course) at most as high

as g, and since g is taken by b, whoever b′ is paired with in S, say g′, b′

prefers g to g′. This gives us an unstable pairing, because {b′, g} prefer

each other to the partners they have in S.

Yes, this means that the ordering of the boys is immaterial, because

there is a unique boy-optimal matching, and it is independent of the order-

ing of the boys.

To show that the Gale-Shapley algorithm is girl-pessimal, we use the

fact that it is boy-optimal (which we just showed). Again, we argue by

contradiction. Suppose there is a stable matching S where g is paired

with b, and g prefers b′ to b, where (b′, g) is the result of the Gale-Shapley

algorithm. By boy-optimality, we know that in S we have (b′, g′), where g′

is not higher on the preference list of b′ than g, and since g is already paired

with b, we know that g′ is actually lower. This says that S is unstable since

{b′, g} would rather be together than with their partners.

1.4 Notes

The quote at the beginning of the chapter refers to Mr. M‘Choakumchild,

a caricature of a teacher in Charles Dickens’ Hard Times, who chokes

the minds of his pupils with too much information. We will avoid

M‘Choakumchild’s mistake, and make a virtue out of brevity.
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This book is about proving things about algorithms; their correctness,

their termination, their running time, etc. The art of mathematical proofs

is a difficult art to master; a very good place to start is [Velleman (2006)].

On page 29 we mentioned the North-East blackout of 2003. At the time

the author was living in Toronto, Canada, on the 14th floor of an apartment

building (which really was the 13th floor, but as number 13 was outlawed

in Toronto elevators, after the 12th floor, the next button on the elevator

was 14). After the first 24 hours, the emergency generators gave out, and

we all had to climb the stairs to our floors; we would leave the building,

and scavenge the neighborhood for food and water, but as refrigeration was

out in most places, it was not easy to find fresh items. In short, we really

felt the consequences of that algorithmic error intimately.

In Section 1.2.1 we discussed Bush’s “Memex,” which was an ur-WWW.

In the late 1970s France rolled out experimentally the “Minitel” which was

an early type of online service. The “Minitel” was adopted throughout

France, and the author remembers using it in the early 1990s. France

Télécom retired the service in 2012. It would be an interesting exercise in

the history of technology to uncover if the “Minitel” was based (at least to

some extent) on the “Memex.”

In the footnote to Problem 1.10 we mention the Python library

matplotlib. Below we provide a simple example, plotting the functions

f(x) = x3 and h(x) = −x3 over the interval [0, 10] using this library:

import matplotlib.pyplot as plt

import numpy as np

def f(x):

return x**3

def h(x):

return -x**3

Input = np.arange(0,10.1,.5)

Outputf = [f(x) for x in Input]

Outputh = [h(x) for x in Input]

plt.plot(Input,Outputf,’r.’,label=’f - label’)

plt.plot(Input,Outputh,’b--’,label=’h - label’)

plt.xlabel(’This is the X axis label’)

plt.ylabel(’This is the Y axis label’)
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plt.suptitle(’This is the title’)

plt.legend()

plt.show()

Of course, matplotlib has lots of features; see the documentation for more

complex examples.

The palindrome madamimadam comes from Joyce’s Ulysses. We discussed

the string manipulating facilities of Python in the section on palindromes,

section 1.1.4, but perhaps the most powerful language for string manipu-

lations is Perl. For example, suppose that we have a text that contains

hashtags which are words of characters that start with ‘#’, and we wish to

collect all those hashtags into an array. One trembles at the prospect of

having to implement this in, say, the C programming language, but in Perl

this can be accomplished in one line:

@TAGS = ($TEXT =~ m/\#([a-zA-Z0-9]+)/g);

where $TEXT contains the text with zero or more hashtags, and the array

@TAGS will be a list of all the hashtags that occur in $TEXT without the ‘#’

prefix. For the great pleasure of Perl see [Schwartz et al. (2011)].

Search engines are complex and vast software systems, and ranking

pages is not the only technical issue that has to be solved. For example,

parsing keywords to select relevant pages (pages that contain the keywords),

before any ranking is done on these pages, is also a challenging task: the

search system has to solve many problems, such as synonymy (multiple

ways to say the same thing) and polysemy (multiple meanings), and many

others. See [Miller (1995)].

Section 1.2.1 discusses the circularity of the definition of the PageRank

algorithm. As one of my students (Victoria Lam, taking the graduate

version of this course in the spring 2018) pointed out, this is reminiscent of

a passage in Tolstoy’s War and Peace: Influence in society, however, is a

capital which has to be economized if it is to last. Prince Vasili knew this,

and having once realized that if he asked on behalf of all who begged of him,

he would soon be unable to ask for himself, he became chary of using his

influence. (Chapter 4, Volume 1, [Tolstoy (2008)].)

Section 1.2.2 is based on §2 in [Cenzer and Remmel (2001)]. For another

presentation of the Stable Marriage problem see chapter 1 in [Kleinberg and

Tardos (2006)].

The reference to the Marquis de Condorcet in the first sentence of sec-

tion 1.2.3 comes from the PhD thesis of Yun Zhai ([Zhai (2010)]), written
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under the supervision of Ryszard Janicki. In that thesis, Yun Zhai refer-

ences [Arrow (1951)] as the source of the remark regarding the Marquis de

Condorcet’s early attempts at pairwise ranking. There is a wonderfully bit-

ing description of Condorcet and his ideas in Roger Kimball’s The Fortunes

of Permanence [Kimball (2012)], pp. 237–244: Condorcet may have given

us the method of Pairwise Comparisons, but he was a tragic figure of the

Enlightenment: he promised “perfectionnement même de l’espèce humaine”

(“the absolute perfection of the human race”), but his utopian ideas were

the precursor of countless hacks who insisted on perfecting man whether he

wanted it or not, ushering in the inevitable tyrannical excesses that are the

culmination of utopian dreams.

Professor Thomas L. Saaty (Theorem 1.24) died on August 14, 2017. He

was a distinguished professor at the University of Pittsburgh’s Katz School

of Business. The government of Poland gave Prof. Saaty a national award

after using his theory AHP for making decisions resulting in the country

initially not joining the European Union.
Let us discuss further the important idea of correctness. How do we

argue mathematically, without a burden of excessive formalism, that a given
algorithm does what it is supposed to do? And why is this important? In
the words of C.A.R. Hoare:

As far as the fundamental science is concerned, we still certainly
do not know how to prove programs correct. We need a lot of
steady progress in this area, which one can foresee, and a lot of
breakthroughs where people suddenly find there’s a simple way
to do something that everybody hitherto has thought to be far
too difficult.5

Software engineers know many examples of things going terribly wrong

because of program errors; their particular favorites are the following two6.

The blackout in the American North-East during the summer of 2003 was

due to a software bug in an energy management system; an alarm that

should have been triggered never went off, leading to a chain of events that

climaxed in a cascading blackout. The Ariane 5, flight 501, the maiden

flight of the rocket in June 4, 1996, ended with an explosion 40 seconds

into the flight; this $500 million loss was caused by an overflow in the

conversion from a 64-bit floating point number to a 16-bit signed integer.
When Richard A. Clarke, the former National Coordinator for Security,

5From An Interview with C.A.R. Hoare, in [Shustek (2009)].
6These two examples come from [van Vliet (2000)], where many more instances of

spectacular failures may be found.
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asked Ed Amoroso, head of AT&T Network Security, what is to be done
about the vulnerabilities in the USA cyber-infrastructure, Amoroso said:

Software is most of the problem. We have to write software
which has many fewer errors and which is more secure7.

Similarly, Fred D. Taylor, Jr., a Lt. Colonel in the United States Air Force
and a National Security Fellow at the Harvard Kennedy School, wrote:

The extensive reliance on software has created new and ex-
panding opportunities. Along with these opportunities, there
are new vulnerabilities putting the global infrastructure and
our national security at risk. The ubiquitous nature of the In-
ternet and the fact that it is serviced by common protocols
and processes has allowed anyone with the knowledge to create
software to engage in world-wide activities. However, for most
software developers there is no incentive to produce software
that is more secure8.

Software security falls naturally under the umbrella of software correctness.

While the goal of program correctness is elusive, we can develop methods

and techniques for reducing errors. The aim of this book is modest: we

want to present an introduction to the analysis of algorithms—the “ideas”

behind programs, and show how to prove their correctness.

The algorithm may be correct, but the implementation itself might be

flawed. Some syntactical errors in the program implementation may be

uncovered by a compiler or translator—which in turn could also be buggy—

but there might be other hidden errors. The hardware itself might be faulty;

the libraries on which the program relies at run time might be unreliable,

etc. It is the main task of a programmer to write code that works given

such a delicate, error prone, environment. Finally, the algorithmic content

of a piece of software might be very small; the majority of the lines of code

could be the “menial” task of interface programming. Thus, the ability to

argue correctly about the soundness of an algorithm is only one of many

facets of the task at hand, yet an important one, if only for the pedagogical

reason of learning to argue rigorously about algorithms.

7See page 272 in [Clarke and Knake (2011)].
8Harvard Law School National Security Journal, [Fred D. Taylor (2011)].
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Greedy Algorithms

It may be profitable to you to
reflect, in future, that there
never were greed and cunning
in the world yet, that did not
do too much, and overreach
themselves.

D. Copperfield, [Dickens (1850)]

Greedy algorithms are algorithms prone to instant gratification. They

make choices that are locally optimum, hoping that they will lead to a global

optimum at the end. An example of a greedy procedure is the dispensing

of change by a convenience store clerk. In order to use the fewest coins

possible, the clerk gives out the coins of the highest value for as long as he

can, moving on to the next lower denomination when the difference becomes

too small for the current denomination, and repeats.

Greediness is a simple strategy that works well with some computational

problems but fails with others. In the case of cash dispensing, if we have

coins of value 1, 5, 25 the greedy procedure always produces the smallest

possible number of coins, but the same is not true for 1, 10, 25. Just consider

dispensing 30, which greedily is 25, 1, 1, 1, 1, 1, while 10, 10, 10 is optimal.

2.1 Minimum cost spanning trees

We represent finite graphs with adjacency matrices. Given a directed or

undirected graph G = (V,E), its adjacency matrix is a matrix AG of size

n×n, where n = |V |, such that entry (i, j) is 1 if (i, j) is an edge in G, and

it is 0 otherwise.

An adjacency matrix itself can be easily encoded as a string over {0, 1}.

31
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That is, given AG of size n × n, let sG ∈ {0, 1}n
2

, where sG is simply the

concatenation of the rows of AG. We can check directly from sG if (i, j) is

an edge by checking if position (i− 1)n + j in sG contains a 1.

An undirected graph G is a pair (V,E) where V is a set of vertices, or

nodes, and E ⊆ V × V and (u, v) ∈ E iff (v, u) ∈ E, and (u, u) ̸∈ E. The

degree of a vertex v is the number of edges touching v. A path in G between

v1 and vk is a sequence v1, v2, . . . , vk such that each (vi, vi+1) ∈ E. G is

connected if between every pair of distinct nodes there is a path. A cycle

is a simply closed path v1, . . . , vk, v1 with v1, . . . , vk all distinct, and k ≥ 3.

A graph is acyclic if it has no cycles. A tree, by definition, is a connected

acyclic graph. A spanning tree of a connected graph G is a subset T ⊆ E

of the edges such that (V, T ) is a tree. In other words, the edges in T must

connect all nodes of G and contain no cycles.

If G has a cycle, then there is more than one spanning tree for G, and

in general G may have many spanning trees, but each spanning tree has

the same number of edges.

Lemma 2.1. Every tree with n nodes has exactly n− 1 edges.

Problem 2.2. Prove lemma 2.1. (Hint: first show that every tree has a

leaf, i.e., a node of degree one. Then show the lemma by induction on n.)

Lemma 2.3. A graph with n nodes and more than n−1 edges must contain

at least one cycle.

Problem 2.4. Prove lemma 2.3.

It follows from lemmas 2.1 and 2.3 that if a graph is a tree, i.e., it is

acyclic and connected, then it must have (n− 1) edges. If it does not have

(n− 1) edges, then it is either not acyclic, or it is not connected. If it has

less than (n − 1) edges, it is certainly not connected, and if it has more

than (n− 1) edges, it is certainly not acyclic.

It is natural to assign costs to edges in a graph, as edges may represent

distances, bandwidth, or costs of getting from A to B in general. Let c(e)

denote the cost of edge e, where c(e) is a non-negative real number. The

total cost of a graph G, c(G), is the sum of the costs of all the edges in G.

We say that T is a minimum cost spanning tree (MCST) for G if T is a

spanning tree for G and given any spanning tree T ′ for G, c(T ) ≤ c(T ′).

Given a graph G = (V,E), and a cost function c associated with the

edges in E, we want to find a MCST. It turns out, fortuitously, that an

obvious greedy algorithm—known as Kruskal’s algorithm—works. The
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algorithm is: sort the edges in non-decreasing order of costs, so that

c(e1) ≤ c(e2) ≤ . . . ≤ c(em), and add the edges one at a time, except

when including an edge would form a cycle with the edges added already.

Algorithm 10 Kruskal

1: Sort the edges: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)

2: T ←− ∅
3: for i : 1..m do

4: if T ∪ {ei} has no cycle then

5: T ←− T ∪ {ei}
6: end if

7: end for

But how do we test for a cycle, i.e., execute line 4 in algorithm 10?

At the end of each iteration of the for-loop, the set T of edges divides the

vertices V into a collection V1, . . . , Vk of connected components. That is, V

is the disjoint union of V1, . . . , Vk, each Vi forms a connected graph using

edges from T , and no edge in T connects Vi and Vj , if i ̸= j. A simple way

to keep track of V1, . . . , Vk is to use an array D[i] where D[i] = j if vertex

i ∈ Vj . Initialize D by setting D[i]←− i for every i = 1, 2, . . . , n.

To check whether ei = (r, s) forms a cycle within T , it is enough to

check whether D[r] = D[s]. If ei does not form a cycle within T , then we

update: T ←− T ∪{(r, s)}, and we merge the component D[r] with D[s] as

shown in algorithm 11.

Algorithm 11 Merging components

k ←− D[r]

l←− D[s]

for j : 1..n do

if D[j] = l then

D[j]←− k

end if

end for

Problem 2.5. Given that the edges can be ordered in m2 steps, with, for

example, insertion sort, what is the running time of algorithm 10? For a

short discussion of sorting algorithms see the Notes (section 2.5).

Problem 2.6. Write a program that implements algorithm 10 with algo-
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rithm 11 for keeping track of connected components. Assume that the input

is given as an n× n adjacency matrix.

We now prove that Kruskal’s algorithm works. It is not immediately

clear that Kruskal’s algorithm yields a spanning tree, let alone a MCST.

To see that the resulting collection T of edges is a spanning tree for G,

assuming that G is connected, we must show that (V, T ) is connected and

acyclic.

It is obvious that T is acyclic, because we never add an edge that results

in a cycle. To show that (V, T ) is connected, we reason as follows. Let u

and v be two distinct nodes in V . Since G is connected, there is a path p

connecting u and v in G. The algorithm considers each edge ei of G in turn,

and puts ei in T unless T ∪{ei} forms a cycle. But in the latter case, there

must already be a path in T connecting the end points of ei, so deleting ei
does not disconnect the graph.

This argument can be formalized by showing that the following state-

ment is an invariant of the loop in Kruskal’s algorithm:

The edge set T ∪ {ei+1, . . . , em} connects all nodes in V . (2.1)

Lemma 2.7. Algorithm 10 outputs a tree T provided that G was connected.

Problem 2.8. Prove Lemma 2.7 to show that given a connected G, al-

gorithm 10 outputs a T that is both connected and acyclic. In order to

prove that T is connected, show that (2.1) is a loop invariant. In the in-

duction step, show that if (2.1) holds after execution i of the loop, then

T ∪ {ei+2, . . . , em} connects all nodes of V after execution (i + 1) of the

loop. Conclude by induction that (2.1) holds for all i. Finally, show how

to use this loop invariant to prove that T is connected. How can you argue

that T is acyclic?

Problem 2.9. Suppose that G = (V,E) is not connected. Show that in

this case, when G is given to Kruskal’s algorithm as input, the algorithm

computes a spanning forest of G. Define first the notions of a connected

component and spanning forest. Then give a formal proof using the idea of

a loop invariant, as in problem 2.8.

To show that the spanning tree resulting from the algorithm is in fact

a MCST, we reason that after each iteration of the loop, the set T of edges

can be extended to a MCST using edges that have not yet been considered.

Hence after termination, all edges have been considered, so T must itself

be a MCST. We say that a set T of edges of G is promising if T can be
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extended to a MCST for G, that is, T is promising if there exists a MCST

T ′ such that T ⊆ T ′.

Lemma 2.10. “ T is promising” is a loop invariant for Kruskal’s algo-

rithm.

Proof. The proof is by induction on the number of iterations of the main

loop of Kruskal’s algorithm. Basis case: at this stage the algorithm has

gone through the loop zero times, and initially T is the empty set, which is

obviously promising (the empty set is a subset of any set).

Induction step: We assume that T is promising, and show that T con-

tinues being promising after one more iteration of the loop.

Notice that the edges used to expand T to a spanning tree must come

from those not yet considered, because the edges that have been considered

are either in T already, or have been rejected because they form a cycle.

We examine by cases what happens after edge ei has been considered:

Case 1: ei is rejected. T remains unchanged, and it is still promising.

There is one subtle point: T was promising before the loop was executed,

meaning that there was a subset of edges S ⊆ {ei, . . . , em} that extended T

to a MCST, i.e., T ∪S is a MCST. But after the loop is executed, the edges

extending T to a MCST would come from {ei+1, . . . , em}; but this is not a

problem, as ei could not be part of S (as then T ∪S would contain a cycle),

so S ⊆ {ei+1, . . . , em}, and so S is still a candidate for extending T to a

MCST, even after the execution of the loop. Thus T remains promising

after the execution of the loop, though the edges extending it to a MCST

come from a smaller set (i.e., not containing ei).

Case 2: ei is accepted. We must show that T ∪ {ei} is still promising.

Since T is promising, there is a MCST T1 such that T ⊆ T1. We consider

two subcases.

Subcase a: ei ∈ T1. Then obviously T ∪ {ei} is promising.

Subcase b: ei /∈ T1. Then, according to the Exchange Lemma below,

there is an edge ej in T1− T2, where T2 is the spanning tree resulting from

the algorithm, such that T3 = (T1 ∪ {ei})−{ej} is a spanning tree. Notice

that i < j, since otherwise ej would have been rejected from T and thus

would form a cycle in T and so also in T1. Therefore c(ei) ≤ c(ej), so

c(T3) ≤ c(T1), so T3 must also be a MCST. Since T ∪ {ei} ⊆ T3, it follows

that T ∪ {ei} is promising.

This finishes the proof of the induction step.

Consider the graph in Figure 2.1, and a run of Kruskal’s algorithm



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 36

36 An introduction to the analysis of algorithms

represented in Figure 2.2, starting in the top-left graph, continuing right,

then next row of graph, going left to right, ending in the bottom-right

corner with the resulting MCST.

• e1

e2

•

e5

e6

•
e7•

e4

e3

•

Fig. 2.1 All edges have cost 1.
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•
e6

• • • •

•
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• •

e4
• •

e4
• •

e4
•

Fig. 2.2 Run of Kruskal’s algorithm on graph in Figure 2.1.

Initially, in the top-left corner, we have no edges and T = ∅, and in each

iteration we consider the next edge, resulting in the following:

Iteration Edge Current T MCST extending T

0 ∅ {e1, e3, e4, e7}
1 e1 {e1} {e1, e3, e4, e7}
2 e2 {e1, e2} {e1, e2, e4, e7}
3 e3 {e1, e2} {e1, e2, e4, e7}
4 e4 {e1, e2, e4} {e1, e2, e4, e7}
5 e5 {e1, e2, e4} {e1, e2, e4, e7}
6 e6 {e1, e2, e4, e6} {e1, e2, e4, e6}
7 e7 {e1, e2, e4, e6} {e1, e2, e4, e6}

Note that the algorithm considers the edges in the order of their indices,
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i.e., e1, e2, e3, e4, e5, e6, e7, and that the cost of all these edges is 1. (Thus,

any ordering of these edges would yield a MCST, but not necessarily the

same MCST as the canonical ordering.)

Lemma 2.11 (Exchange Lemma). Let G be a connected graph, and

let T1 and T2 be any two spanning trees for G. For every edge e in T2 − T1

there is an edge e′ in T1 − T2 such that T1 ∪ {e} − {e′} is a spanning tree

for G. (See figure 2.3.)

T1 • a • T2

•

e′

•

e

g

Fig. 2.3 Exchange lemma.

• e1

e4

• • e1 •
e2

• e1 •

•
e3
• •

e3
• •

e4

•

e2

Fig. 2.4 Example of the exchange lemma: the left-most and the middle graphs are two

different spanning trees of the same graph. Suppose we add edge e4 to the middle tree;

then we delete e3 and obtain the right-most spanning tree.

Problem 2.12. Prove this lemma. (Hint: let e be an edge in T2 − T1.

Then T1 ∪ {e} contains a cycle—can all the edges in this cycle belong to

T2?).

Problem 2.13. Suppose that edge e1 has a smaller cost than any of the

other edges; that is, c(e1) < c(ei), for all i > 1. Show that every MCST for

G includes e1.

Problem 2.14. Before algorithm 10 proceeds, it orders the edges in line 1,

and presumably breaks ties—i.e., sorts edges of the same cost—arbitrarily.

Show that for every MCST T of a graph G, there exists a particular way

of breaking the ties so that the algorithm returns T .

Problem 2.15. Write a program that takes as input the description of a

grid, and outputs its MCST. An n-grid is a graph consisting of n2 nodes,
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organized as a square array of n× n points. Every node may be connected

to at most the nodes directly above and below (if they exist), and to the

two nodes immediately to the left and right (if they exist). An example of

a 4-grid is given in figure 2.5.

• 4 •
3

•
15

•
1

• 1

9

• 1

2

•
1

•
23

• 5

7

•
6

•
3

•
3

•
4
• •

7
•

Fig. 2.5 An example of a 4-grid. Note that it has 42 = 16 nodes, and 17 edges.

What is the largest number of edges that an n-grid may have? We have

the following node-naming convention: we name the nodes from left-to-

right, row-by-row, starting with the top row. Thus, our 4-grid is described

by the following adjacency list:

4 : (0, 1; 4), (1, 5; 3), (2, 6; 15), (3, 7; 1), (4, 5; 1), (5, 6; 1), . . . (2.2)

where the first integer is the grid size parameter, and the first two integers

in each triple denote the two nodes that describe an edge, and the third

integer, following the semicolon, gives the cost of that edge.

When given as input a list of triples, your program must first check

whether the list describes a grid, and then compute the MCST of the grid.

In our 4-grid example, the solid edges describe a MCST. Also note that the

edges in (2.2) are not required to be given in any particular order.

Your program should take as input a file, say graph.txt, containing

a list such as (2.1). For example, 2:(0,1;9),(2,3;5),(1,3;6),(0,2;2)

and it should output, directly to the screen, a graph indicating the edges

of a MCST. The graph should be “text-based” with “*” describing nodes

and “-” and “|” describing edges. In this example, the MCST of the given

2-grid would be represented as:

* *

| |

*-*
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2.2 Jobs with deadlines and profits

We have n jobs, each of which takes unit time, and a processor on which

we would like to schedule them sequentially in as profitable a manner as

possible. Each job has a profit associated with it, as well as a deadline;

if a job is not scheduled by its deadline, then we do not get its profit.

Because each job takes the same amount of time, we think of a schedule S

as consisting of a sequence of job “slots” 1, 2, 3, . . ., where S(t) is the job

scheduled in slot t.

Formally, the input is a sequence of pairs (d1, g1), (d2, g2), . . . , (dn, gn)

where gi ∈ R+ is the profit (gain) obtainable from job i, and di ∈ N is

the deadline for job i. In section 4.5 we are going to consider the case

where jobs have arbitrary durations—given by a positive integer. However,

when durations are arbitrary, rather than of the same unit value, a greedy

approach does not “seem”1 to work.

A schedule is an array S(1), S(2), . . . , S(d) where d = max di, that is, d

is the latest deadline, beyond which no jobs can be scheduled. If S(t) = i,

then job i is scheduled at time t, 1 ≤ t ≤ d. If S(t) = 0, then no job is

scheduled at time t. A schedule S is feasible if it satisfies two conditions:

Condition 1: If S(t) = i > 0, then t ≤ di, i.e., every scheduled job meets

its deadline.

Condition 2: If t1 ̸= t2 and also S(t1) ̸= 0, then S(t1) ̸= S(t2), i.e., each

job is scheduled at most once.

Problem 2.16. Write a program that takes as input a schedule S, and a

sequence of jobs, and checks whether S is feasible.

Let the total profit of schedule S be P (S) =
∑d

t=1 gS(t), where g0 = 0.

We want to find a feasible schedule S where the profit P (S) is as large

as possible; this can be accomplished with the greedy algorithm 12, which

orders jobs in non-increasing order of profits and places them as late as

possible within their deadline. It is surprising that this algorithm works,

and it seems to be a scientific confirmation of the benefits of procrastination.

Line 7 in algorithm 12 finds the latest possible free slot that meets the

deadline; if no such free slot exists, then job i cannot be scheduled. That is,

if there is no t satisfying both S(t) = 0 and t ≤ di, then the last command

on line 7, S(t)←− i, is not executed, and the for-loop considers the next i.

1We say “seem” in quotes because there is no known proof that a greedy algorithm will

not do; such a proof would require a precise definition of what it means for a solution to
be given by a greedy algorithm—a difficult task in itself (see [Allan Borodin (2003)]).
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Algorithm 12 Job scheduling

1: Sort the jobs in non-increasing order of profits: g1 ≥ g2 ≥ . . . ≥ gn
2: d←− maxi di
3: for t : 1..d do

4: S(t)←− 0

5: end for

6: for i : 1..n do

7: Find the largest t such that S(t) = 0 and t ≤ di, S(t)←− i

8: end for

Problem 2.17. Implement algorithm 12 for job scheduling.

Theorem 2.18. The greedy solution to job scheduling is optimal. That is,

the profit P (S) of the schedule S computed by algorithm 12 is as large as

possible.

A schedule is promising if it can be extended to an optimal schedule.

Schedule S′ extends schedule S if for all 1 ≤ t ≤ d, if S(t) ̸= 0, then

S(t) = S′(t). For example, S′ = (2, 0, 1, 0, 3) extends S = (2, 0, 0, 0, 3).

Lemma 2.19. “S is promising” is an invariant for the (second) for-loop

in algorithm 12.

In fact, just as in the case of Kruskal’s algorithm in the previous section,

we must make the definition of “promising” in lemma 2.19 more precise: we

say that “S is promising after the i-th iteration of the loop in algorithm 12”

if S can be extended to an optimal schedule using jobs from those among

{i + 1, i + 2, . . . , n}, i.e., using a subset of those jobs that have not been

considered yet.

Problem 2.20. Consider the following input

{(1, 10)︸ ︷︷ ︸
1

, (1, 10)︸ ︷︷ ︸
2

, (2, 8)︸ ︷︷ ︸
3

, (2, 8)︸ ︷︷ ︸
4

, (4, 6)︸ ︷︷ ︸
5

, (4, 6)︸ ︷︷ ︸
6

, (4, 6)︸ ︷︷ ︸
7

, (4, 6)︸ ︷︷ ︸
8

},

where the jobs have been numbered underneath for convenience. Trace the

workings of algorithm 12 on this input. On the left place the job numbers

in the appropriate slots; on the right, show how the optimal solution is

adjusted to keep the “promising” property. Start in the following configu-

ration:

S0 = 0 0 0 0 and S0
opt = 2 4 5 8
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Problem 2.21. Why does lemma 2.19 imply theorem 2.18? (Hint: this is

a simple observation).

We now prove lemma 2.19.

Proof. The proof is by induction. Basis case: after the 0-th iteration of

the loop, S = (0, 0, . . . , 0) and we may extend it with jobs {1, 2, . . . , n}, i.e.,

we have all the jobs at our disposal; so S is promising, as we can take any

optimal schedule, and it will be an extension of S.

Induction step: Suppose that S is promising, and let Sopt be some

optimal schedule that extends S. Let S′ be the result of one more iteration

through the loop where job i is considered. We must prove that S′ continues

being promising, so the goal is to show that there is an optimal schedule

S′opt that extends S′. We consider two cases:

S = 0 0 j

Sopt = 0 i j

Fig. 2.6 If S has job j in a position, then Sopt has also job j in the same position. If

S has a zero in a given position (no job is scheduled there) then Sopt may have zero or

a different job in the same position.

Case 1: job i cannot be scheduled. Then S′ = S, so we let S′opt = Sopt,

and we are done. The only subtle thing is that S was extendable into Sopt

with jobs in {i, i + 1, . . . , n}, but after the i-th iteration we no longer have

job i at our disposal.

Problem 2.22. Show that this “subtle thing” mentioned in the paragraph

above is not a problem.

Case 2: job i is scheduled at time t0, so S′(t0) = i (whereas S(t0) = 0)

and t0 is the latest possible time for job i in the schedule S. We have two

subcases.

Subcase a: job i is scheduled in Sopt at time t1:

If t1 = t0, then, as in case 1, just let S′opt = Sopt.

If t1 < t0, then let S′opt be Sopt except that we interchange t0 and t1,

that is we let S′opt(t0) = Sopt(t1) = i and S′opt(t1) = Sopt(t0). Then S′opt is

feasible (why 1?), it extends S′ (why 2?), and P (S′opt) = P (Sopt) (why 3?).

The case t1 > t0 is not possible (why 4?).
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Subcase b: job i is not scheduled in Sopt. Then we simply define S′opt to

be the same as Sopt, except S′opt(t0) = i. Since Sopt is feasible, so is S′opt,

and since S′opt extends S′, we only have to show that P (S′opt) = P (Sopt).

This follows from the following claim:

Claim 2.23. Let Sopt(t0) = j. Then gj ≤ gi.

Proof. We prove the claim by contradiction: assume that gj > gi (note

that in this case j ̸= 0). Then job j was considered before job i. Since job

i was scheduled at time t0, job j must have been scheduled at time t2 ̸= t0
(we know that job j was scheduled in S since S(t0) = 0, and t0 ≤ dj , so

there was a slot for job j, and therefore it was scheduled). But Sopt extends

S, and S(t2) = j ̸= Sopt(t2)—contradiction.

This finishes the proof of the induction step.

Problem 2.24. Make sure you can answer all the “why’s” in the above

proof. Also, where in the proof of the claim we use the fact that j ̸= 0?

Problem 2.25. Under what condition on the inputs is there a unique

optimal schedule? If there is more than one optimal schedule, and given

one such optimal schedule, is there always an arrangement of the jobs, still

in a non-increasing order of profits, that results in the algorithm outputting

this particular optimal schedule?

2.3 Further examples and problems

2.3.1 Make change

The make-change problem, briefly described in the introduction to this

chapter, consists in paying a given amount using the least number of coins,

using some fixed denomination, and an unlimited supply of coins of each

denomination.

Consider the following greedy algorithm to solve the make-change prob-

lem, where the denominations are C = {1, 10, 25, 100}. On input n ∈ N,

the algorithm outputs the smallest list L of coins (from among C) whose

sum equals n.

Note that s equals the sum of the values of the coins in L, and that

strictly speaking L is a multiset (the same element may appear more than

once in a multiset).

Problem 2.26. Implement algorithm 13 for making change.
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Algorithm 13 Make change

1: C ←− {1, 10, 25, 100} ; L←− ∅ ; s←− 0

2: while (s < n) do

3: find the largest x in C such that s + x ≤ n

4: L←− L ∪ {x} ; s←− s + x

5: end while

6: return L

Problem 2.27. Show that algorithm 13 (with the given denominations)

does not necessarily produce an optimal solution. That is, present an n for

which the output L contains more coins than the optimal solution.

Problem 2.28. Suppose that C = {1, p, p2, . . . , pn}, where p > 1 and n ≥
0 are integers. That is, “C ←− {1, 10, 25, 100}” in line 1 of algorithm 13

is replaced by “C ←− {1, p, p2, . . . , pn}.” Show that with this series of

denominations (for some fixed p, n) the greedy algorithm above always finds

an optimal solution. (Hint: Start with a suitable definition of a promising

list.)

2.3.2 Maximum weight matching

Let G = (V1 ∪ V2, E) be a bipartite graph, i.e, a graph with edge set

E ⊆ V1 × V2 with disjoint sets V1 and V2. w : E −→ N assigns a weight

w(e) ∈ N to each edge e ∈ E = {e1, . . . , em}. A matching for G is a subset

M ⊆ E such that no two edges in M share a common vertex. The weight

of M is w(M) =
∑

e∈M w(e).

Problem 2.29. Give a simple greedy algorithm which, given a bipartite

graph with edge weights, attempts to find a matching with the largest pos-

sible weight.

Problem 2.30. Give an example of a bipartite graph with edge weights

for which your algorithm in problem 2.29 fails to find a matching with the

largest possible weight.

Problem 2.31. Suppose all edge weights in the bipartite graph are distinct,

and each is a power of 2. Prove that your greedy algorithm always succeeds

in finding a maximum weight matching in this case. (Assume for this

question that all the edges are there, i.e., that E = V × V .)
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2.3.3 Shortest path

The following example of a greedy algorithm is very beautiful. It reminds

one of the cartographers of old, who produced maps of the world with white

spots—the unknown and unexplored places.

Suppose that we are given a graph G = (V,E), a designated start node s,

and a cost function for each edge e ∈ E, denoted c(e). We are asked to

compute the cheapest paths from s to every other node in G, where the

cost of a path is the sum of the costs of its edges.

Consider the following greedy algorithm: the algorithm maintains a set

S of explored nodes, and for each u ∈ S it stores a value d(u), which is the

cheapest path inside S, starting at s and ending at u.

Initially, S = {s} and d(s) = 0. Now, for each v ∈ V − S we find the

shortest path to v by traveling inside the explored part S to some u ∈ S,

followed by a single edge (u, v). See figure 2.7.

•s

��
u• e // •v

Fig. 2.7 Computing the shortest path.

That is, we compute:

d′(v) = min
u∈S,e=(u,v)

d(u) + c(e). (2.3)

We choose the node v ∈ V − S for which (2.3) is minimized, add v to S,

and set d(v) = d′(v), and repeat. Thus we add one node at a time to the

explored part, and we stop when S = V .

This greedy algorithm for computing the shortest path is due to Edsger

Dijkstra. It is not difficult to see that its running time is O(n2).

Problem 2.32. Design the algorithm in pseudo-code, and show that at

the end, for each u ∈ V , d(u) is the cost of the cheapest path from s to u.

Problem 2.33. The Open Shortest Path First (OSPF) is a routing proto-

col for IP, described in detail in RFC 2328 (where RFC stands for “Request

for Comment,” which is a series of memoranda published by the Inter-

net Engineering Task Force describing the working of the Internet). The
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commonly used routing protocol OSPF uses Dijkstra’s greedy algorithm

for computing the so called “shortest paths tree,” which for a particular

node x on the Internet, lists the best connections to all other nodes on x’s

subnetwork.

Write a program that implements a simplified dynamic routing policy

mechanism. More precisely, you are to implement a routing table man-

agement daemon, which maintains a link-state database as in the OSPF

interior routing protocol. We assume that all nodes are either routers or

networks (i.e., there are no “bridges,” “hubs,” etc.).

Call your program routed (as in routing daemon). Once started in

command line, it awaits instructions and performs actions:

(1) add rt ⟨routers⟩
This command adds routers to the routing table, where ⟨routers⟩
is a comma separated list of (positive) integers and integer ranges.
That is, ⟨routers⟩ can be 6,9,10-13,4,8 which would include
routers

rt4,rt6,rt8,rt9,rt10,rt11,rt12,rt13

Your program should be robust enough to accept any such legal

sequence (including a single router), and to return an error message

if the command attempts to add a router that already exists (but

other valid routers in the list ⟨routers⟩ should be added regardless).

(2) del rt ⟨routers⟩
Deletes routers given in ⟨routers⟩. If the command attempts to

delete a router that does not exist, an error message should be

returned; we want robustness: routers that exist should be deleted,

while attempting to delete non-existent routers should return an

error message (specifying the “offending” routers). The program

should not stop after displaying an error message.

(3) add nt ⟨networks⟩
Add networks as specified in ⟨networks⟩; same format as for adding

routers. So for example “add nt 89” would result in the addition

of nt89. The handling of errors should be done analogously to the

case of adding routers.

(4) del nt ⟨networks⟩
Deletes networks given in ⟨networks⟩.

(5) con x y z

Connect node x and node y, where x, y are existing routers and

networks (for example, x = rt8 and y = rt90, or x = nt76 and

y = rt1) and z is the cost of the connection. If x or y does not
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exist an error message should be returned. Note that the network

is directed; that is, the following two commands are not equivalent:

“con rt3 rt5 1” and “con rt5 rt3 1.”

It is important to note that two networks cannot be connected

directly; an attempt to do so should generate an error message. If

a connection between x and y already exists, it is updated with the

new cost z.

(6) display

This command displays the routing table, i.e., the link-state

database. For example, the result of adding rt3, rt5, nt8, nt9

and giving the commands “con rt5 rt3 1” and “con rt3 nt8

6” would display the following routing table:

rt3 rt5 nt8 nt9

rt3 1

rt5

nt8 6

nt9

Note that (according to the RFC 2338, describing OSPF Version 2)

we read the table as follows: “column first, then row.” Thus, the

table says that there is a connection from rt5 to rt3, with cost 1,

and another connection from rt3 to nt8, with cost 6.

(7) tree x

This commands computes the tree of shortest paths, with x as the

root, from the link-state database. Note that x must be a router

in this case. The output should be given as follows:

w1 : x, v1, v2, . . . , vn, y1

: no path to y2

w3 : x, u1, u2, . . . , um, y3

...

where w1 is the cost of the path (the sum of the costs of the edges),

from x to y1, with vi’s the intermediate nodes (i.e., the “hops”) to

get from x to y1. Every node yj in the database should be listed;

if there is no path from x to yj it should say so, as in the above

example output.

Following the example link-state database in the explanation of the

display command, the output of executing the command “tree
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rt5” would be:

1 : rt5,rt3

7 : rt5,rt3,nt8

: no path to nt9

Just as it is done in the OSPF standard, the path-tree should be

computed with Dijkstra’s greedy algorithm.

Finally, there may be several paths of the same value between two

nodes; in that case, explain in the comments in your program how

does your scheme select one of them.

(8) quit

Kills the daemon.

2.3.4 Huffman codes

One more important instance of a greedy solution is given by the Huffman

algorithm, which is a widely used and effective technique for loss-less data

compression. Huffman’s algorithm uses a table of the frequencies of oc-

currences of the characters to build an optimal way of representing each

character as a binary string. See §16.3 in [Cormen et al. (2009)] for details,

but the following example illustrates the key idea.

Suppose that we have a string s over the alphabet {a, b, c, d, e, f}, and

|s| = 100. Suppose also that the characters in s occur with the frequencies

44, 14, 11, 17, 8, 6, respectively. As there are six characters, if we were using

fixed-length binary codewords to represent them we would require three

bits, and so 300 characters to represent the string.

Instead of a fixed-length encoding we want to give frequent characters

a short codeword and infrequent characters a long codeword. We consider

only codes in which no codeword is also a prefix of some other codeword.

Such codes are called prefix codes; there is no loss of generality in restricting

attention to prefix codes, as it is possible to show that any code can always

be replaced with a prefix code that is at least as good.

Encoding and decoding is simple with a prefix code; to encode we just

concatenate the codewords representing each character of the file. Since

no codeword is a prefix of any other, the codeword that begins an encoded

string is unambiguous, and so decoding is easy.

A prefix code can be given with a binary tree where the leaves are labeled

with a character and its frequency, and each internal node is labeled with
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the sum of the frequencies of the leaves in its subtree. See figure 2.8. We

construct the code of a character by traversing the tree starting at the root,

and writing a 0 for a left-child and a 1 for a right-child.

100

a:44 56

25

c:11 b:14

31

14

f:6 e:8

d:17

Fig. 2.8 Binary tree for the variable-length prefix code.

Let Σ be an alphabet of n characters and let f : Σ −→ N be the

frequencies function. The Huffman algorithm builds a tree T corresponding

to the optimal code in a bottom-up manner. It begins with a set of |Σ| leaves

and performs a sequence of |Σ|− 1 “merging” operations to create the final

tree. At each step, the two least-frequent objects are merged together; the

result of a merge of two objects is a new object whose frequency is the sum

of the frequencies of the two objects that were merged.

Algorithm 14 Huffman

n← |Σ| ; Q← Σ

for i = 1..n− 1 do

allocate a new node z

left[z]← x = extract-min(Q)

right[z]← y = extract-min(Q)

f(z)← f(x) + f(y)

insert z in Q

end for

Problem 2.34. Consider a file consisting of ASCII 100 characters, with

the following frequencies:
character a b c d e f g h

frequency 40 15 12 10 8 6 5 4
Using the standard ASCII encoding this file requires 800 bits. Compute a

variable length prefix encoding for this file, and compute the total number
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of bits when using that encoding.

Problem 2.35. Write a program that takes as input a text file, over, say,

the ASCII alphabet, and uses Huffman’s algorithm to compress it into a

binary string. The compressed file should include a header containing the

mapping of characters to bit strings, so that a properly compressed file can

be decompressed. Your program should be able to do both: compress and

decompress. Compare your solution to standard compression tools such as

gzip2.

2.4 Answers to selected problems

Problem 2.2. A leaf is a vertex with one outgoing edge; suppose there is

no leaf. Pick a vertex, take one of its outgoing edges. As each vertex has at

least two adjacent edges, we keep going arriving at one edge, and leaving

by the other. As there are finitely many edges we must eventually form a

cycle. Contradiction.

We now show by induction on n that a tree with n nodes must have

exactly n − 1 edges. Basis case: n = 1, so the tree consists of a single

node, and hence it has no edges; n− 1 = 1− 1 = 0 edges. Induction step:

suppose that we have a tree with n+1 nodes. Pick a leaf and the edge that

connects it to the rest of the tree. Removing this leaf and its edge results

in a tree with n nodes, and hence—by induction hypothesis—with n − 1

edges. Thus, the entire tree has (n− 1) + 1 = n edges, as required.

Problem 2.4. We prove this by induction, with the basis case n = 3

(since a graph—without multiple edges between the same pair of nodes—

cannot have a cycle with less than 3 nodes). If n = 3, and there are more

than n − 1 = 2 edges, there must be exactly 3 edges. So the graph is a

cycle (a “triangle”). Induction step: consider a graph with n + 1 many

nodes (n ≥ 3), and at least n + 1 many edges. If the graph has a node

with zero or one edges adjacent to it, then by removing that node (and

its edge, if there is one), we obtain a graph with n nodes and at least n

edges, and so—by induction hypothesis—the resulting graph has a cycle,

and so the original graph also has a cycle. Otherwise, all nodes have at least

two adjacent edges. Suppose v0 is such a node, and (v0, x), (v0, y) are two

2gzip implements the Lempel-Ziv-Welch (LZW) algorithm, which is a loss-less data
compression algorithm, available on UNIX platforms. It takes as input any file, and

outputs a compressed version with the .gz extension. It is described in RFCs 1951 and
1952.



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 50

50 An introduction to the analysis of algorithms

edges. Remove v0 from the graph, and remove the edges (v0, x), (v0, y) and

replace them by the single edge (x, y). Again—by induction hypothesis—

there must be a cycle in the resulting graph. But then there must be a

cycle in the original graph as well. (Note that there are n + 1 nodes, so

after removing v0 there are n nodes, and n ≥ 3.)

Problem 2.5. We know that lines 1-2 of algorithm 10 require at most

m2 + 1 steps. We must also create the array D, which requires n more

steps (where n is the number of vertices).

The for loop on line 3 will go through exactly m iterations. “T ∪{ei} has

no cycle” (where ei = (r, s)) is equivalent to “D[r] ̸= D[s]”, so the check

on line 4 only requires one step. For the purpose of establishing an upper

bound it is safe to assume that every check returns “true”, so we must go

through the entirety of algorithm 11 in every iteration of the for loop.

Algorithm 11 requires 2 assignments, followed by a loop which runs n

times and has at most 2 steps; algorithm 11 is O(2n + 2) = O(n).

So the composite algorithm, where algorithm 11 is used to accomplish

line 4 of algorithm 10 and insertion sort is used for line 1, is clearly O(m2 +

n + 1 + m(2n + 2)). Identically, if p = max(n,m), the algorithm is O(p2).

In other words, if the number of edges is greater than the number of

vertices the bottleneck is the sorting algorithm. Moreover, under the as-

sumption that the graph in question is connected, the number of vertices

is at least n − 1; any graph with n − 1 edges is either already a spanning

tree or is not connected, so it is safe to assume m ≥ n. Using merge sort,

heap sort or quick sort would improve the complexity to O(m log(m)).

Problem 2.8. We start from the basis case: before the first iteration, T0 is

the empty set (i = 0). Since G is connected, obviously {e1, e2, . . . , em} = E

connects all nodes in V .

Next we prove induction. Assume that, after i − 1 iterations, Ti−1 ∪
{ei, . . . , em} connects all nodes in V . On iteration i, we have two cases:

Case 1: Ti−1∪{ei} has no cycle, so Ti = Ti−1∪{ei}. Ti∪{ei+1, . . . , em} and

Ti−1∪{ei, . . . , em} are the same set, ei has just moved from the “remaining”

edges to T . By the hypothesis, the latter edge set connects all nodes in V ,

so the prior must as well.

Case 2: Ti−1∪{ei} contains a cycle, so Ti = Ti−1. Consider any two nodes

u, v ∈ V . By the hypothesis, there is a path from u to v consisting of edges

in Ti−1 ∪ {ei, . . . , em}. If ei is not in this path, then we’re done; there is

still a path between u and v, as we’ve only lost access to ei. If ei = (a, b)

is in this path, we can replace it with another path from a to b; ei was in

a cycle, so another such path necessarily exists.
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We have found a path connecting arbitrary u and v in Ti ∪{ei, . . . , em}
given that one existed in Ti−1 ∪ {ei, . . . , em}, thereby completing the in-

duction step and proving that (2.4) is a loop invariant.

Clearly, after all i = m iterations, this loop invariant reads “Ti ∪
{ei+1, . . .} connects all nodes in V .” But em was the last edge, so {ei+1, . . .}
is the empty set. Therefore, Tm connects all nodes in V . By construction,

Tm cannot contain any cycles; any edge which would have completed a cy-

cle was simply not included. So, after m iterations, T connects all nodes in

V and is acyclic—T is a spanning tree of G.

Problem 2.9. Given an undirected graph G = (V,E), a connected com-

ponent C = (Vc, Ec) of G is a nonempty subset V ′ of V (along with its

included edges) such that for all pairs of vertices u, v ∈ V ′, there is a path

from u to v (which we will state as “u and v are connected”), and moreover

for all pairs of vertices x, y such that x ∈ V ′ and y ∈ V − V ′, x and y are

not connected (i.e. there is no path from x to y). We can make a few quick

observations about connected components:

(1) The connected components of any graph comprise a partition of its

edge and vertex sets, as connectedness is an equivalence relation.

(2) Given any edge, both of its endpoints are in the same component,

as it defines a path connecting them.

(3) Given any two vertices in a connected component, there is a path

connecting them. Similarly, any two vertices in different compo-

nents are necessarily not connected.

(4) Given any path, every contained edge is in the same component.

A spanning forest is a collection of spanning trees—one for each con-

nected component. That is, an edge set F ⊆ E is a spanning forest of

G = (V,E) if and only if:

(1) F contains no cycles.

(2) (∀u, v ∈ V ), F connects u and v if and only if u and v are connected

in G.

Let G = (V,E) be a graph that is not connected. That is, G has

more than one component. Let Ti denote the state of T , in Kruskal’s,

after i iterations. Let C = (Vc, Ec) be a component of G. We will use

the following loop invariant as proof that Kruskal’s Algorithm results in a

spanning forest for G:

The edge set Ti ∪ {ei+1, . . . , em} connects all nodes in Vc (2.4)
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The basis case clearly works; T0 ∪{e1, . . . , em} = E. Every vertex in Vc

is connected in G, and we have every edge in G at our disposal.

Assume that Ti−1 ∪ {ei, . . . , em} connects all nodes in Vc.

Case 1: ei is not in Ec. Clearly ei has no effect on the connectedness of

Vc, as any path in C must be a subset of Ec.

Case 2: ei ∈ Ec and Ti−1∪{ei} contains a cycle. Let u, v be nodes adjacent

to ei. Ti−1 does not contain a cycle by construction, so ei completes a cycle

in Ti−1∪{ei}. Thus, there is already a path (u, v) in Ti−1, which can be used

to replace ei in any other path. Therefore, Ti−1 ∪ {ei+1, . . . , em} connects

everything that was connected by Ti−1 ∪{ei, . . . , em}, so the assignment of

Ti = Ti−1, with the “loss of access” to ei, preserves the loop invariant.

Case 3: ei ∈ Ec and Ti−1 ∪ {ei} does not contain a cycle. Then Ti =

Ti−1∪{ei}, so Ti∪{ei+1, . . . , em} = Ti−1∪{ei, . . . , em}, so the loop invariant

holds.

We have shown through induction that the loop invariant (2.4) holds.

Note that C was an arbitrary connected component, so Tm for each com-

ponent C = (Vc, Ec) in G, Tm connects every node in Vc. Obviously, if

any two nodes in V are not connected in G, T does not connect them; do-

ing so would require edges not in E. Therefore, Tm meets both conditions

imposed on a spanning forest above.

Problem 2.12. Let e be any edge in T2−T1. We must prove the existence

of e′ ∈ T1 − T2 such that (T1 ∪ {e})−{e′} is a spanning tree. Since e /∈ T1,

by adding e to T1 we obtain a cycle (by lemma 2.3, which is proved in

problem 2.4). A cycle has at least 3 edges (the graph G has at least 3

nodes, since otherwise it could not have two distinct spanning trees!). So

in this cycle, there is an edge e′ not in T2. The reason is that if every

edge e′ in the cycle did belong to T2, then T2 itself would have a cycle. By

removing e′, we break the cycle but the resulting graph, (T1 ∪ {e})− {e′},
is still connected and of size |T1| = |T2|, i.e., the right size for a tree, so it

must be acyclic (for otherwise, we could get rid of some edge, and have a

spanning tree of size smaller than T1 and T2—but all spanning trees have

the same size), and therefore (T1 ∪ {e})− {e′} is a spanning tree.

Problem 2.13. First, note that if we give G to Kruskal’s algorithm, with

the edges in the order of their indices as (i.e., skip the sorting step), the

resulting tree will include e1—a cycle cannot be formed with the first (or

second) edge, so e1 will be added to T in the first iteration. Therefore,

there is necessarily a spanning tree T1 of G such that e1 ∈ T1.

For contradiction, assume that there is a MCST T2 such that e1 /∈ T2.

By the Exchange Lemma, there is an ej in T2 such that T3 = T2∪{e1}−{ej}
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is a spanning tree. But c(e1) < c(ej), so c(T3) < c(T2); that is, T2 is not a

minimum cost spanning tree. We’ve found our contradiction; there cannot

be a MCST that does not contain e1. Therefore, any MCST includes e1.

Problem 2.14. Let T be any MCST for a graph G. Reorder the edges of

G by costs, just as in Kruskal’s algorithm. For any block of edges of the

same cost, put those edges which appear in T before all the other edges

in that block. Now prove the following loop invariant: the set of edges S

selected by the algorithm with the initial ordering as described is always a

subset of T . Initially S = ∅ ⊆ T . In the induction step, S ⊆ T , and S′

is the result of adding one more edge to S. If S′ = S there is nothing to

do, and if S′ = S ∪ {e}, then we need to show that e ∈ T . Suppose that it

isn’t. Let T ′ be the result of Kruskal’s algorithm, which we know to be a

MCST. By the exchange lemma, we know that there exists an e′ /∈ T ′ such

that T ∪{e}−{e′} is a ST, and since T was a MCST, we know c(e′) ≤ c(e),

and hence e′ was considered before e. Since e′ is not in T ′, it was rejected,

so it must have created a cycle in S, and hence in T—contradiction. Thus

S ∪ {e} ⊆ T .

Problem 2.20. Here is the trace of the algorithm; note that we modify

the optimal solution only as far as it is necessary to preserve the extension

property.

S1 = 1 0 0 0 S1
opt = 1 4 5 8

S2 = 1 3 0 0 S2
opt = 1 3 5 8

S3 = 1 3 0 5 S3
opt = 1 3 8 5

S4 = 1 3 6 5 S4
opt = 1 3 6 5

Problem 2.21. Assume that after every iteration, S is promising. After

the final iteration, S is still promising, but the only unscheduled tasks are

those that cannot extend S at any time. In other words, S cannot be

extended outside of the vacuous re-assignment of “no task” to unoccupied

times; such extensions do not change the cost of S, so it must be optimal.

Identically, assume the last addition made to the schedule is on iteration

i. Before the last task was scheduled, Si−1 was promising. Moreover, this

last task was the only remaining task which could feasibly extend S, as none

of those after it was scheduled. Clearly the profit gained from scheduling

this task is the same regardless of when it is scheduled, so every extension

of Si−1 has the same profit, equal to that of Si.
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Problem 2.22. Since S′ = S and S′opt = Sopt we must show that S is

extendable into Sopt with jobs in {i+ 1, i+ 2, . . . , n}. Since job i could not

be scheduled in S, and Sopt extends S (i.e., Sopt has all the jobs that S

had, and perhaps more), it follows that i could not be in Sopt either, and

so i was not necessary in extending S into Sopt.

Problem 2.24. why 1. To show that S′opt is feasible, we have to show

that no job is scheduled twice, and no job is scheduled after its deadline.

The first is easy, because Sopt was feasible. For the second we argue like

this: the job that was at time t0 is now moved to t1 < t0, so certainly if t0
was before its deadline, so is t1. The job that was at time t1 (job i) has now

been moved forward to time t0, but we are working under the assumption

that job i was scheduled (at this point) in slot t0, so t0 ≤ di, and we are

done. why 2. S′opt extends S′ because Sopt extended S, and the only

difference is positions t1 and t0. They coincide in position t0 (both have i),

so we only have to examine position t1. But S(t1) = 0 since Sopt(t1) = i,

and S does not schedule job i at all. Since the only difference between S

and S′ is in position t0, it follows that S′(t1) = 0, so it does not matter

what S′opt(t1) is, it will extend S′. why 3. They schedule the same set of

jobs, so they must have the same profit. why 4. Suppose t1 > t0. Since

Sopt extends S, it follows that S(t1) = 0. Since Sopt(t1) = i, it follows that

t1 ≤ di. But then, the algorithm would have scheduled i in t1, not in t0.

The fact that j ̸= 0 is used in the last sentence of the proof of claim 2.23,

where we conclude a contradiction from S(t2) = j ̸= Sopt(t2). If j were 0

then it could very well be that S(t2) = j = 0 but Sopt(t2) ̸= 0.

Problem 2.27. With the denominations {1, 10, 25, 100}, there are many

values for which algorithm 13 does not produce an optimal solution. Con-

sider, for example, the case n = 33. Algorithm 13 grants the solution

{25, 1, 1, 1, 1, 1, 1, 1, 1} (which contains 9 “coins”) whereas the optimal so-

lution is {10, 10, 10, 1, 1, 1}, with cardinality 6.

Problem 2.28. Define a promising list to be one that can be extended to

an optimal list of coins. Now show that L is promising is a loop invariant.

Basis case: Initially, L is empty, so any optimal solution extends L. Hence

L is promising. Induction step: Assume that L is promising, and show

that L continues being promising after one more execution of the loop:

Suppose L is promising, and s < N . Let L′ be the list that extends L to

the optimal solution, i.e. L,L′ = Lopt. Let x be the largest item in C such

that s + x ≤ N . Case (a) x ∈ L′. Then L′ = x, L′′, so that L, x can be

extended to the optimal solution Lopt by L′′. Case (b) x /∈ L′. We show

that this case is not possible. To this end we prove the following claim:
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Claim: If x /∈ L′, then there is a sub-list L0 of L′ such that x = sum

of elements in L0.

Proof of claim: Let B be the smallest number such that B ≥ x, and

some sub-list of L′ sums to B. Let this sub-list be {e1, e2, . . . , el}, where

ei ≤ ei+1 (i.e. the elements are in non-decreasing order). Since x is the

largest coin that fits in N − s, and the sum of the coins in L′ is N − s, it

follows that every coin in L′ is ≤ x. Since el ̸= x (as x /∈ L′), it follows that

l > 1. Let D = x− (e2 + . . .+ el). By definition of B we know that D > 0.

Each of the numbers x, e2, . . . , el is divisible by e1 (to see this note that all

the coins are powers of p, i.e. in the set {1, p, p2, . . . , pn}, and el < x so

e1 < x). Thus D ≥ e1. On the other hand x ≤ e1 + e2 + . . .+ el, so we also

know that D ≤ e1, so in fact D = e1. Therefore x = e1 + e2 + . . . + el, and

we are done. (end proof of claim)

Thus {e1, e2, . . . , el} can be replaced by the single coin x. If l = 1, then

x = e1 ∈ L′, which is a contradiction. If l > 1, then

L, x, L′ − {e1, e2, . . . , el}

sums up to N , but it has less coins than L,L′ = Lopt which is a contradic-

tion. Thus case (b) is not possible.

Problem 2.29. See algorithm 15

Algorithm 15 Solution to problem 2.29.

w(e1) ≥ w(e2) ≥ . . . ≥ w(em)

M ←− ∅
for i : 1..m do

if M ∪ {ei} does not contain two edges with a common vertex

then

M ←−M ∪ {ei}
end if

end for

Problem 2.31. Let Mopt be an optimal matching. Define “M is promis-

ing” to mean that M can be extended to Mopt with edges that have not

been considered yet. We show that “M is promising” is a loop invariant

of our algorithm. The result will follow from this (it will also follows that

there is a unique max matching). Basis case: M = ∅, so it is certainly

promising. Induction step: Assume M is promising, and let M ′ be M after

considering edge ei. We show that: ei ∈M ′ ⇐⇒ ei ∈Mopt.

[=⇒] Assume that ei ∈ M ′, since the weights are distinct, and powers
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of 2, w(ei) >
∑m

j=i+1 w(ej) (to see why this holds, see problem 9.1), so

unless ei ∈Mopt, w(Mopt) < w where w is the result of algorithm.

[⇐=] Assume that ei ∈ Mopt, so M ∪ {ei} has no conflict, so the algo-

rithm would add it.

Problem 2.32. This problem refers to Dijkstra’s algorithm for the shortest

path; for more background see §24.3, page 658, in [Cormen et al. (2009)]

and §4.4, page 137, in [Kleinberg and Tardos (2006)]. The proof is simple:

define S to be promising if for all the nodes v in S, d(v) is indeed the shortest

distance from s to v. We now need to show by induction on the number of

iterations of the algorithm that “S is promising” is a loop invariant. The

basis case is S = {s} and d(s) = 0, so it obviously holds. For the induction

step, suppose that v is the node just added, so S′ = S ∪ {v}. Suppose that

there is a shorter path in G from s to v; call this path p (so p is just a

sequence of nodes, starting at s and finishing at v). Since p starts inside S

(at s) and finishes outside S (at v), it follows that there is an edge (a, b)

such that a, b are consecutive nodes on p, where a is in S and b is in V −S.

Let c(p) be the cost of path p, and let d′(v) be the value the algorithm

found; we have c(p) < d′(v). We now consider two cases: b = v and b ̸= v,

and see that both yield a contradiction. If b = v, then the algorithm would

have used a instead of u. If b ̸= v, then the cost of the path from s to b is

even smaller than c(p), so the algorithm would have added b instead of v.

Thus, no such path p exists.

2.5 Notes

Any book on algorithms has a chapter on greedy algorithms. For example,

chapter 16 in [Cormen et al. (2009)] or chapter 4 in [Kleinberg and Tardos

(2006)].

In Problem 2.5 we discuss the complexity of Kruskal’s algorithm, which

depends on which sorting algorithm is used to put the edges in order of

costs. Insertion sort is mentioned (each item on the list is inserted in its

proper position), but there are many sorting algorithms. There is also

selection sort (find the minimum value, swaps it with the value in the first

position, and repeat), mergesort (discussed in section 3.1), heapsort (like

selection sort, but using a heap for efficiency), quicksort (pick an item, put

all smaller items before it, all larger items after it, and repeat on those two

parts—thus, like mergesort, it is a divide and conquer algorithm), bubble

sort (start at the beginning, and compare the first two elements, and if the

first is greater than the second, swaps them, and continue for each pair of



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 57

Greedy Algorithms 57

adjacent elements to the end, and start again with the first two elements,

repeating until no swaps have occurred on the last pass). There are many

others.

We also point out that there is a profound connection between a math-

ematical structure called matroids and greedy algorithms. A matroid, also

known as an independence structure, captures the notion of “independence,”

just like the notion of independence in linear algebra.

A matroid M is a pair (E, I), where E is a finite set and I is a collec-

tion of subsets of E (called the independent sets) with the following three

properties:

(i) The empty set is in I, i.e., ∅ ∈ I.

(ii) Every subset of an independent set is also independent, i.e., if x ⊆ y,

then y ∈ I ⇒ x ∈ I.

(iii) If x and y are two independent sets, and x has more elements than y,

then there exists an element in x which is not in y that when added

to y still gives an independent set. This is called the independent set

exchange property.

The last property is of course reminiscent of our Exchange lemma,

lemma 2.11.

A good way to understand the meaning of this definition is to think of

E as a set of vectors (in Rn) and I all the subsets of E consisting of linearly

independent vectors; check that all three properties hold.

For a review of the connection between matroids and greedy algorithms

see [Papadimitriou and Steiglitz (1998)], chapter 12, “Spanning Trees and

Matroids.”

For a study of which optimization problems can be optimally or approx-

imately solved by “greedy-like” algorithms see [Allan Borodin (2003)].

A well known algorithm for computing a maximum matching in a bipar-

tite graph is the Hopcroft-Karp algorithm; see, for example, [Cormen et al.

(2009)]. This algorithm runs in polynomial time (i.e., efficiently), but it is

not greedy—the greedy approach seems to fail as section 2.3.2 insinuates.
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Chapter 3

Divide and Conquer

Si vis pacem, para bellum

De Re Militari, [Renatus (4th
or 5th century AD)]

Divide et impera—divide and conquer—was a Roman military strategy

that consisted in securing command by breaking a large concentration of

power into portions that alone were weaker, and methodically dispatching

those portions one by one. This is the idea behind divide and conquer

algorithms: take a large problem, divide it into smaller parts, solve those

parts recursively, and combine the solutions into a solution to the whole.

The paradigmatic example of a divide and conquer algorithm is merge

sort, where we have a large list of items to be sorted; we break it up into two

smaller lists (divide), sort those recursively (conquer), and then combine

those two sorted lists into one large sorted list. We present this algorithm

in section 3.1. We also present a divide and conquer algorithm for binary

integer multiplication—section 3.2, and graph reachability—section 3.3.

The divide and conquer approach is useful for problems where there

already exists a tolerable exhaustive search algorithm, but the divide and

conquer algorithm improves the running time. This is, for example, the

case of binary integer multiplication. The last example in this chapter is

a divide and conquer algorithm for reachability (Savitch’s algorithm) that

minimizes the use of memory, rather than the running time.

In order to analyze the use of resources (whether time or space) of

a recursive procedure we must solve recurrences; see, for example, [Rosen

(2007)] or [Cormen et al. (2009)] for the necessary background—“the master

method” for solving recurrences. We provide a short discussion in the Notes

section at the end of this chapter.

59
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3.1 Mergesort

Suppose that we have two lists of numbers that are already sorted. That

is, we have a list a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bm. We want

to combine those two lists into one long sorted list c1 ≤ c2 ≤ · · · ≤ cn+m.

Algorithm 16 does the job.

Algorithm 16 Merge two lists

Pre-condition: a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bm
p1 ←− 1; p2 ←− 1; i←− 1

while i ≤ n + m do

if ap1 ≤ bp2 then

ci ←− ap1

p1 ←− p1 + 1

else

ci ←− bp1

p2 ←− p2 + 1

end if

i←− i + 1

end while

Post-condition: c1 ≤ c2 ≤ · · · ≤ cn+m

Problem 3.1. Note that algorithm 16 is incorrect as stated; for example,

suppose that n < m and all the elements of the ai list are smaller than b1.

In this case, after the n-th iteration of the while-loop p1 = n + 1, and one

more iteration checks for ap1
≤ bp2

resulting in an “out of bounds index.”

Modify the algorithm to fix this.

The mergesort algorithm sorts a given list of numbers by first dividing

them into two lists of length ⌈n/2⌉ and ⌊n/2⌋, respectively, then sorting

each list recursively, and finally combining the results using algorithm 16.

In algorithm 17, line 1 sets L to be the list of the input numbers

a1, a2, . . . , an. These are integers, not necessarily ordered. Line 2 checks

if L is not empty or consists of a single element; if that is the case, then

the list is already sorted—this is where the recursion “bottoms out,” by

returning the same list. Otherwise, in line 5 we let L1 consist of the first

⌈n/2⌉ elements of L and L2 consist of the last ⌊n/2⌋ elements of L.

Problem 3.2. Show that L = L1 ∪ L2.
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Algorithm 17 Mergesort

Pre-condition: A list of integers a1, a2, . . . , an
1: L←− a1, a2, . . . , an
2: if |L| ≤ 1 then

3: return L

4: else

5: L1 ←− first ⌈n/2⌉ elements of L

6: L2 ←− last ⌊n/2⌋ elements of L

7: return Merge(Mergesort(L1),Mergesort(L2))

8: end if

Post-condition: ai1 ≤ ai2 ≤ · · · ≤ ain

In section 9.3.6 we show how to use the theory of fixed points to prove

the correctness of recursive algorithms. For us this will remain a theoretical

demonstration, as it is not easy to come up with the least fixed point that

interprets a recursion. We are going to give natural proofs of correctness

using induction.

Problem 3.3. Prove the correctness of the Mergesort algorithm, taking

into account your solution to Problem 3.1.

Let T (n) bound the running time of the mergesort algorithm on lists of

length n. Clearly,

T (n) ≤ T (⌈n/2⌉) + T (⌊n/2⌋) + cn,

where cn, for some constant c, is the cost of the merging of the two lists

(algorithm 16). Furthermore, the asymptotic bounds are not affected by

the floors and the ceils, and so we can simply say that T (n) ≤ 2T (n/2)+cn.

Thus, T (n) is bounded by O(n log n).

Problem 3.4. Implement mergesort for sorting a list of words into lexico-

graphic order.

3.2 Multiplying numbers in binary

Consider the example of multiplication of two binary numbers, using the

junior school algorithm, given in figure 3.1.

This school multiplication algorithm is very simple. To multiply x times

y, where x, y are two numbers in binary, we go through y from right to left;
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1 2 3 4 5 6 7 8

x 1 1 1 0

y 1 1 0 1

s1 1 1 1 0

s2 0 0 0 0

s3 1 1 1 0

s4 1 1 1 0

x× y 1 0 1 1 0 1 1 0

Fig. 3.1 Multiply 1110 times 1101, i.e., 14 times 13.

when we encounter a 0 we write a row of as many zeros as |x|, the length

of x. When we encounter a 1 we copy x. When we move to the next bit

of y we shift by one space to the left. At the end we produce the familiar

“stairs” shape—see s1, s2, s3, s4 in figure 3.1 (henceforth, figure 3.1 is our

running example of binary multiplication).

Once we obtain the “stairs,” we go back to the top step (line s1) and to

its right-most bit (column 8). To obtain the product we add all the entries

in each column with the usual carry operation. For example, column 5

contains two ones, so we write a 0 in the last row (row x × y) and carry

over 1 to column 4. It is not hard to see that multiplying two n-bit integers

takes O(n2) primitive bit operations.

We now present a divide and conquer algorithm that takes only

O(nlog 3) ≈ O(n1.59) operations, and is known as the Karatsuba algorithm.

The speed-up obtained from the divide and conquer procedure appears

slight—but the improvement does become substantial as n grows very large.

Let x and y be two n-bit integers. We break them up into two smaller

n/2-bit integers as follows:

x = (x1 · 2n/2 + x0),

y = (y1 · 2n/2 + y0).

Thus x1 and y1 correspond to the high-order bits of x and y, respectively,

and x0 and y0 to the low-order bits of x and y, respectively. The product

of x and y appears as follows in terms of those parts:

xy = (x1 · 2n/2 + x0)(y1 · 2n/2 + y0)

= x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0. (3.1)

A divide and conquer procedure appears surreptitiously. To compute the

product of x and y we compute the four products x1y1, x1y0, x0y1, x0y0,

recursively, and then we combine them as in (3.1) to obtain xy.
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Let T (n) be the number of operations that are required to compute the

product of two n-bit integers using the divide and conquer procedure that

arises from (3.1). Then

T (n) ≤ 4T (n/2) + cn, (3.2)

since we have to compute the four products x1y1, x1y0, x0y1, x0y0 (this is

where the 4T (n/2) factor comes from), and then we have to perform three

additions of n-bit integers (that is where the factor cn, where c is some

constant, comes from). Notice that we do not take into account the product

by 2n and 2n/2 (in (3.1)) as they simply consist in shifting the binary string

by an appropriate number of bits to the left (n for 2n and n/2 for 2n/2).

These shift operations are inexpensive, and can be ignored in the complexity

analysis.

When we solve the standard recurrence given by (3.2), we can see that

T (n) ≤ O(nlog 4) = O(n2), so it seems that we have gained nothing over

the brute force procedure.

It appears from (3.1) that we have to make four recursive calls; that

is, we need to compute the four multiplications x1y1, x1y0, x0y1, x0y0. But

we can get away with only three multiplications, and hence three recursive

calls: x1y1, x0y0 and (x1 + x0)(y1 + y0); the reason being that

(x1y0 + x0y1) = (x1 + x0)(y1 + y0)− (x1y1 + x0y0). (3.3)

See figure 3.2 for a comparison of the cost of operations.

multiplications additions shifts

Method (3.1) 4 3 2

Method (3.3) 3 4 2

Fig. 3.2 Reducing the number of multiplications by one increase the number of addi-

tions and subtractions by one—something has to give. But, as multiplications are more

expensive, the trade is worth it.

Algorithm 18 implements the idea given by (3.3).

Note that in lines 8 and 9 of the algorithm, we break up x and y into

two parts x1, x0 and y1, y0, respectively, where x1, y1 consist of the ⌊n/2⌋
high order bits, and x0, y0 consist of the ⌈n/2⌉ low order bits.

Problem 3.5. Prove the correctness of algorithm 18.

Algorithm 18 clearly takes T (n) ≤ 3T (n/2) + dn operations. Thus, the

running time is O(nlog 3) ≈ O(n1.59)—to see this read the discussion on

solving recurrences in the Notes section of this chapter.
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Algorithm 18 Karatsuba

Pre-condition: Two n-bit integers, x and y

1: if n = 1 then

2: if x = 1 ∧ y = 1 then

3: return 1

4: else

5: return 0

6: end if

7: end if

8: (x1, x0) ←− (first ⌊n2 ⌋ bits, last ⌈n2 ⌉ bits) of x

9: (y1, y0) ←− (first ⌊n2 ⌋ bits, last ⌈n2 ⌉ bits) of y

10: z1 ←− Karatsuba(x1, y1)

11: z2 ←− Karatsuba(x1 + x0, y1 + y0)

12: z3 ←− Karatsuba(x0, y0)

13: return z1 · 22⌈n/2⌉ + (z2 − (z1 + z3)) · 2⌈n/2⌉ + z3

Problem 3.6. Implement the binary multiplication algorithm. Assume

that the input is given in the command line as two strings of zeros and

ones.

3.3 Savitch’s algorithm

In this section we are going to give a divide and conquer solution to the

graph reachability problem. Recall the graph-theoretic definitions that were

given at the beginning of section 2.1. Here we assume that we have a

(directed) graph G, and we want to establish whether there is a path from

some node s to some node t; note that we are not even searching for a

shortest path (as in section 2.3.3 or in section 4.2); we just want to know

if node t is reachable from node s.

As a twist on minimizing the running time of algorithms, we are going to

present a very clever divide and conquer solution that reduces drastically

the amount of space, i.e., memory. Savitch’s algorithm solves directed

reachability in space O(log2 n), where n is the number of vertices in the

graph. This is remarkable, as O(log2 n) bits of memory is very little space

indeed, for a graph with n vertices! We assume that the graph is presented

as an n× n adjacency matrix (see page 31), and so it takes exactly n2 bits

of memory—that is, “work memory,” which we use to implement the stack.

It might seem futile to commend an algorithm that takes O(log2 n) bits
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of space when the input itself requires n2 bits. If the input already takes so

much space, what benefit is there to requiring small space for the computa-

tions? The point is that the input does not have to be presented in its en-

tirety. The graph may be given implicitly, rather than /Quicksortexplicitly.

For example, the “graph” G = (V,E) may be the entire World Wide Web,

where V is the set of all web pages (at a given moment in time) and there

is an edge from page x to page y if there is hyperlink in x pointing to y.

We may be interested in the existence of a path in the WWW, and we can

query the pages and their links piecemeal without maintaining the repre-

sentation of the entire WWW in memory. The sheer size of the WWW is

such that it may be beneficial to know that we only require as much space

as the square of the logarithm of the number of web pages.

Incidentally, we are not saying that Savitch’s algorithm is the ideal

solution to the “WWW hyperlink connectivity problem”; we are simply

giving an example of an enormous graph, and an algorithm that uses very

little working space with respect to the size of the input.

Define the Boolean predicate R(G, u, v, i) to be true iff there is a path in

G from u to v of length at most 2i. The key idea is that if a path exists from

u to v, then any such path must have a mid-point w; a seemingly trivial

observation that nevertheless inspires a very clever recursive procedure. In

other words there exist paths of distance at most 2i−1 from u to w and

from w to v, i.e.,

R(G, u, v, i) ⇐⇒ (∃w)[R(G, u,w, i− 1) ∧ R(G,w, v, i− 1)]. (3.4)

Algorithm 19 computes the predicate R(G, u, v, i) based on the recurrence

given in (3.4). Note that in algorithm 19 we are computing R(G, u, v, i);

the recursive calls come in line 9 where we compute R(G, u,w, i − 1) and

R(G,w, v, i− 1).

Problem 3.7. Show that algorithm 19 is correct (i.e., it computes

R(G, u, v, i) correctly) and it requires at most i · s space, where s is the

number of bits required to keep record of a single node. Conclude that it

requires O(log2 n) space on a graph G with n nodes.

Problem 3.8. Algorithm 19 truly uses very little space to establish con-

nectivity in a graph. But what is the time complexity of this algorithm?

Problem 3.9. Your task is to write a program which implements Savitch’s

algorithm, in a way that at each step outputs the contents of the recur-

sion stack. Suppose, for example, that the input is the following graph:
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Algorithm 19 Savitch

1: if i = 0 then

2: if u = v then

3: return T

4: else if (u, v) is an edge then

5: return T

6: end if

7: else

8: for every vertex w do

9: if R(G, u,w, i− 1) and R(G,w, v, i− 1) then

10: return T

11: end if

12: end for

13: end if

14: return F

•1 •2 •3 •4 . Then the recursion stack would look as

follows for the first 6 steps:

R(1, 4, 0) F R(2, 4, 0) F

R(1, 1, 0) T R(1, 2, 0) T

R(1, 4, 1) R(1, 4, 1) R(1, 4, 1) R(1, 4, 1) R(1, 4, 1)

R(1, 1, 1) R(1, 1, 1) R(1, 1, 1) R(1, 1, 1) R(1, 1, 1)

R(1, 4, 2) R(1, 4, 2) R(1, 4, 2) R(1, 4, 2) R(1, 4, 2) R(1, 4, 2)

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

3.4 Further examples and problems

3.4.1 Extended Euclid’s algorithm

We revisit an old friend from section 1.1, namely the extended Euclid’s

algorithm—see problem 1.9, and the corresponding solution on page 22

containing algorithm 8. We present a recursive version, as algorithm 20,

where the algorithm returns three values, and hence we use the notation

(x, y, z) ←− (x′, y′, z′) as a convenient shorthand for x ←− x′, y ←− y′

and z ←− z′. Note the interesting similarity between algorithm 8 and the

Gaussian lattice reduction—algorithm 33.

Problem 3.10. Show that algorithm 20 works correctly.
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Algorithm 20 Extended Euclid’s algorithm (recursive)

Pre-condition: m > 0, n ≥ 0

1: a←− m; b←− n

2: if b = 0 then

3: return (a, 1, 0)

4: else

5: (d, x, y)←− Extended Euclid(b, rem(a, b))

6: return (d, y, x− div(a, b) · y)

7: end if

Post-condition: mx + ny = d = gcd(m,n)

Problem 3.11. Implement algorithm 20.

3.4.2 Quicksort

Quicksort is a commonly used algorithm for sorting. It was designed in the

late 1950s by T. Hoare1. Quicksort is easy to define: in order to sort a list

I of items, pick one item x from I (call this item the pivot), and create two

new lists, S and L: all those items less than or equal to the pivot, S, and

all those items greater than the pivot, L. Now recursively sort S and L, to

create S′ and L′ and the new sorted list I ′ is given by S′, x, L′.

It is interesting to note that Quicksort can be easily implemented in a

functional language, as it operates on lists and it is naturally a recursive

function. For example, it can be implemented in Haskell with a few lines

of code as follows:

qsort [] = []

qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger

where

smaller = [a | a <- xs, a <= x]

larger = [b | b <- xs, b > x]

Note that in this implementation (see pg. 10 of [Hutton (2007)]) we picked

the first element of the list as the pivot; there are randomized version of

Quicksort where the pivot is picked at random from the list.

Problem 3.12. Implement Quicksort and analyze its running time.

1The same Hoare who was already quoted on page 29; recall also that we introduced
Hoare’s logic as a mechanism for proving algorithm and program correctness on page 1.
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3.4.3 Git bisect

Git is a widely used program for version control of computer files, and for

coordinating the collaboration of multiple people on a large programming

project2. In fact, the solutions to the programming problems contained in

this book, as well as the implementations of all the algorithms, are main-

tained in a publicly viewable Git repository on GitHub (a web-based Git

repository): https://github.com/michaelsoltys/IAA-Code .

As explained in the Git documentation, git bisect uses a binary

search algorithm to find which commit in a project’s history introduced

a bug. In order to deploy it, the user specifies a “bad” commit that is

known to contain the bug, and a “good” commit that is known to be before

the bug was introduced. Then git bisect picks a commit between those

two endpoints and asks whether the selected commit is “good” or “bad.”

It continues narrowing down the range until it finds the exact commit that

introduced the change.

In fact, git bisect can be used to find the commit that changed any

property of a project; for example, the commit that fixed a bug, or the

commit that caused a benchmark’s performance to improve. To support

this more general usage, the terms “old” and “new” can be used in place

of “good” and “bad,” or any other terms can be used.

3.5 Answers to selected problems

Problem 3.1. The problem only arises when p1 > n or p2 > m. We can

change the condition of the while-loop to p1 ≤ n ∧ p2 ≤ m. Of course, this

means that the while-loop will terminate early, when one input list has not

been completely accounted for in C = {c1, c2, . . . }. As such, another loop

needs to be added after the first. If p1 ≤ n it should assign the remaining

elements from ap1
, . . . , an to the remaining variables in C; otherwise p2 ≤

m, so bp2 , . . . , bm should be given to the rest of C.

A more elegant solution becomes available if we require that the ele-

ments of each list are finite. We can simply add an infinitely large element

to the end of each list before starting the while-loop; clearly it will never

be evaluated as less than or equal to a finite value in the opposing list, so

it will never be assigned to an element of C.

2“Programming” is understood here in a wide sense, as it can mean anything from

working on the Linux kernel, to website development, to a LaTeX collaboration. See
https://git-scm.com for more information.
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Problem 3.2. It is enough to show that ⌈n/2⌉+ ⌊n/2⌋ = n. If n is even,

then ⌈n/2⌉ = ⌊n/2⌋ = n/2, and n/2+n/2 = n. If n is odd, then n = 2k+1,

and so ⌈n/2⌉ = k + 1 while ⌊n/2⌋ = k and (k + 1) + k = 2k + 1 = n.

Problem 3.3. We must show that given a list of integers L = a1, a2, . . . , an,

the algorithm returns a list L′, which consists of the numbers in L in non-

decreasing order. The recursion itself suggest the right induction; we use the

CIP (see page 239). If |L| = 1 then L′ = L and we are done. Otherwise,

|L| = n > 1, and we obtain two lists L1 and L2 (of lengths ⌈n/2⌉ and

n − ⌈n/2⌉), which, by induction hypothesis, are returned ordered. Now it

remains to prove the correctness of the merging procedure, algorithm 16,

which can also be done by induction.

Problem 3.5. Clearly, the base case is correct; given two 1-bit integers, if

both integers are not 1, then at least one of them is 0, so the product is 0.

Assume that the algorithm is correct for all n < n′. Then the multipli-

cations to find z1, z2, and z3 are correct. Therefore, equations (3.1) and

(3.3) provide proof of induction.

Problem 3.8. O(2log
2 n) = O(nlogn), so the time complexity of Savitch’s

algorithm is super-polynomial, and so not very good.

Problem 3.10. First note that the second argument decreases at each

recursive call, but by definition of remainder, it is non-negative. Thus,

by the LNP, the algorithm terminates. We prove partial correctness by

induction on the value of the second argument. In the basis case n = 0, so

in line 1 b ←− n = 0, so in line 2 b = 0 and the algorithm terminates in

line 3 and returns (a, 1, 0) = (m, 1, 0), so mx+ny = m · 1 +n · 0 = m while

d = m, and so we are done.

In the induction step we assume that the recursive procedure returns

correct values for all pairs of arguments where the second argument is < n

(thus, we are doing complete induction). We have that

(d, x, y)←− Extended-Euclid(b, rem(a, b))

= Extended-Euclid(n, rem(m,n)),

from lines 1 and 5. Note that 0 ≤ rem(m,n) < n, and so we can apply the

induction hypothesis and we have that:

n · x + rem(m,n) · y = d = gcd(n, rem(m,n)).

First note that by problem 1.6 we have that d = gcd(m,n). Now we work
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on the left-hand side of the equation. We have:

n · x + rem(m,n) · y
=n · x + (m− div(m,n) · n) · y
=m · y + n · (x− div(m,n) · y)

=m · y + n · (x− div(a, b) · y)

and we are done as this is what is returned in line 6.

3.6 Notes

See chapter 7 in [Rosen (2007)] for an introduction to solving recurrence

relations, and §4.5, pages 93–103, in [Cormen et al. (2009)] for a very thor-

ough discussion of the “master method” for solving recurrences. Here we

include a very short discussion; we want to solve recurrences of the following

form:

T (n) = aT (n/b) + f(n), (3.5)

where a ≥ 1 and b > 1 are constants and f(n) is an asymptotically positive

function—meaning that there exists an n0 such that f(n) > 0 for all n ≥ n0.

There are three cases for solving such a recurrence.

Case 1 is f(n) = O(nlogb a−ε) for some constant ε > 0; in this case we

have that T (n) = Θ(nlogb a). Case 2 is f(n) = Θ(nlogb a logk n) with k ≥ 0;

in this case we have that T (n) = Θ(nlogb a logk+1 n). Finally, Case 3 is

f(n) = Ω(nlogb a+ε) with ε > 0, and f(n) satisfies the regularity condition,

namely af(n/b) ≤ cf(n) for some constant c < 1 and all sufficiently large

n; in this case T (n) = Θ(f(n)).

For example, the recurrence that appears in the analysis of mergesort

is T (n) = 2T (n/2) + cn, so a = 2 and b = 2, and so logb a = log2 2 = 1,

and so we can say that f(n) = Θ(nlogb a logk n) = Θ(n log n), i.e., k = 1 in

Case 2, and so T (n) = Θ(n log n) as was pointed out in the analysis.

For a discussion of the theory of recursion see section 9.3.6.

For a full discussion of Mergesort and binary multiplication, see §5.1

and §5.5, respectively, in [Kleinberg and Tardos (2006)]. Mergesort has an

interesting history (for details see the Chapter 3, “Sorting,” in [Christian

and Griffiths (2016)]): in 1945 John von Neumann wrote a program to

demonstrate the power of the stored-program computer; as he was a genius,

the program did not merely illustrate the stored-program paradigm, but

also introduced a new way of sorting: Mergesort. See [Katajainen and

Träff (1997)] for a meticulous study of this algorithm.
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The Karatsuba algorithm, presented in Section 3.2, was discovered by

Anatoly Karatsuba in 1960 and published in 1962. There are other fast mul-

tiplication algorithms such as the the Schönhage–Strassen algorithm that

works by recursively applying fast Fourier transform (FFT) over the inte-

gers modulo 2n + 1, and the Toom-Cook algorithm (aka Toom-3), invented

by Andrei Toom and Stephen Cook, which given two large integers splits

them up into k smaller parts each of length l, and performs operations on

the parts.

It would seem that nothing else can be done to improve multiplication

algorithms, besides the improvement to O(nlog 3) given in section 3.2. And

yet, [Harvey and Hoeven (2019)] discovered an algorithm that runs in time

O(n log n) which is a substantial improvement. [Klarreich (2019)] provides

a nice overview of the race to improve multiplicaton.

For more background on Savitch’s algorithm (section 3.3) see theo-

rem 7.5 in [Papadimitriou (1994)], §8.1 in [Sipser (2006)] or theorem 2.7

in [Kozen (2006)]. The reachability problem is ubiquitous in computer sci-

ence. Suppose that we have a graph G with n nodes. In section 2.3.3 we

presented a O(n2) time greedy algorithm for reachability, due to Dijkstra.

In this chapter, in section 3.3, we presented a divide and conquer algorithm

that requires O(log2 n) space, due to Savitch . In section 4.2 we will present

a dynamic programming algorithm that computes the shortest paths for all

the pairs of nodes in the graph—it is due to Floyd and takes time O(n3). In

subsection 4.2.1 we present another dynamic algorithm due to Bellman and

Ford (which can cope with edges of negative weight). In 2005, Reingold

showed that undirected reachability can be computed in space O(log n);

see [Reingold (2005)] for this remarkable, but difficult, result. Note that

Reingold’s algorithm works for undirected graphs only.

There is one more classical divide and conquer algorithm: Gaussian

Elimination. See Section 7.2 where we will discuss Gaussian Elimination in

detail and in the context of parallelizing algorithms.
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Chapter 4

Dynamic Programming

Those who cannot remember
the past are condemned to
repeat it.

George Santayana

Dynamic programming is an algorithmic technique that is closely re-

lated to the divide and conquer approach we saw in the previous chapter.

However, while the divide and conquer approach is essentially recursive,

and so “top down,” dynamic programming works “bottom up.”

A dynamic programming algorithm creates an array of related but sim-

pler subproblems, and then, it computes the solution to the big complicated

problem by using the solutions to the easier subproblems which are stored

in the array. We usually want to maximize profit or minimize cost.

There are three steps in finding a dynamic programming solution to a

problem: (i) Define a class of subproblems, (ii) give a recurrence based on

solving each subproblem in terms of simpler subproblems, and (iii) give an

algorithm for computing the recurrence.

4.1 Longest monotone subsequence problem

Input: d, a1, a2, . . . , ad ∈ N.

Output: L = length of the longest monotone non-decreasing subsequence.

Note that a subsequence need not be consecutive, that is ai1 , ai2 , . . . , aik
is a monotone subsequence provided that

1 ≤ i1 < i2 < . . . < ik ≤ d,

ai1 ≤ ai2 ≤ . . . ≤ aik .

73
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For example, the length of the longest monotone subsequence (henceforth

LMS) of {4, 6, 5, 9, 1} is 3.

We first define an array of subproblems: R(j) = length of the longest

monotone subsequence which ends in aj . The answer can be extracted from

array R by computing L = max1≤j≤n R(j).

The next step is to find a recurrence. Let R(1) = 1, and for j > 1,

R(j) =

{
1 if ai > aj for all 1 ≤ i < j

1 + max1≤i<j{R(i)|ai ≤ aj} otherwise
.

We finish by writing an algorithm that computes R; see algorithm 21.

Algorithm 21 Longest monotone subsequence (LMS)

R(1)← 1

for j : 2..d do

max← 0

for i : 1..j − 1 do

if R(i) > max and ai ≤ aj then

max← R(i)

end if

end for

R(j)← max +1

end for

Problem 4.1. Once we have computed all the values of the array R, how

could we build an actual monotone non-decreasing subsequence of length

L?

Problem 4.2. What would be the appropriate pre/post-conditions of the

above algorithms? Prove correctness with an appropriate loop invariant.

Problem 4.3. Consider the following variant of the Longest Monotone

Subsequence problem. The input is d, a1, a2, . . . , ad ∈ N, but the output

is the length of the longest subsequence of a1, a2, . . . , ad, where any two

consecutive members of the subsequence differ by at most 1. For example,

the longest such subsequence of {7, 6, 1, 4, 7, 8, 20} is {7, 6, 7, 8}, so in this

case the answer would be 4. Give a dynamic programming solution.

Problem 4.4. Implement algorithm 21; your program should take an extra

step parameter, call it s, where, just as in problem 4.3, any two consecutive
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members of the subsequence differ by at most s, that is, |aij − aij+1 | ≤ s,

for any 1 ≤ j < k.

4.2 All pairs shortest path problem

Input: Directed graph G = (V,E), V = {1, 2, . . . , n}, and a cost function

C(i, j) ∈ N+ ∪ {∞}, 1 ≤ i, j ≤ n, C(i, j) =∞ if (i, j) is not an edge.

Output: An array D, where D(i, j) the length of the shortest directed path

from i to j.

Recall that we have defined undirected graphs in section 2.1; a directed

graph (or digraph) is a graph where the edges have a direction, i.e., the

edges are arrows. Also recall that in section 2.3.3 we have given a greedy

algorithm for computing the shortest paths from a designated node s to all

the nodes in an (undirected) graph.

Problem 4.5. Construct a family of graphs {Gn}, where Gn has O(n)

many nodes, and exponentially many paths, that is Ω(2n) paths. Conclude,

therefore, that an exhaustive search is not a feasible solutions to the “all

pairs shortest path problem.”

Define an array of subproblems: let A(k, i, j) be the length of the short-

est path from i to j such that all intermediate nodes on the path are in

{1, 2, . . . , k}. Then A(n, i, j) = D(i, j) will be the solution. The convention

is that if k = 0 then [k] = {1, 2, . . . , k} = ∅.
Define a recurrence: first initialize the array for k = 0, A(0, i, j) =

C(i, j). Now we want to compute A(k, i, j) for k > 0. To design the

recurrence, notice that the shortest path between i and j either includes

k or does not. Assume we know A(k − 1, r, s) for all r, s. Suppose node

k is not included. Then, obviously, A(k, i, j) = A(k − 1, i, j). If, on the

other hand, node k occurs on a shortest path, then it occurs exactly once,

so A(k, i, j) = A(k − 1, i, k) + A(k − 1, k, j). Therefore, the shortest path

length is obtained by taking the minimum of these two cases:

A(k, i, j) = min{A(k − 1, i, j), A(k − 1, i, k) + A(k − 1, k, j)}.

Write an algorithm: it turns out that we only need space for a two-

dimensional array B(i, j) = A(k, i, j), because to compute A(k, ∗, ∗) from

A(k − 1, ∗, ∗) we can overwrite A(k − 1, ∗, ∗).
Our solution is algorithm 22, known as Floyd’s algorithm (or the Floyd-

Warshall algorithm). It is remarkable as it runs in time O(n3), where n
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is the number of vertices, while there may be up to O(n2) edges in such a

graph. In lines 1–5 we initialize the array B, i.e., we set it equal to C. Note

that before line 6 is executed, it is the case that B(i, j) = A(k − 1, i, j) for

all i, j.

Algorithm 22 Floyd

1: for i : 1..n do

2: for j : 1..n do

3: B(i, j)←− C(i, j)

4: end for

5: end for

6: for k : 1..n do

7: for i : 1..n do

8: for j : 1..n do

9: B(i, j)←− min{B(i, j), B(i, k) + B(k, j)}
10: end for

11: end for

12: end for

13: return D ←− B

Problem 4.6. Why does the overwriting method in algorithm 22 work?

The worry is that B(i, k) or B(k, j) may have already been updated (if k < j

or k < i). However, the overwriting does work; explain why. We could have

avoided a 3-dimensional array by keeping two 2-dimensional arrays instead,

and then overwriting would not be an issue at all; how would that work?

Problem 4.7. In algorithm 22, what are appropriate pre and post-

conditions? What is an appropriate loop invariant?

Problem 4.8. Implement Floyd’s algorithm using the two dimensional ar-

ray and the overwriting method.

4.2.1 Bellman-Ford algorithm

Suppose that we want to find the shortest path from s to t, in a directed

graph G = (V,E), where edges have non-negative costs. Let Opt(i, v)

denote the minimal cost of an i-path from v to t, where an i-path is a path

that uses at most i edges. Let p be an optimal i-path with cost Opt(i, v);

if no such p exists we adopt the convention that Opt(i, v) =∞.
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If p uses i−1 edges, then Opt(i, v) = Opt(i−1, v), and if p uses i edges,

and the first edge is (v, w) ∈ E, then Opt(i, v) = c(v, w) + Opt(i− 1, w),

where c(v, w) is the cost of edge (v, w). This gives us the recursive formula,

for i > 0: Opt(i, v) = min{Opt(i−1, v),minw∈V {c(v, w)+Opt(i−1, w)}}.

Problem 4.9. Implement Bellman-Ford’s algorithm.

4.3 Simple knapsack problem

Input: w1, w2, . . . , wd, C ∈ N, where C is the knapsack’s capacity.

Output: maxS{K(S)|K(S) ≤ C}, where S ⊆ [d] and K(S) =
∑

i∈S wi.

This is an NP-hard1 problem, which means that we cannot expect to

find a polynomial time algorithm that works in general. We give a dynamic

programming solution that works for relatively small C; note that for our

method to work the inputs w1, . . . , wd, C must be (non-negative) integers.

We often abbreviate the name “simple knapsack problem” with SKS.

Define an array of subproblems: we consider the first i weights (i.e., [i])

summing up to an intermediate weight limit j. We define a Boolean array

R as follows:

R(i, j) =

{
T if ∃S ⊆ [i] such that K(S) = j

F otherwise
,

for 0 ≤ i ≤ d and 0 ≤ j ≤ C. Once we have computed all the values of R

we can obtain the solution M as follows: M = maxj≤C{j|R(d, j) = T}.
Define a recurrence: we initialize R(0, j) = F for j = 1, 2, . . . , C, and

R(i, 0) = T for i = 0, 1, . . . , d.

We now define the recurrence for computing R, for i, j > 0, in a way

that hinges on whether we include object i in the knapsack. Suppose that

we do not include object i. Then, obviously, R(i, j) = T iff R(i− 1, j) = T.

Suppose, on the other hand, that object i is included. Then it must be the

case that R(i, j) = T iff R(i− 1, j −wi) = T and j −wi ≥ 0, i.e., there is a

subset S ⊆ [i− 1] such that K(S) is exactly j −wi (in which case j ≥ wi).

Putting it all together we obtain the following recurrence for i, j > 0:

R(i, j) = T ⇐⇒ R(i− 1, j) = T ∨ (j ≥ wi ∧R(i− 1, j − wi) = T). (4.1)

1NP is the class of problems solvable in polynomial time on a nondeterministic Turing
machine. A problem P is NP-hard if every problem in NP is reducible to P in polynomial

time, that is, every problem in NP can be efficiently restated in terms of P . When a
problem is NP-hard this is an indication that it is probably intractable, i.e., it cannot be

solved efficiently in general. For more information on this see any book on complexity,
for example [Papadimitriou (1994); Sipser (2006); Soltys (2009)].
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Figure 4.1 summarizes the computation of the recurrence.

R 0 · · · j−wi · · · j · · · C

0 T F · · ·F F F · · ·F F F · · ·F F

T
...

T

i−1 T c b

i T a

T
...

T

d T

Fig. 4.1 The recurrence given by the equivalence (4.1) can be interpreted as follows:

we place a T in the square labeled with a if and only if at least one of the following
two conditions is satisfied: there is a T in the position right above it, i.e., in the square

labeled with b (if we can construct j with the first i−1 weights, surely we can construct

j with he first i weights), or there is a T in the square labeled with c (if we can construct
j − wi with the first i − 1 weights, surely we can construct j with the first i weights).

Also note that to fill the square labeled with a we only need to look at two squares, and

neither of those two squares is to the right; this will be important in the design of the
algorithm (algorithm 23).

We finally design algorithm 23 that uses the same space saving trick as

algorithm 22; it employs a one-dimensional array S(j) for keeping track of

a two-dimensional array R(i, j). This is done by overwriting R(i, j) with

R(i + 1, j).

In algorithm 23, in line 1 we initialize the array for i = j = 0. In

lines 2–4 we initialize the array for i = 0 and j ∈ {1, 2, . . . , C}. Note that

after each execution of the i-loop (line 5) it is the case that S(j) = R(i, j)

for all j.

Problem 4.10. We are using a one dimensional array to keep track of a

two dimensional array, but the overwriting is not a problem; explain why.

Problem 4.11. The assertion S(j) = R(i, j) can be proved by induction on

the number of times the i-loop in algorithm 23 is executed. This assertion

implies that upon termination of the algorithm, S(j) = R(d, j) for all j.

Prove this formally, by giving pre/post-conditions, a loop invariant, and a
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Algorithm 23 Simple knapsack (SKS)

1: S(0)←− T

2: for j : 1..C do

3: S(j)←− F

4: end for

5: for i : 1..d do

6: for decreasing j : C..1 do

7: if (j ≥ wi and S(j − wi) = T) then

8: S(j)←− T

9: end if

10: end for

11: end for

standard proof of correctness.

Problem 4.12. Construct an input for which algorithm 23 would make an

error if the inner loop “for decreasing j : C..1” (line 6) were changed to “for

j : 1..C.”

Problem 4.13. Implement algorithm 23.

Algorithm 23 is a nice illustration of the powerful idea of program re-

finement. We start with the idea of computing R(i, j) for all i, j. We then

realize that we only really need two rows in memory; to compute row i we

only need to look up row i − 1. We then take it further and see that by

updating row i from right to left we do not require row i− 1 at all—we can

do it mise en place. By starting with a robust idea, and by successively

trimming it, we obtain a slick solution.

But how good is our dynamic programming solution in terms of the

complexity of the problem? That is, how many steps does it take to com-

pute the solution proportionally to the size of the input? We must construct

a d×C table and fill it in, so the time complexity of our solution is O(d ·C).

This seems acceptable at first glance, but we were saying in the introduction

to this section that SKS is an NP-hard problem; what gives?

The point is that the input is assumed to be given in binary, and to

encode C in binary we require only logC bits, and so the number of columns

(C) is in fact exponential in the size of the input (C = 2logC). On the other

hand, d is the number of weights, and since those weights must be listed

somehow, the size of the list of weights is certainly bigger than d (i.e., this

list cannot be encoded generally with log d bits; it requires at least d bits).
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All we can say is that if C is of size O(dk), for some constant k, then our

dynamic programming solution works in polynomial time in the size of the

input. In other words, we have an efficient solution for “small” values of

C. Another way of saying this is that as long as |C| (the size of the binary

encoding of C) is O(log d) our solution works in polynomial time.

Problem 4.14. Show how to construct the actual optimal set of weights

once R has been computed.

Problem 4.15. Define a “natural” greedy algorithm for solving SKS; let

M be the output of this algorithm, and let M be the output of the dynamic

programming solution given in this section. Show that either M = M or

M > 1
2C.

Problem 4.15 introduces surreptitiously the concept of approximation

algorithms. As was mentioned at the beginning of this section (see footnote

on page 77), SKS is an example of an NP-hard problem, a problem for

which we suspect there may be no efficient solution in the general case.

That is, the majority of experts believe that any algorithm—attempting

to solve SKS in the general case—on infinitely many inputs will take an

inordinate number of steps (i.e., time) to produce a solution.

One possible compromise is to design an efficient algorithm that does

not give an optimal solution—which may not even be required—but only

a solution with some guarantees as to its closeness to an optimal solution.

Thus, we merely approximate the optimal solution but at least our algo-

rithm runs quickly. The study of such compromises is undertaken by the

field of approximation algorithms.

Finally, in the section below we give a greedy solution to SKS in the

particular case where the weights have a certain “increasing property.” This

is an example of a promise problem, where we can expect some convenient

condition on the inputs; a condition that we need not check for, but assume

that we have. Note that we have been using the term “promising” to prove

the correctness of greedy algorithms—this is a different notion from that of

a “promise problem.”

4.3.1 Dispersed knapsack problem

Input: w1, . . . , wd, C ∈ N, such that wi ≥
∑d

j=i+1 wj for i = 1, . . . , d− 1.

Output: Smax ⊆ [d] where K(Smax) = max
S⊆[d]

{K(S)|K(S) ≤ C}.
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Problem 4.16. Give a “natural” greedy algorithm which solves Dispersed

Knapsack by filling in the blanks in algorithm 24.

Algorithm 24 Dispersed knapsack

S ←− ∅
for i : 1..d do

if then

end if

end for

Problem 4.17. Give a definition of what it means for an intermediate so-

lution S in algorithm 24 to be “promising.” Show that the loop invariant “S

is promising” implies that the greedy algorithm gives the optimal solution.

Finally, show that “S is promising” is a loop invariant.

4.3.2 General knapsack problem

Input: w1, w2, . . . , wd, v1, . . . , vd, C ∈ N
Output: maxS⊆[d]{V (S)|K(S) ≤ C}, K(S) =

∑
i∈S wi, V (S) =

∑
i∈S vi.

Thus, the general knapsack problem (which we abbreviate as GKS) has

a positive integer value vi besides each weight wi, and the goal is to have

as valuable a knapsack as possible, without exceeding C, i.e., the weight

capacity of the knapsack.

More precisely, V (S) =
∑

i∈S vi is the total value of the set S of weights.

The goal is to maximize V (S), subject to the constraint that K(S), which

is the sum of the weights in S, is at most C. Note that SKS is a special

case of GKS where vi = wi, for all 1 ≤ i ≤ d.

To solve GKS, we start by computing the same Boolean array R(i, j)

that was used to solve SKS. Thus R(i, j) ignores the values vi, and only

depends on the weights wi. Next we define another array V (i, j) that

depends on the values vi as follows:

V (i, j) = max{V (S)|S ⊆ [i] and K(S) = j}, (4.2)

for 0 ≤ i ≤ d and 0 ≤ j ≤ C.

Problem 4.18. Give a recurrence for computing the array V (i, j), using

the Boolean array R(i, j)—assume that the array R(i, j) has already been

computed. Also, give an algorithm for computing V (i, j).
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Problem 4.19. If the definition of V (i, j) given in (4.2) is changed so that

we only require K(S) ≤ j instead of K(S) = j, then the Boolean array

R(i, j) is not needed in the recurrence. Give the recurrence in this case.

4.4 Activity selection problem

Input: A list of activities (s1, f1, p1), . . . , (sn, fn, pn), where pi > 0, si < fi
and si, fi, pi are non-negative real numbers.

Output: A set S ⊆ [n] of selected activities such that no two selected

activities overlap, and the profit P (S) =
∑

i∈S pi is as large as possible.

An activity i has a fixed start time si, finish time fi and profit pi. Given

a set of activities, we want to select a subset of non-overlapping activities

with maximum total profit. A typical example of the activity selection

problem is a set of lectures with fixed start and finish times that need to

be scheduled in a single class room.

Define an array of subproblems: sort the activities by their finish times,

f1 ≤ f2 ≤ . . . ≤ fn. As it is possible that activities finish at the same time,

we select the distinct finish times, and denote them u1 < u2 < . . . < uk,

where, clearly, k ≤ n. For instance, if we have activities finishing at times

1.24, 4, 3.77, 1.24, 5 and 3.77, then we partition them into four groups:

activities finishing at times u1 = 1.24, u2 = 3.77, u3 = 4, u4 = 5.

Let u0 be min1≤i≤n si, i.e., the earliest start time. Thus,

u0 < u1 < u2 < . . . < uk,

as it is understood that si < fi. Define an array A(0..k) as follows:

A(j) = max
S⊆[n]

{P (S)|S is feasible and fi ≤ uj for each i ∈ S},

where S is feasible if no two activities in S overlap. Note that A(k) is the

maximum possible profit for all feasible schedules S.

Problem 4.20. Give a formal definition of what it means for a schedule

of activities to be feasible, i.e., express precisely that the activities in a set

S “do not overlap.”

Define a recurrence for A(0..k). In order to give such a recurrence we

first define an auxiliary array H(1..n) such that H(i) is the index of the

largest distinct finish time no greater than the start time of activity i.

Formally, H(i) = l if l is the largest number such that ul ≤ si. To compute

H(i), we need to search the list of distinct finish times. To do it efficiently,
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for each i, apply the binary search procedure that runs in logarithmic time

in the length of the list of distinct finish times (try l = ⌊k2 ⌋ first). Since

the length k of the list of distinct finish times is at most n, and we need to

apply binary search for each element of the array H(1..n), the time required

to compute all entries of the array is O(n log n).

We initialize A(0) = 0, and we want to compute A(j) given that we

already have A(0), . . . , A(j−1). Consider u0 < u1 < u2 < . . . < uj−1 < uj .

Can we beat profit A(j − 1) by scheduling some activity that finishes at

time uj? Try all activities that finish at this time and compute maximum

profit in each case. We obtain the following recurrence:

A(j) = max{A(j − 1), max
1≤i≤n

{pi + A(H(i)) | fi = uj}}, (4.3)

where H(i) is the greatest l such that ul ≤ si. Consider the example given

in figure 4.2.

�� a ��

�� b ��

�� c ��

oo //◦ ◦ ◦ ◦ ◦ ◦

sb = uH(b) uH(a) sb sc = uH(c) uj−1 uj

Fig. 4.2 In this example we want to compute A(j). Suppose that some activity

finishing at time uj must be scheduled in order to obtain the maximum possible
profit. In this figure there are three activities that end at time uj : a, b, c, given by

(sa, fa, pa), (sb, fb, pb), (sc, fc, pc), respectively, where of course the assumption is that
uj = fa = fb = fc. The question is which of these three activities must be selected. In

order to establish this, we must look at each activity a, b, c in turn, and see what is the

most profitable schedule that we can get if we insist that the given activity is scheduled.
For example, if we insist that activity a be scheduled, we must see what is the most prof-

itable schedule we can get where all other activities must finish by sa, which effectively

means that all other activities must finish by uH(a). Note that in this example we have
that uH(a) < sa, but uH(b) = sb and uH(c) = sc. When all is said, we must find which
of the three values pa +A(H(a)), pb +A(H(b)), pc +A(H(c)) is maximal.

Consider the example in figure 4.3. To see how the bottom row of the

right-hand table in figure 4.3 was computed, note that according to the
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recurrence (4.3), we have:

A(2) = max{20, 30 + A(0), 20 + A(1)} = 40,

A(3) = max{40, 30 + A(0)} = 40.

Therefore, the maximum profit is A(3) = 40.

Activity i: 1 2 3 4

Start si: 0 2 3 2

Finish fi: 3 6 6 10

Profit pi: 20 30 20 30

H(i): 0 0 1 0

j: 0 1 2 3

uj : 0 3 6 10

A(j): 0 20 40 40

Fig. 4.3 An example with four activities.

Problem 4.21. Write the algorithm.

Problem 4.22. Given that A has been computed, how do you find a set

of activities S such that P (S) = A(k)? Hint: If A(k) = A(k − 1), then we

know that no selected activity finishes at time uk, so we go on to consider

A(k − 1). If A(k) > A(k − 1), then some selected activity finishes at time

uk. How do we find this activity?

Problem 4.23. Implement the dynamic programming solution to the “ac-

tivity selection with profits problem.” Your algorithm should compute the

value of the most profitable set of activities, as well as output an explicit

list of those activities.

4.5 Jobs with deadlines, durations and profits

Input: A list of jobs (d1, t1, p1), . . . , (dn, tn, pn).

Output: A feasible schedule C(1..n) such that the profit of C, denoted

P (C), is the maximum possible among feasible schedules.

In section 2.2 we considered the job scheduling problems for the case

where each job takes unit time, i.e., each duration di = 1. We now gen-

eralize this to the case in which each job i has an arbitrary duration di,
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deadline ti and profit pi. We assume that di and ti are positive integers,

but the profit pi can be a positive real number. We say that the schedule

C(1..n) is feasible if the following two conditions hold (let C(i) = −1 denote

that job i is not scheduled, and so C(i) ≥ 0 indicates that it is scheduled,

and note that we do allow jobs to be scheduled at time 0):

(1) if C(i) ≥ 0, then C(i) + di ≤ ti; and,

(2) if i ̸= j and C(i), C(j) ≥ 0, then

(a) C(i) + di ≤ C(j); or,

(b) C(j) + dj ≤ C(i).

The first condition is akin to saying that each scheduled job finishes by its

deadline and the second condition is akin to saying that no two scheduled

jobs overlap. The goal is to find a feasible schedule C(1..n) for the n jobs for

which the profit P (C) =
∑

C(i)≥0 pi, the sum of the profits of the scheduled

jobs, is maximized.

A job differs from an activity in that a job can be scheduled any time

as long as it finishes by its deadline; an activity has a fixed start time

and finish time. Because of the flexibility in scheduling jobs, it is “harder”

to find an optimal schedule for jobs than to select an optimal subset of

activities.

Note that job scheduling is “at least as hard as SKS.” In fact an SKS

instance w1, . . . , wn, C can be viewed as a job scheduling problem in which

each duration di = wi, each deadline ti = C, and each profit pi = wi.

Then the maximum profit of any schedule is the same as the maximum

weight that can be put into the knapsack. This seemingly innocent idea

of “at least as hard as” is in fact a powerful tool widely used in the field

of computational complexity to compare the relative difficulty of problems.

By restating a general instance of job scheduling as an instance of SKS we

provided a reduction of job scheduling to SKS, and shown thereby that if

one were able to solve job scheduling efficiently, one would automatically

have an efficient solution to SKS.

To give a dynamic programming solution to the job scheduling problem,

we start by sorting the jobs according to deadlines. Thus, we assume that

t1 ≤ t2 ≤ . . . ≤ tn.

It turns out that to define a suitable array A for solving the problem,

we must consider all possible integer times t, 0 ≤ t ≤ tn as a deadline for

the first i jobs. It is not enough to only consider the specified deadline ti
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given in the problem input. Thus define the array A(i, t) as follows:

A(i, t) = max

P (C) :

C is a feasible schedule

only jobs in [i] are scheduled

all scheduled jobs finish by time t

 .

We now want to design a recurrence for computing A(i, t). In the usual

style, consider the two cases that either job i occurs or does not occur in

the optimal schedule (and note that job i will not occur in the optimal

schedule if di > min{ti, t}). If job i does not occur, we already know the

optimal profit.

If, on the other hand, job i does occur in an optimal schedule, then we

may as well assume that it is the last job (among jobs {1, . . . , i}) to be

scheduled, because it has the latest deadline. Hence we assume that job i

is scheduled as late as possible, so that it finishes either at time t, or at

time ti, whichever is smaller, i.e., it finishes at time tmin = min{ti, t}.

Problem 4.24. In light of the discussion in the above two paragraphs, find

a recurrence for A(i, t).

Problem 4.25. Implement your solution.

4.6 Further examples and problems

4.6.1 Consecutive subsequence sum problem

Input: Real numbers r1, . . . , rn
Output: For each consecutive subsequence of the form ri, ri+1, . . . , rj let

Sij = ri + ri+1 + · · ·+ rj

where Sii = ri. Find M = max1≤i≤j≤n Sij .

For example, in figure 4.4 we have a sample consecutive subsequence

sum problem. There, the solution is M = S35 = 3 + (−1) + 2 = 4.

This problem can be solved in time O(n2) by systematically computing

all of the sums Sij and finding the maximum (there are
(
n
2

)
pairs i, j ≤ n

such that i < j). However, there is a more efficient dynamic programming

solution which runs in time O(n).

Define the array M(1..n) by:

M(j) = max{S1j , S2j , . . . , Sjj}.
See figure 4.4 for an example.

Problem 4.26. Explain how to find the solution M from the array

M(1..n).
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j 1 2 3 4 5 6 7

rj 1 −5 3 −1 2 −8 3

M(j) 1 −4 3 2 4 −4 3

Fig. 4.4 An example of computing M(j).

Problem 4.27. Complete the four lines indicated in algorithm 25 for com-

puting the values of the array M(1..n), given r1, r2, . . . , rn.

Algorithm 25 Problem 4.27

M(1)←− (1)

for j : 2..n do

if (2) then

M(j)←− (3)

else

M(j)←− (4)

end if

end for

4.6.2 Shuffle

In this section we are going to study an algorithm that works on strings;

see section 8.2 for the background on strings, alphabets and languages.

If u, v, and w are strings over an alphabet Σ, then w is a shuffle of

u and v provided there are (possibly empty) strings xi and yi such that

u = x1x2 · · ·xk and v = y1y2 · · · yk and w = x1y1x2y2 · · ·xkyk. A shuffle

is sometimes instead called a “merge” or an “interleaving.” The intuition

for the definition is that w can be obtained from u and v by an operation

similar to shuffling two decks of cards. We use w = u ⊙ v to denote that

w is a shuffle of u and v; note, however, that in spite of the notation there

can be many different shuffles w of u and v. The string w is called a square

provided it is equal to a shuffle of a string u with itself, namely provided

w = u ⊙ u for some string u. [Buss and Soltys (2013)] showed that the

set of squares is NP-complete; this is true even for (sufficiently large) finite

alphabets. See section 4.3 for NP-completeness.

In the early 1980’s, Mansfield [Mansfield (1982, 1983)] and Warmuth

and Haussler [Warmuth and Haussler (1984)] studied the computational
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complexity of the shuffle operation. The paper [Mansfield (1982)] gave a

polynomial time dynamic programming algorithm for deciding the following

shuffle problem: Given inputs u, v, w, can w be expressed as a shuffle of u

and v, that is, does w = u⊙ v?

The idea behind the algorithm of [Mansfield (1982)] is to construct a

grid graph, with (|x|+1)×(|y|+1) nodes; the lower-left node is represented

with (0, 0) and the upper-right node is represented with (|x|, |y|). For any

i < |x| and j < |y|, we have the edges:{
((i, j), (i + 1, j)) if xi+1 = wi+j+1

((i, j), (i, j + 1)) if yj+1 = wi+j+1.
(4.4)

Note that both edges may be present, and this in turn introduces an expo-

nential number of choices if the search were to be done näıvely.

A path starts at (0, 0), and the i-th time it goes up we pick xi, and

the j-th time it goes right we pick yj . Thus, a path from (0, 0) to (|x|, |y|)
represents a particular shuffle.

As an example consider Figure 4.5. On the left we have a shuffle of 000

and 111 that yields 010101, and on the right we have a shuffle of 011 and

011 that yields 001111. The left instance has a unique shuffle that yields

010101, which corresponds to the unique path from (0, 0) to (3, 3). On the

right, there are several possible shuffles of 011, 011 that yield 001111—eight

of them, each corresponding to a distinct path from (0, 0) to (3, 3).

The dynamic programming algorithm in [Mansfield (1982)] computes

partial solutions along the top-left to bottom-right diagonal lines in the

grid graph.

// //

//

OO

//

OO

//

OO OO

//

OO

// //

OO OO

//

OO

//

OO

//

OO OO

Fig. 4.5 On the left we have a shuffle of 000 and 111 that yields 010101, and on the right

we have a shuffle of 011 and 011 that yields 001111. The edges are placed as in (4.4).

The number of paths is always bounded by:(
|x|+ |y|
|x|

)
(4.5)
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and this bound is achieved for ⟨1n, 1n, 12n⟩. Thus, the number of paths can

be exponential in the size of the input, and so an exhaustive search is not

feasible in general.

Problem 4.28. Why is (4.5) a bound on possible shuffles?

Problem 4.29. Given the discussion in this section, propose a dynamic

programming algorithm that on input w, u, v checks whether w = u⊙ v.

4.7 Answers to selected problems

Problem 4.1. Once we’ve computed the values of R, we can follow it

backward from the end of a longest non-decreasing subsequence. Such a

sequence must end on an index j such that R(j) is maximal. If R(j) = 1,

we’re done. Otherwise, to find the index preceding j, find any index i < j

such that R(i) = R(j)−1 and ai ≤ aj ; one necessarily exists, or R(j) would

be smaller. Continue backtracking as such until arriving at the beginning

of the subsequence, where R is 1.

Problem 4.2. Algorithm 21 requires only that its input is a finite sequence

of ordered objects (i.e., objects for which the “≤” makes sense). Its post-

condition, which we aim to prove, is that for all j in {1, 2, . . . , d}, R(j) is

the length of the longest non-decreasing subsequence ending with aj .

We claim that after j iterations of the outer “for” loop, R(j) is the

length of the longest subsequence ending with aj , and moreover, that the

same is true for all i < j. The prior implies the latter, as once a value is

assigned to R(i) the algorithm never reassigns it.

The proof will be by complete induction over j. Let Sj denote any

longest non-decreasing subsequence ending in aj for any index j. For the

base case, clearly R(1) = 1 is the correct assignment; the empty subse-

quence has length less than 1, and the only other subsequence, {a1}, is

trivially non-decreasing with cardinality 1. Assume, then, that for all i < j,

R(i) has been assigned the correct value. If Sj = {aj}, then there is no

i < j such that ai ≤ aj , so the value of max will never be changed after

its initial assignment of 0. As such, R(j) is given the correct value, 1. If,

on the other hand, |Sj | > 1, then there is an element ai directly preced-

ing aj in Sj , where ai ≤ aj and i < j. Clearly there is an Si such that

Sj = Si ∪ {aj}, so |Sj | = |Si|+ 1 = R(i) + 1.

Assume that max ̸= R(i) after iteration i of the inner for loop. ai ≤ aj ,

so R(i) < max. Thus there is an i′ < i such that ai′ ≤ aj and R(i′) > R(i).

But Si′ ∪ {aj} is non-decreasing, ends on aj , and has cardinality greater
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than Sj—a contradiction. Similarly, max cannot be reassigned afterward,

as this leads the same contradiction. Thus, at the end of iteration j, R(j)

is assigned the correct value, R(i) + 1. So, after iteration d, R(j) is correct

for all j.

Problem 4.3. In order to find the length of the longest subsequence over

which any two consecutive members differ by at most 1, we can simply edit

the “if” condition in algorithm 21. Specifically, “ai ≤ aj” can be replaced

with “|ai − aj | ≤ 1”.

Problem 4.5. Consider the graph Gn in figure 4.6. It contains 2+n+n =

2n+ 2 nodes, and 2n paths from s to t; starting at s we have a choice to go

to node 1 or node 1′, and then we always have a choice to go up or down,

so 2 × 2n−1 paths that land us at n or n′. Finally, we just go to t. Note

that we have given an undirected graph; but simply giving all the edges a

“left-to-right” direction gives us an example for directed graphs.

s 1 2 3 n

1′ 2′ 3′ n′ t

Fig. 4.6 Exponentially many paths (problem 4.5).

Problems 4.6 and 4.7. The pre-condition is that ∀i, j ∈ [n] we have

that B(i, j) = A(0, i, j). The post-condition is that ∀i, j ∈ [n] we have that

B(i, j) = A(n, i, j). The loop invariant is that after the k-th iteration of

the main loop, B(i, j) = A(k, i, j). To prove the loop invariant note that

B(i, j) is given by min{B(i, j), B(i, k) +B(k, j)}, so the only worry is that

B(i, k) or B(k, j) was already updated, so we are not getting A(k − 1, i, k)

or A(k − 1, k, j) as we should, but rather A(k, i, k) or A(k, k, j). But, it

turns out that A(k, i, k) = A(k − 1, i, k) and A(k, k, j) = A(k − 1, k, j),

because the shortest path from i to k (or k to j) does not contain k as an

intermediate node.

Problem 4.10. Overwriting does not create a problem, because the values

of j are considered in decreasing order C,C − 1, . . . , 1. Thus the array

position S(j − wi) has not yet been updated when the reference is made.

Problem 4.11. The pre-condition is that for all j, S(j) = R(0, j). The

post-condition is that for all j, S(j) = R(d, j). Let the loop invariant be the

assertion that after the i-th step, S(j) = R(i, j). This loop invariant holds

since we start “filling” S in from the right, and we only change false to true
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(never true to false—the reason is that if we could build an intermediate

value j with the first (i−1) weights, we can certainly still construct it with

the first i weights).

Problem 4.12. Consider w1 = w2 = 1, w3 = 2 and C = 3, so the table on

this input would look as follows:

0 1 2 3

T F F F

w1 = 1 T T F F

w2 = 1 T T T F

w3 = 2 T T T T

Now consider the row for w1 = 1, and the entry for the column labeled

with 2. That entry is an F, as it should be, but if the for-loop in algorithm 23

were not a decreasing loop, then we would update that entry to a T since

for j = 2, we have that 2 ≥ w1 and S(2− w1) = T.

Problem 4.14. First, we need to find the solution; so we look in the last

row (i.e., row d) for the largest non-zero j. That is, the solution is given

by M = max0≤j≤C [R(d, j) = T]. Now we check if R(d− 1,M) = T. If yes,

then we know that weight wd is not necessary, so we do not include it, and

continue looking at R(d−2,M). If no, then because R(d,M) = T, we know

that M −wd ≥ 0 ∧R(d− 1,M −wd) = T. So we include wd, and continue

looking at R(d − 1,M − wd). We stop when we reach the first column of

the array.

Problem 4.15. The natural greedy algorithm that attempts to solve SKS

is the following: order the weights from the heaviest to the lightest, and

add them in that order for as long as possible. Assume that M ̸= M , and

let S0 be the result of this greedy procedure, i.e., a subset of {1, . . . , d}
such that K(S0) = M . First show that there is at least one weight in S0:

If S0 = ∅, then M = 0, and all weights must be larger than C, but then

M = 0, so M = M which is not the case by assumption. Now show that

there is at least one weight not in S0: if all the weights are in S, then again

M =
∑d

i=1 wi = M . Finally, show now that M > 1
2C by considering the

first weight, call it wj , which has been rejected after at least one weight has

been added (note that such a weight must exist; we may assume that there

are no weights larger than the capacity C, and if there are we can just not

consider them; therefore, the first weight on the list is added, and then we

know that some weight will come along which won’t be added; we consider

the first such weight): If wj ≤ 1
2C, then the sum of the weights which are
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already in is > 1
2C, so M > 1

2C. If wj > 1
2C, then, since the objects are

ordered by greedy in non-increasing order of weights, the weights that are

already in are > 1
2C, so again M > 1

2C.

Problem 4.16. In the first space put wi +
∑

j∈S wj ≤ C and in the second

space put S ←− S ∪ {i}.
Problem 4.17. Define “S is promising” to mean that S can be extended,

using weights which have not been considered yet, to an optimal solution

Smax. At the end, when no more weights have been left to consider, the

loop invariant still holds true, so S itself must be optimal.

We show that “S is promising” is a loop invariant by induction on

the number of iterations. Basis case: S = ∅, so S is clearly promising.

Induction step: Suppose that S is promising (so S can be extended, using

weights which have not been considered yet, to Smax). Let S′ be S after

one more iteration. Suppose i ∈ S′. Since wi ≥
∑d

j=i+1 wj , it follows that:

K(S′) ≥ K(S) +

d∑
j=i+1

wj

so S′ already contains at least as much weight as any extension of S not

including wi. If S′ is optimal, we are done. Otherwise, Smax has more

weight than S′, so it must contain wi. Suppose i /∈ S′; then we have that

wi +
∑

j∈S wj > C, so i /∈ Smax. As such, S′ can be extended (using

weights which have not been considered yet!) to Smax. In either case, S′ is

promising.

Problem 4.18. V (i, j) = 0 if i = 0 or j = 0. And for i, j > 0, V (i, j) is{
V (i− 1, j) if j < wi or R(i− 1, j − wi) = F

max{vi + V (i− 1, j − wi), V (i− 1, j)} otherwise

To see that this works, suppose that j < wi. Then weight i cannot be

included, so V (i, j) = V (i− 1, j). If R(i− 1, j − wi) = F, then there is no

subset S ⊆ {1, . . . , i} such that i ∈ S and K(S) = j, so again weight i is

not included, and V (i, j) = V (i− 1, j).

Otherwise, if j ≥ wi and R(i − 1, j − wi) = T, then weight i may

or may not be included in S. We take the case which offers more value:

max{vi + V (i− 1, j − wi), V (i− 1, j)}.
Problem 4.19. By changing the definition of V (i, j) given in (4.2) to

have K(S) ≤ j (instead of K(S) = j), we can take the recurrence given

for V in the solution to problem 4.18 and simply get rid of the part “or

R(i − 1, j − wi) = F” to obtain a recurrence for V that does not require

computing R.
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Problem 4.20. Suppose a schedule S contains activities {a1, a2, . . . },
where an = (sn, fn, pn) is the start time, finish time and profit of an for

all n. S is feasible if, for all ai, aj ∈ S, either fi ≤ sj or fj ≤ si; that is,

the first of the two must be finished before the second is started, as they

clearly overlap otherwise.

Problem 4.21. The algorithm must include a computation of the distinct

finish times, i.e., the ui’s, as well as a computation of the array H. Here

we just give the algorithm for computing A based on the recurrence (4.3).

The assumption is that there are n activities and k distinct finish times.

Algorithm 26 Activity selection

A(0)←− 0

for j : 1..k do

max←− 0

for i = 1..n do

if fi = uj then

if pi + A(H(i)) > max then

max←− pi + A(H(i))

end if

end if

end for

if A(j − 1) > max then

max←− A(j − 1)

end if

A(j)←− max

end for

Problem 4.22. We show how to find the actual set of activities: Suppose

k > 0. If A(k) = A(k − 1), then no activity has been scheduled to end

at time uk, so we proceed recursively to examine A(k − 1). If, on the

other hand, A(k) ̸= A(k − 1), then we know that some activity has been

scheduled to end at time uk. We have to find out which one it is. We

know that in this case A(k) = max1≤i≤n{pi + A(H(i))|fi = uk}, so we

examine all activities i, 1 ≤ i ≤ n, and output the (first) activity i0 such

that A(k) = pi0 + A(H(i0)) and fi0 ≤ uk. Now we repeat the procedure

with A(H(i0)). We end when k = 0.

Problem 4.24. Initialization: A(0, t) = 0, 0 ≤ t ≤ tn. To compute A(i, t)
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for i > 0 first define tmin = min{t, ti}. Now

A(i, t) =

{
A(i− 1, t) if tmin < di

max{A(i− 1, t), pi + A(i− 1, tmin − di)} otherwise

Justification: If job i is scheduled in the optimal schedule, it finishes at

time tmin, and starts at time tmin − di. If it is scheduled, the maximum

possible profit is A(i− 1, tmin− di) + pi. Otherwise, the maximum profit is

A(i− 1, t).

Problem 4.26. M = max1≤j≤n M(j)

Problem 4.27.

(1) r1(= S11)

(2) M(j − 1) > 0

(3) M(j − 1) + rj
(4) rj

4.8 Notes

Any algorithms textbook will have a section on dynamic programming; see

for example chapter 15 in [Cormen et al. (2009)] and chapter 6 in [Kleinberg

and Tardos (2006)].

While matroids serve as a good abstract model for greedy algorithms,

a general model for dynamic programming is being currently developed.

See [Aleknovich et al. (2005)].

The material on the shuffle operation, section 4.6.2, comes from [Buss

and Soltys (2013)] and from [Mhaskar and Soltys (2015)]. The initial work

on shuffles arose out of abstract formal languages, and shuffles were moti-

vated later by applications to modeling sequential execution of concurrent

processes. To the best of the author’s knowledge, the shuffle operation

was first used in formal languages by Ginsburg and Spanier [Ginsburg and

Spanier (1965)]. Early research with applications to concurrent processes

can be found in Riddle [Riddle (1973, 1979)] and Shaw [Shaw (1978)]. A

number of authors, including [Gischer (1981); Gruber and Holzer (2009);

Jantzen (1981, 1985); Jedrzejowicz (1999); Jedrzejowicz and Szepietowski

(2001, 2005); Mayer and Stockmeyer (1994); Ogden et al. (1978); Shoudai

(1992)] have subsequently studied various aspects of the complexity of the

shuffle and iterated shuffle operations in conjunction with regular expres-

sion operations and other constructions from the theory of programming

languages.
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In [Mansfield (1983)], gave a polynomial time algorithms for deciding

whether a string w can be written as the shuffle of k strings u1, . . . , uk, so

that w = u1⊙u2⊙ · · · ⊙uk, for a constant integer k. The paper [Mansfield

(1983)] further proved that if k is allowed to vary, then the problem becomes

NP-complete (via a reduction from Exact Cover with 3-Sets). War-

muth and Haussler [Warmuth and Haussler (1984)] gave an independent

proof of this last result and went on to give a rather striking improvement

by showing that this problem remains NP-complete even if the k strings

u1, . . . , uk are equal. That is to say, the question of, given strings u and w,

whether w is equal to an iterated shuffle u⊙u⊙· · ·⊙u of u is NP-complete.

Their proof used a reduction from 3-Partition. [Soltys (2013)] shows that

the problem of whether w = u⊙v can be solved with circuits of logarithmic

depth, but not with circuits of bounded depth.

As mentioned in section 4.6.2, a string w is defined to be a square if

it can be written w = u ⊙ u for some u. Erickson [Erickson (2010)] in

2010, asked on the Stack Exchange discussion board about the computa-

tional complexity of recognizing squares, and in particular whether this is

polynomial time decidable. This problem was repeated as an open ques-

tion in [Henshall et al. (2012)]. An online reply to [Erickson (2010)] by

Austrin [Austrin (2010)] showed that the problem of recognizing squares is

polynomial time decidable provided that each alphabet symbol occurs at

most four times in w (by a reduction from 2-Sat); however, the general

question has remained open. The present paper resolves this by proving

that the problem of recognizing squares is NP-complete, even over a suffi-

ciently large fixed alphabet.



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 96



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 97

Chapter 5

Online Algorithms

Never-ending Walpurgisnacht

Sir Roger Scruton [Scruton
(2015)]

The algorithms presented thus far were offline algorithms, in the sense

that the entire input was given at the beginning. In this chapter we change

our paradigm and consider online algorithms, where the input is never-

ending, presented piecemeal, and the algorithm has to make decisions based

on incomplete information, without knowledge of future events.

A typical example of an application is a caching discipline; consider a

hard disk from which data is read into a random access memory. Typically,

the random access memory is much smaller, and so it must be decided which

data has to be overwritten with new data. New requests for data from the

hard disk arrive continuously, and it is hard to predict future requests.

Thus we must overwrite parts of the random access memory with new

requests, but we must do the overwriting judiciously, so that we minimize

future misses: data that is required but not present in the random access

memory, and so it has to be brought in from the hard disk. Minimizing the

number of misses is difficult when the future requests are unknown.

Correctness in the context of online algorithms has a different nuance;

it means that the algorithm minimizes strategic errors. That is, an online

algorithm will typically do worse than a corresponding offline algorithm

that sees the entire input, but we want it to be as competitive as possible,

given its intrinsic limitations. Thus, in the context of online algorithms, we

are concerned with performance evaluation.

We introduce the subject of online algorithms with the list accessing

problem in section 5.1, and then present paging algorithms in section 5.2.

97
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5.1 List accessing problem

We are in charge of a filing cabinet containing l labeled but unsorted files.

We receive a sequence of requests to access files; each request is a file label.

After receiving a request for a file we must locate it, process it, and return

it to the cabinet.

Since the files are unordered we must flip through the files starting at

the beginning, until the requested file is located. If a file is in position i,

we incur a search cost of i in locating it. If the file is not in the cabinet,

the cost is l, which is the total number of files. After taking out the file, we

must return it to the cabinet, but we may choose to reorganize the cabinet;

for instance, we might put it closer to the front. The incentive for such a

reorganization is that it may save us some search time in the future: if a

certain file is requested frequently, it is wise to insert it closer to the front.

Our goal is to find a reorganization rule that minimizes the search time.

Let σ = σ1, σ2, . . . , σn be a finite sequence of n requests. To service

request σi, a list accessing algorithm ALG must search for the item labeled

σi by traversing the list from the beginning, until it finds it. The cost of

retrieving this item is the index of its position on the list. Thus, if item σi

is in position j, the cost of retrieving it is j. Furthermore, the algorithm

may reorganize the list at any time.

The work associated with a reorganization is the minimum number of

transpositions of consecutive items needed to carry it out. Each transposi-

tion has a cost of 1, however, immediately after accessing an item, we allow

it to be moved free of charge to any location closer to the front of this list.

These are free transpositions, while all other transpositions are paid. Let

ALG(σ) be the sum of the costs of servicing all the items on the list σ, i.e.,

the sum of the costs of all the searches plus the sum of the costs of all paid

transpositions.

Problem 5.1. What is the justification for this “free move”? In other

words, why does it make sense to allow placing an item “for free” right

after accessing it? Finally, show that given a list of l items, we can always

reorder it in any way we please by doing only transpositions of consecutive

items.

We consider the static list accessing model, where we have a list of l

items, and the only requests are to access an item on the list, i.e., there

are no insertions or deletions. Many algorithms have been proposed for

managing lists; we are going to examine Move To Front (MTF), where after



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 99

Online Algorithms 99

accessing an item, we move it to the front of the list, without changing the

relative order of the other items.

Further, we assume that σ consists of only those items which appear

on the list of MTF—this is not a crucial simplification; see problem 5.7.

Notice that MTF(σ) is simply the sum of the costs of all the searches, since

we only change the position of an item when we retrieve it, in which case

we move it for free to the front.

Theorem 5.2. Let OPT be an optimal (offline) algorithm for the static

list accessing model. Suppose that OPT and MTF both start with the same

list configuration. Then, for any sequence of requests σ, where |σ| = n, we

have that

MTF(σ) ≤ 2 ·OPTS(σ) + OPTP (σ)−OPTF (σ)− n, (5.1)

where OPTS(σ),OPTP (σ),OPTF (σ) are the total cost of searches, the total

number of paid transpositions and the total number of free transpositions,

of OPT on σ, respectively.

Proof. Imagine that both MTF and OPT process the requests in σ, while

each algorithm works on its own list, starting from the same initial config-

uration. You may think of MTF and OPT as working in parallel, starting

from the same list, and neither starts to process σi until the other is ready

to do so.

Let

ai = ti + (Φi − Φi−1) (5.2)

where ti is the actual cost that MTF incurs for processing this request (so

ti is in effect the position of item σi on the list of MTF after the first

i − 1 requests have been serviced). Φi is a potential function, and here it

is defined as the number of inversions in MTF’s list with respect to OPT’s

list. An inversion is defined to be an ordered pair of items xj and xk, where

xj precedes xk in MTF’s list, but xk precedes xj in OPT’s list.

Problem 5.3. Suppose that l = 3, and the list of MTF is x1, x2, x3, and

the list of OPT is x3, x2, x1. What is Φ in this case? In fact, how can we

compute OPT(σ), where σ is an arbitrary sequence of requests, without

knowing how OPT works?

Note that Φ0 depends only on the initial configurations of MTF and

OPT, and since we assume that the lists are initially identical, Φ0 = 0.

Finally, the value ai in (5.2) is called the amortized cost, and its intended
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meaning is the cost of accessing σi, i.e., ti, plus a measure of the increase

of the “distance” between MTF’s list and OPT’s list after processing σi,

i.e., Φi − Φi−1.

It is obvious that the cost incurred by MTF in servicing σ, denoted

MTF(σ), is
∑n

i=1 ti. But instead of computing
∑n

i=1 ti, which is difficult,

we compute
∑n

i=1 ai which is much easier. The relationship between the

two summations is,

MTF(σ) =

n∑
i=1

ti = Φ0 − Φn +

n∑
i=1

ai, (5.3)

and since we agreed that Φ0 = 0, and Φi is always positive, we have that,

MTF(σ) ≤
n∑

i=1

ai. (5.4)

So now it remains to compute an upper bound for ai.

Problem 5.4. Show the second equality of equation (5.3).

Assume that the i-th request, σi, is in position j of OPT, and in position

k of MTF (i.e., this is the position of this item after the first (i−1) requests

have been completed). Let x denote this item—see figure 5.1.

We are going to show that

ai ≤ (2si − 1) + pi − fi, (5.5)

where si is the search cost incurred by OPT for accessing request σi, and pi
and fi are the paid and free transpositions, respectively, incurred by OPT

when servicing σi. This shows that
n∑

i=1

ai ≤
n∑

i=1

((2si − 1) + pi − fi)

= 2(

n∑
i=1

si) + (

n∑
i=1

pi)− (

n∑
i=1

fi)− n

= 2OPTS(σ) + OPTP (σ)−OPTF (σ)− n,

which, together with the inequality (5.4), will show (5.1).

We prove (5.5) in two steps: in the first step MTF makes its move, i.e.,

moves x from the k-th slot to the beginning of its list, and we measure the

change in the potential function with respect to the configuration of the list

of OPT before OPT makes its own moves to deal with the request for x.

In the second step, OPT makes its move and now we measure the change

in the potential function with respect to the configuration of the list of MTF
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MTF ∗ ∗ ∗ x

OPT x ∗ ∗ ∗

Fig. 5.1 x is in position k in MTF, and in position j in OPT. Note that in the figure

it appears that j < k, but we make no such assumption in the analysis. Let ∗ denote

items located before x in MTF but after x in OPT, i.e., the ∗ indicate inversions with
respect to x. There may be other inversions involving x, namely items which are after x

in MTF but before x in OPT, but we are not concerned with them.

after MTF has completed its handling of the request (i.e., with x at the

beginning of the list of MTF).

See figure 5.1: suppose that there are v such ∗, i.e., v inversions of the

type represented in the figure. Then, there are at least (k − 1 − v) items

that precede x in both list.

Problem 5.5. Explain why at least (k − 1 − v) items precede x in both

lists.

But this implies that (k−1−v) ≤ (j−1), since x is in the j-th position

in OPT. Thus, (k − v) ≤ j. So what happens when MTF moves x to the

front of the list? In terms of inversions two things happen: (i) (k − 1− v)

new inversions are created, with respect to OPT’s list, before OPT itself

deals with the request for x. (ii) v inversions are eliminated, again with

respect to OPT’s list, before OPT itself deals with the request for x.

Therefore, the contribution to the amortized cost is:

k + ((k − 1− v)− v) = 2(k − v)− 1
(1)

≤ 2j − 1
(2)
= 2s− 1 (5.6)

where (1) follows from (k − v) ≤ j shown above, and (2) follows from the

fact that the search cost incurred by OPT when looking for x is exactly j.

Note that (5.6) looks similar to (5.5), but we are missing +pi − fi. These

terms will come from considering the second step of the analysis: OPT

makes its move and we measure the change of potential with respect to

MTF with x at the beginning of the list. This is dealt with in the next

problem.

Problem 5.6. In the second step of the analysis, MTF has made its move

and OPT, after retrieving x, rearranges its list. Show that each paid trans-

position contributes 1 to the amortized cost and each free transposition

contributes −1 to the amortized cost.
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This finishes the proof.

In the dynamic list accessing model we also have insertions, where the

cost of an insertion is l + 1—here l is the length of the list—and deletions,

where the cost of a deletion is the same as the cost of an access, i.e., the

position of the item on the list. MTF always deletes the item at position l.

Problem 5.7. Show that theorem 5.2 still holds in the dynamic case.

The infimum of a subset S ⊆ R is the largest element r, not necessarily

in S, such that for all all s ∈ S, r ≤ s (see section 9.3.4). We say that an

online algorithm is c-competitive if there is a constant α such that for all

finite input sequences ALG(σ) ≤ c · OPT(σ) + α. The infimum over the

set of all values c such that ALG is c-competitive is called the competitive

ratio of ALG and is denoted R(ALG).

Problem 5.8. Observe that OPT(σ) ≤ n · l, where l is the length of the

list and n is |σ|.

Problem 5.9. Show that MTF is a 2-competitive algorithm, and that

R(MTF) ≤ 2− 1
l .

Problem 5.10. In the chapters on online and randomized algorithms (this

chapter and the next) we need to generate random values. Use the Python

random library to generate those random values; implement OPT and MTF

and compare them on a random sequence of requests. You may want to

plot the competitiveness of MTF with respect to OPT using gnuplot.

The above analysis of the list accessing problem illustrates our approach

to online algorithms: comptetitive analysis, whereby the payoff is measured

by comparing an algorithm’s performance to that of an optimal offline

algorithm. Competitive analysis thus falls within the framework of worst-

case complexity, discussed in section 1.1.1.

5.2 Paging

Consider a two-level virtual memory system: each level, slow and fast, can

store a number of fixed-size memory units called pages. The slow memory

stores N pages, and the fast memory stores k pages, where k < N . The k

is usually much smaller than N .

Given a request for page pi, the system must make page pi available in

the fast memory. If pi is already in the fast memory, called a hit, the system
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need not do anything. Otherwise, on a miss, the system incurs a page fault,

and must copy the page pi from the slow memory to the fast memory. In

doing so, the system is faced with the following problem: which page to

evict from the fast memory to make space for pi. In order to minimize

the number of page faults, the choice of which page to evict must be made

wisely1.

Typical examples of fast and slow memory pair are a RAM and hard

disk, respectively, or a processor-cache and RAM, respectively. In general,

we shall refer to the fast memory as “the cache.” Because of its impor-

tant role in the performance of computer systems, paging has been studied

extensively, and the common paging schemes are listed in figure 5.2.

LRU Least Recently Used

CLOCK Clock Replacement

FIFO First-In/First-Out

LIFO Last-In/First-Out

LFU Least Frequently Used

LFD Longest Forward Distance

Fig. 5.2 Paging disciplines: the top five are online algorithms; the last one, LFD, is an

offline algorithm. We shall see in section 5.2.6 that LFD is in fact the optimal algorithm
for paging.

All the caching disciplines in figure 5.2, except for the last one, are

online algorithms; that is, they are algorithms that make decisions based

on past events, rather than the future. The last algorithm, LFD, replaces

the page whose next request is the latest, which requires knowledge of future

requests, and hence it is an offline algorithm.

5.2.1 Demand paging

Demand paging algorithms never evict a page from the cache unless there

is a page fault, that is, they never evict preemptively. All the paging

disciplines in figure 5.2 are demand paging. We consider the page fault

model, where we charge 1 for bringing a page into the fast memory, and

we charge nothing for accessing a page which is already there. As the next

1Note that, initially, when the algorithm is starting to process requests, and thus pop-
ulate the fast memory, there may be empty slots and so a miss may not necessarily force

an eviction. However, the assumption we make is that the fast memory fills up quickly
and henceforth misses force evictions.
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theorem shows this is a very general model.

Theorem 5.11. Any page replacement algorithm, online or offline, can be

modified to be demand paging without increasing the overall cost on any

request sequence.

Proof. In a demand paging algorithm a page fault causes exactly one evic-

tion (once the cache is full, that is), and there are no evictions between

misses. So let ALG be any paging algorithm. We show how to modify it

to make it a demand paging algorithm ALG′, in such a way that on any

input sequence ALG′ incurs at most the cost (makes at most as many page

moves from slow to fast memory) as ALG, i.e., ∀σ, ALG′(σ) ≤ ALG(σ).

Suppose that ALG has a cache of size k. Define ALG′ as follows: ALG′

also has a cache of size k, plus k registers. ALG′ runs a simulation of ALG,

keeping in its k registers the page numbers of the pages that ALG would

have had in its cache. Based on the behavior of ALG, ALG′ makes decisions

to evict pages2.

Suppose page p is requested. If p is in the cache of ALG′, then just ser-

vice the request. Otherwise, if a page fault occurs, ALG′ behaves according

to the following two cases:

Case 1. If ALG also has a page fault (that is, the number of p is not in

the registers), and ALG evicts a page from register i to make room for p,

then ALG′ evicts a page from slot i in its cache, to make room for p.

Case 2. If ALG does not have a page fault, then the number of p must

be in, say, register i. In that case, ALG′ evicts the contents of slot i in its

cache, and moves p in there.

Thus ALG′ is a demand paging algorithm.

We now show that ALG′ incurs at most the cost of ALG on any input

sequence; that is, ALG′ has at most as many page faults as ALG. To do

this, we pair each page move of ALG′ with a page move of ALG in a unique

manner as follows: If ALG′ and ALG both incur a page fault, then match

the corresponding page moves. Otherwise, if ALG already had the page in

its cache, it must have moved it there before, so match that move with the

current move of ALG′.

It is never the case that two different moves of ALG′ are matched with

a single move of ALG. To see this, suppose that on some input sequence,

we encounter for the first time the situation where two moves of ALG′ are

2The assumption in this proof is that ALG does not re-arrange its slots—i.e., it never
permutes the contents of its cache.
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matched with the same move of ALG. This can only happen in the following

situation: page p is requested, ALG′ incurs a page fault, it moves p into

its cache, and we match this move with a past move of ALG, which has

been matched already! But this means that page p was already requested,

and after it has been requested, it has been evicted from the cache of ALG′

(otherwise, ALG′ would not have had a page fault).

ALG′ evicted page p while ALG did not, so they were not in the same

slot. But ALG′ put (the first time) p in the same slot as ALG, contradiction.

Therefore, we could not have matched a move twice. Thus, we can match

each move of ALG′ with a move of ALG, in a one-to-one manner, and hence

ALG′ makes at most as many moves as ALG. See figure 5.3.

�� c �� �� d ��

�� a �� �� b ��

ALG × ×

ALG′ × ×

σ = σ1 σ2 σi = p • σj = p σn

p is evicted from the

cache of ALG′

OO

Fig. 5.3 Suppose that i, j is the smallest pair such that there exists a page p with

the property that σi = σj = p. ALG′ incurs a page fault at σi and σj , and the two
corresponding page moves of ALG′ are both matched with the same page move of p by

ALG somewhere in the stretch a. We show that this is not possible: if ALG′ incurs a

page fault at σi = σj = p it means that somewhere in b the page p is evicted—this point
is denoted with ‘•’. If ALG did not evict p in the stretch c, then ALG also evicts page p

at ‘•’ and so it must then bring it back to the cache in stretch d—we would match the

× at σj with that move. If ALG did evict p in the stretch c, then again it would have to
bring it back in before σj . In any case, there is a later move of p that would be matched
with the page fault of ALG′ at σj .

Problem 5.12. In figure 5.3 we postulate the existence of a “smallest” pair
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i, j with the given properties. Show that if such a pair exists then there

exists a “smallest” such pair; what does “smallest” mean in this case?

The idea is that ALG does not gain anything by moving a page into its

cache preemptively (before the page is actually needed). ALG′ waits for

the request before taking the same action.

In the meantime (between the time that ALG moves in the page and

the time that it is requested and ALG′ brings it in), ALG′ can only gain,

because there are no requests for that page during that time, but there

might be a request for the page that ALG evicted preemptively.

Note that in the simulation, ALG′ only needs k extra registers, to keep

track of the page numbers of the pages in the cache of ALG, so it is an

efficient simulation.

Theorem 5.11 allows for us to restrict our attention to demand paging

algorithms, and thus use the terms “page faults” and “page moves” inter-

changeably, in the sense that in the context of demand paging, we have a

page move if and only if we have a page fault.

5.2.2 FIFO

When a page must be replaced, the oldest page is chosen. It is not necessary

to record the time when a page was brought in; all we need to do is create

a FIFO (First-In/First-Out) queue to hold all pages in memory. The FIFO

algorithm is easy to understand and program, but its performance is not

good in general.

FIFO also suffers from the so called Belady’s anomaly. Suppose that

we have the following sequence of page requests: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Then, we have more page faults when k = 4 than when k = 3. That is,

FIFO has more page faults with a bigger cache!

Problem 5.13. For a general i, provide a sequence of page requests that

illustrates Belady’s anomaly incurred by FIFO on cache sizes i and i + 1.

In your analysis, assume that the cache is initially empty.

5.2.3 LRU

The optimal algorithm for page replacement, OPT, evicts the page whose

next request is the latest, and if some pages are never requested again, then
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anyone of them is evicted. This is an impractical algorithm from the point

of view of online algorithms as we do not know the future.

However, if we use the recent past as an approximation of the near

future, then we will replace the page that has not been used for the longest

period of time. This approach is the Least Recently Used (LRU) algorithm.

LRU replacement associates with each page the time of that page’s

last use. When a page must be replaced, LRU chooses that page that

has not been used for the longest period of time. The LRU algorithm is

considered to be good, and is often implemented—the major problem is

how to implement it; two typical solutions are counters and stacks.

Counters: Keep track of the time when a given page was last referenced,

updating the counter every time we request it. This scheme requires a

search of the page table to find the LRU page, and a write to memory for

each request; an obvious problem might be clock overflow.

Stack: Keep a stack of page numbers. Whenever a page is referenced, it

is removed from the stack and put on the top. In this way, the top of the

stack is always the most recently used page, and the bottom is the LRU

page. Because entries are removed from the middle of the stack, it is best

implemented by a doubly-linked list.

How many pointer operations need to be performed in the example in

figure 5.4? Six, if we count as follows: remove old head and add new

head (2 operations), connect 4 with 1 (2 operations), connect 3 with 5 (2

operations). However, we could have also counted disconnecting 3 with 4

and 4 with 5, giving 4 more pointer operations, giving us a total of 10. A

third strategy would be not to count disconnecting pointers, in which case

we would get half of these operations, 5. It does not really matter how we

count, because the point is that in order to move a requested page (after a

hit) to the top, we require a small constant number of pointer operations,

regardless of how we count them.

Problem 5.14. List the pointer operations that have to be performed if the

requested page is not in the cache. Note that you should list the pointer

operations (not just give a “magic number”), since we just showed that

there are three different (all reasonable) ways to count them. Again, the

point is, that if a page has to be brought in from the slow memory to the

cache, a small constant number of pointer operations have to be performed.

Problem 5.15. We have implemented LRU with a doubly-linked list.

What would be the problem if we used a normal linked list instead? That

is, if every page had only a pointer to the next page: i⇝ j, meaning that i
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Fig. 5.4 LRU stack implementation with a doubly-linked list. The requested page is
page 4; the left list shows the state before page 4 is requested, and the right list shows

the state after the request has been serviced.

was requested more recently than j, but no page was requested later than

i and sooner than j.

Lemma 5.16. LRU does not incur Belady’s anomaly (on any cache size

and any request sequence).

Proof. Let σ = p1, p2, . . . , pn be a request sequence, and let LRUi(σ) be

the number of faults that LRU incurs on σ with a cache of size i. We show

that for all i and σ, the following property holds:

LRUi(σ) ≥ LRUi+1(σ). (5.7)

Once we show (5.7), it follows that for any pair i < j and any request

sequence σ, LRUi(σ) ≥ LRUj(σ), and conclude that LRU does not incur

Belady’s anomaly.

To show (5.7), we define a property of doubly-linked lists which we call

“embedding.” We say that a doubly-linked list of size i can be embedded

in another doubly-linked list of size i + 1, if the two doubly-linked lists

are identical, except that the longer one may have one more item at the
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“end.” See figure 5.5, where the doubly-linked list of size 3 on the left can

be embedded in the doubly-linked list of size 4 on the right.

�� ��
18

��

18

��
5

��

OO

5

��

OO

29

��

OO

29

��

OO

3

��

OO

Fig. 5.5 The list on the left can be embedded into the list on the right.

At the beginning of processing the request sequence, when the caches

are getting filled up, the two lists are identical, but once the caches are full,

the LRUi+1 cache will have one more item.

Claim 5.17. After processing each request, the doubly-linked list of LRUi

can be embedded into the doubly-linked list of LRUi+1.

Proof. We prove this claim by induction on the number of steps. Basis

case: if n = 1, then both LRUi and LRUi+1 incur a fault and bring in p1.

Induction step: suppose that the claim holds after step n; we show that it

also holds after step n + 1. Consider the following cases: (1) LRUi has a

hit on pn+1, (2) LRUi has a fault on pn+1, (2a) LRUi+1 also has a fault,

(2b) LRUi+1 does not have a fault.

Problem 5.18. Show that in each case the embedding property is being

preserved.

This finishes the proof of the claim.

Problem 5.19. Use the claim to prove (5.7).

This finishes the proof of the lemma.



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 110

110 An introduction to the analysis of algorithms

5.2.4 Marking algorithms

Consider a cache of size k and fix a request sequence σ. We divide the

request sequence into phases as follows: phase 0 is the empty sequence. For

every i ≥ 1, phase i is the maximal sequence following phase i − 1 that

contains at most k distinct page requests; that is, if it exists, phase i + 1

begins on the request that constitutes the k + 1 distinct page request since

the start of the i-th phase. Such a partition is called a k-phase partition.

This partition is well defined and is independent of any particular algorithm

processing σ.

For example, a 3-phase partition:

1, 2, 1, 2, 1, 2, 3︸ ︷︷ ︸
3-phase #1

, 4, 5, 6, 6, 6, 6, 6, 6, 6, 4, 5, 4︸ ︷︷ ︸
3-phase #2

, 7, 7, 7, 7, 1, 2︸ ︷︷ ︸
3-phase #3

.

Let σ be any request sequence and consider its k-phase partition. Associate

with each page a bit called the mark. The marking is done for the sake

of analysis (this is not implemented by the algorithm, but “by us” to keep

track of the doings of the algorithm). For each page, when its mark bit is

set we say that the page is marked, and otherwise, unmarked.

Suppose that at the beginning of each k-phase we unmark all the pages,

and we mark a page when it is first requested during the k-phase. A marking

algorithm never evicts a marked page from its fast memory.

For example, suppose that k = 2, and σ is a request sequence. We show

the 2-phases of σ:

σ = 1, 1, 3, 1︸ ︷︷ ︸
2-phase #1

, 5, 1, 5, 1, 5, 1︸ ︷︷ ︸
2-phase #2

, 3, 4, 4, 4︸ ︷︷ ︸
2-phase #3

, 2, 2, 2, 2︸ ︷︷ ︸
2-phase #4

. (5.8)

See figure 5.6 to examine the marking in this example. Note that after each

phase, every page is unmarked and we begin marking afresh, and except for

the last phase, all phases are always complete (they have exactly k distinct

requests, 2 in this case).

With a marking algorithm, once a request for page p in phase i is made, p

stays in the cache until the end of phase i—the first time p is requested, it is

marked, and it stays marked for the entire phase, and a marking algorithm

never evicts a marked page.

The intuition is that marking algorithms are good schemes for page

replacement because, in any given phase, there are at most k distinct pages,

so they all fit in a cache of size k; it does not make sense to evict them

in that phase, as we can only lose by evicting—the evicted page might be

requested again.
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step 1 2 3 4 5

1 x

2 x

3 x x

4 x x

5 x

6 x x

7 x x

8 x x

9 x x

step 1 2 3 4 5

10 x x

11 x

12 x x

13 x x

14 x x

15 x

16 x

17 x

18 x

Fig. 5.6 Marking in example (5.8).

Theorem 5.20. LRU is a marking algorithm

Proof. We argue by contradiction; suppose that LRU on a cache of size k

is not a marking algorithm. Let σ be a request sequence where there exists

a k-phase partition, during which some marked page p is evicted. Consider

the first request for p during this k-phase:

σ = p1, p2, p3, . . . , . . . , . . . , p, . . . , . . . , . . .︸ ︷︷ ︸
k-phase

, . . . , . . .

Immediately after p is serviced, it is marked as the most recently used page

in the cache (i.e., it is put at the top of the doubly-linked list).

In order for p to leave the cache, LRU must incur a page fault while

p is the least recently used page. It follows that during the k-phase in

question, k+1 distinct pages were requested: there are the k−1 pages that

pushed p to the end of the list, there is p, and the page that got p evicted.

Contradiction; a k-phase has at most k distinct pages.

5.2.5 FWF

Flush When Full (FWF) is a very näıve page replacement algorithm that

works as follows: whenever there is a page fault and there is no space left in

the cache, evict all pages currently in the cache—call this action a “flush.”

More precisely, we consider the following version of the FWF algorithm:

each slot in the cache has a single bit associated with it. At the beginning,

all these bits are set to zero. When a page p is requested, FWF checks only

the slots with a marked bit. If p is found, it is serviced. If p is not found,
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then it has to be brought in from the slow memory (even if it actually is in

the cache, in an unmarked slot). FWF looks for a slot with a zero bit, and

one of the following happens: (1) a slot with a zero bit (an unmarked page)

is found, in which case FWF replaces that page with p. (2) a slot with a

zero bit is not found (all pages are marked), in which case FWF unmarks

all the slots, and replaces any page with p, and it marks p’s bit.

Problem 5.21. Show that FWF is a marking algorithm. Show that FIFO

is not a marking algorithm.

Problem 5.22. A page replacement algorithm ALG is conservative if, on

any consecutive input subsequence containing k or fewer distinct page re-

quests, ALG will incur k or fewer page faults. Prove that LRU and FIFO

are conservative, but FWF is not.

5.2.6 LFD

The optimal page replacement algorithm turns out to be LFD (Longest

Forward Distance—see figure 5.2). LFD evicts the page that will not be

used for the longest period of time, and as such, it cannot be implemented

in practice because it requires knowledge of the future. However, it is very

useful for comparison studies, i.e., competitive analysis.

Theorem 5.23. LFD is the optimal (offline) page replacement algorithm,

i.e., OPT = LFD.

Proof. We will show that if ALG is any paging algorithm (online or offline),

then on any sequence of requests σ, ALG(σ) ≥ LFD(σ). As usual, ALG(σ)

denotes the number of page faults of ALG on the sequence of requests σ.

We assume throughout that all algorithms are working with a cache of a

fixed size k. We need to prove the following claim.

Claim 5.24. Let ALG be any paging algorithm. Let σ = p1, p2, . . . , pn be

any request sequence. Then, it is possible to construct an offline algorithm

ALGi that satisfies the following three properties:

(1) ALGi processes the first i− 1 requests of σ exactly as ALG does,

(2) if the i-th request results in a page fault, ALGi evicts from the

cache the page with the “longest forward distance,”

(3) ALGi(σ) ≤ ALG(σ)
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Proof. Divide σ into three segments as follows:

σ = σ1, pi, σ2,

where σ1 and σ2 each denote a block of requests.

Recall the proof of theorem 5.11 where we simulated ALG with ALG′

by running a “ghost simulation” of the contents of the cache of ALG on a

set of registers, so ALG′ would know what to do with its cache based on

the contents of those registers. We do the same thing here: ALGi runs a

simulation of ALG on a set of registers.

As on σ1, ALGi is just ALG, it follows that ALGi(σ1) = ALG(σ1), and

also, they both do or do not incur a page fault on pi. If they do not, then let

ALGi continue behaving just like ALG on σ2, so that ALGi(σ) = ALG(σ).

However, if they do incur a page fault on pi, ALGi evicts the page with

the longest forward distance from its cache, and replaces it with pi. If ALG

also evicts the same page, then again, let ALGi behave just like ALG for

the rest of σ, so that ALGi(σ) = ALG(σ).

Finally, suppose that they both incur a fault at pi, but ALG evicts some

page q and ALGi evicts some page p, and p ̸= q; see figure 5.7. If both

p, q /∈ σ2, then let ALGi behave just like ALG, except the slots with p and

q are interchanged (that is, when ALG evicts from the q-slot, ALGi evicts

from the p-slot, and when ALG evicts from the p-slot, ALGi evicts from

the q-slot).

ALG: Xq p

ALGi: q Xp

Fig. 5.7 ALG evicts q and ALGi evicts p, denoted with Xq and Xp, respectively, and they

both replace their evicted page with pi.

If q ∈ σ2 but p /∈ σ2, then again let ALGi, when forced with an eviction,

act just like ALG with the two slots interchanged. Note that in this case

it may happen that ALGi(σ2) < ALG(σ2), since ALG evicted q, which

is going to be requested again, but ALGi evicted p which will never be

requested.

Problem 5.25. Explain why the case q /∈ σ2 and p ∈ σ2 is not possible.

Otherwise, we can assume that ALGi evicts page p and ALG evicts

page q, p ̸= q, and:

σ2 = pi+1, . . . , q, . . . , p, . . . , pn. (5.9)
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Assume that the q shown in (5.9) is the earliest instance of q in σ2. As

before, let ALGi act just like ALG with the q-slot and p-slot interchanged.

We know for sure that ALG will have a fault at q. Suppose ALG does not

have a fault at p; then, ALG never evicted p, so ALGi never evicted q, so

ALGi did not have a fault at q. Therefore, ALGi(σ2) ≤ ALG(σ2).

We now show how to use claim 5.24 to prove that LFD is in fact the

optimal algorithm. Let σ = p1, p2, . . . , pn be any sequence of requests. By

the claim, we know that: ALG1(σ) ≤ ALG(σ). Applying the claim again,

we get (ALG1)2(σ) ≤ ALG1(σ). Define ALGj to be (· · · ((ALG1)2) · · · )j .
Then, we obtain that ALGj(σ) ≤ ALGj−1(σ).

Note that ALGn acts just like LFD on σ, and therefore we have that

LFD(σ) = ALGn(σ) ≤ ALG(σ), and we are done.

Henceforth, OPT can be taken to be synonymous with LFD.

Theorem 5.26. Any marking algorithm ALG is
(

k
k−h+1

)
-competitive,

where k is the size of its cache, and h is the size of the cache of OPT.

Proof. Fix any request sequence σ and consider its k-phase partition. As-

sume, for now, that the last phase of σ is complete (in general, the last

phase may be incomplete).

Claim 5.27. For any phase i ≥ 1, a marking algorithm ALG incurs at

most k page faults.

Proof. This follows because there are k distinct page references in each

phase. Once a page is requested, it is marked and therefore cannot be

evicted until the phase has been completed. Consequently, ALG cannot

fault twice on the same page.

If we denote the i-th k-phase of σ by σi, we can express the above claim

as ALG(σi) ≤ k. Thus, if there are s phases, ALG(σ) ≤ s · k.

Claim 5.28. OPT(σ) ≥ s · (k − h + 1), where again we assume that the

requests are σ = σ1, σ2, . . . , σs, where σs is complete.

Proof. Let pa be the first request of phase i, and pb the last request of

phase i. Suppose first that phase i + 1 exists (that is, i is not the last

phase). Then, we partition σ into k-phases (even though the cache of OPT

is of size k, we still partition σ into k-phases):

σ = . . . , pa−1, pa, pa+1, . . . , pb︸ ︷︷ ︸
k-phase #i

, pb+1, . . . , . . .︸ ︷︷ ︸
k-phase #i+1

.
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After processing request pa, OPT has at most h − 1 pages in its cache,

not including pa. From (and including) pa+1 until (and including) pb+1,

there are at least k distinct requests. Therefore, OPT must incur at least

k− (h− 1) = k− h + 1 faults on this segment. To see this, note that there

are two cases.

Case 1. pa appears again in pa+1, . . . , pb+1; then there are at least (k + 1)

distinct requests in the segment pa+1, . . . , pb+1, and since OPT has a cache

of size h, regardless of the contents of the cache, there will be at least

(k + 1)− h = k − h + 1 page faults.

Case 2. Suppose that pa does not appear again in pa+1, . . . , pb+1, then

since pa is requested at the beginning of phase i, it is for sure in the cache

by the time we start servicing pa+1, . . . , pb+1. Since it is not requested

again, it is taking up a spot in the cache, so at most (h − 1) slots in the

cache can be taken up by some of the elements requested in pa+1, . . . , pb+1;

so again, we have at least k − (h− 1) = k − h + 1 many faults.

If i is the last phase (so i = s), we do not have pb+1, so we can only say

that we have at least k−h faults, but we make it up with p1 which has not

been counted.

It follows from claims 5.27 and 5.28 that:

ALG(σ) ≤ s · k and OPT(σ) ≥ s · (k − h + 1),

so that:

ALG(σ)

s · k
≤ 1 ≤ OPT(σ)

s · (k − h + 1)
,

so finally:

ALG(σ) ≤
(

k

k − h + 1

)
·OPT(σ).

In the case that σ can be divided into s complete phases.

As was mentioned above, in general, the last phase may not be complete.

Then, we repeat this analysis with σ = σ1, σ2, . . . , σs−1, and for σs we use

α at the end, so we get:

ALG(σ) ≤
(

k

k − h + 1

)
·OPT(σ) + α.

Problem 5.29. Work this out.

Therefore, in either case we obtain that any marking algorithm ALG is(
k

k−h+1

)
-competitive.
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Problem 5.30. Implement all the disciplines in table 5.2. Judge them ex-

perimentally, by running them on a string of random requests, and plotting

their costs—compared to LFD.

5.3 Answers to selected problems

Problem 5.1. Think of the filing cabinet mentioned at the beginning of

this chapter. As we scan the filing cabinet while searching for a particular

file, we keep a pointer at a given location along the way (i.e., we “place a

finger” as a bookmark in that location) and then insert the accessed file in

that location almost free of additional search or reorganization costs. We

also assume that it would not make sense to move the file to a later location.

Finally, any permutation can be written out as a product of transpositions

(check any abstract algebra textbook).

Problem 5.3. The answer is 3. Note that in a list of n items there

are
(
n
2

)
= n·(n−1)

2 unordered pairs (and n · (n − 1) ordered pairs), so to

compute Φ, we enumerate all those pairs, and increase a counter by 1

(starting from 0) each time we encounter an inversion. For the second

question, note that while we do not know how OPT works exactly, we know

that it services σ with the optimal cost, i.e., it services σ in the cheapest

way possible. Thus, we can find OPT(σ) by an exhaustive enumeration:

given our list x1, x2, . . . , xl and a sequence of requests σ = σ1, σ2, . . . , σn,

we build a tree where the root is labeled with x1, x2, . . . , xl, and the children

of the root are all the l! permutations of the list. Then each node in turn

has l! many children; the depth of the tree is n. We calculate the cost

of each branch and label the leaves with those costs. The cost of each

branch is the sum of the costs of all the transpositions required to produce

each consecutive node, and the costs of the searches associated with the

corresponding list configurations. The cheapest branch (and there may be

several) is precisely OPT(σ).

Problem 5.4.

n∑
i=1

ti =

n∑
i=1

(ai − Φi + Φi−1) =

n∑
i=1

ai +

n∑
i=1

Φi−1 −
n∑

i=1

Φi

=

n∑
i=1

ai +

n−1∑
i=0

Φi −
n∑

i=1

Φi =

n∑
i=1

ai + (Φ0 +

n−1∑
i=1

Φi)− (Φn +

n−1∑
i=1

Φi)

and canceling in the last term gives us Φ0 − Φn +
∑n

i=1 ai.
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Problem 5.5. The number of elements before x in MTF is (k − 1), since

x is in the k-th position. Of these (k − 1) elements, v are ∗. Both lists

contain exactly the same elements, and the (k − 1 − v) non-∗ before x in

MTF must all be before x in OPT (if an element is before x in MTF and

after x in OPT, then by definition it would be a ∗).
Problem 5.6. In the case of a paid transposition, the only change in

the number of inversions can come from the two transposed items, as the

relative order with respect to all the other items remains the same. In the

case of a free transposition, we know that MTF already put the transposed

item x at the front of its list, and we know that free transpositions can only

move x forward, so the number of items before x in OPT decreases by 1.

Problem 5.8. OPT is the optimal offline algorithm, and hence it must

do at least as well as any algorithm ALG. Suppose we service all requests

one-by-one in the näıve way, without making any rearrangements. The cost

of this scheme is bounded about by n · l, the number of requests times the

length of the list. Hence, OPT(σ) ≤ n · l.
Problem 5.9. By theorem 5.2 we know that

MTF(σ) ≤ 2 ·OPTS(σ) + OPTP (σ)−OPTF (σ)− n,

and the RHS is

≤ 2 ·OPTS(σ) + OPTP (σ) ≤ 2 · (OPTS(σ) + OPTP (σ)) = 2 ·OPT(σ).

This shows that MTF is 2-competitive (with α = 0). For the second part,

we repeat the above argument, but without “losing” the n factor, so we

have MTF(σ) ≤ 2 · OPT(σ) − n. On the other hand, OPT(σ) ≤ n · l (by

problem 5.8), so

2 ·OPT(σ)− n ≤
(

2− 1

l

)
·OPT(σ).

Problem 5.12. In the proof of theorem 5.11 we define a matching between

the page moves (from slow memory into the cache) of ALG and ALG′. In

order to show that the matching is one-to-one we postulate the existence of

a pair i, j, i ̸= j, with the following properties: (i) there exists a page p such

that σi = σj = p, (ii) ALG′ incurs a page fault at σi and σj , and (iii) ALG′

has to move p into the cache to service σi and σj and those two moves are

matched with the same move of p by ALG. For the sake of the argument

in the proof of theorem 5.11 we want the “smallest” such pair—so we use

the Least Number Principle (see page 239) to show that if such pairs exist

at all, there must exist pairs where i+ j is minimal; we take any such pair.
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Problem 5.13. Consider the following list:

1, 2, 3 . . . , i, i + 1︸ ︷︷ ︸
1

, 1, 2, 3, . . . , i− 1︸ ︷︷ ︸
2

, i + 2︸︷︷︸
3

, 1, 2, 3, . . . , i, i + 1, i + 2︸ ︷︷ ︸
4

.

If we have a cache of size i + 1, then we incur i + 1 faults in segment 1

(because the cache is initially empty), then we have i−1 hits in segment 2,

then we have another page fault in segment 3 so we evict 1, and in segment

4 we lag behind by 1 all the way, so we incur i + 2 page faults. Hence, we

incur i + 1 + 1 + i + 2 = 2i + 4 page faults in total.

Suppose now that we have a cache of size i. Then we incur i + 1 page

faults in segment 1, then we have i − 1 page faults in segment 2, and one

page fault in segment 3, hence 2i + 1 page faults before starting segment

4. When segment 4 starts, we already have pages 1 through i − 1 in the

cache, so we have hits, and then when i + 1 is requested, we have a fault,

and when i + 2 is requested we have a hit, and hence only one fault in

segment 4. Therefore, we have 2i + 2 page faults with a cache of size i. To

understand this solution, make sure that you keep track of the contents of

the cache after each of the four segments has been processed. Note that i

has to be at least 3 for this example to work.

Problem 5.14. If the requested page is not in the cache, we must:

(1) Remove the null pointer (+1)

(2) Disconnect the last from 2nd to last item (+2)

(3) Add null pointer from new last item (+1)

(4) Remove head (+1)

(5) Connect new first item (requested page) to old first item (+2)

(6) Add new head (+1)

for a total of 8 pointer operations.

Problem 5.15. The problem with a singly-linked list is that to find the

predecessor of a page we need to start the search always at the beginning

of the list, increasing the overhead of maintaining the stack.

Problem 5.18. Case 1. If LRUi has a hit on pn+1, then so does LRUi+1,

as LRUi could be embedded in LRUi+1 after step n. Therefore, neither of

the linked lists changes on step n + 1, so LRUi can still be embedded in

LRUi+1 after step n + 1.

Case 2a. If LRUi and LRUi+1 both have faults on pn+1, then each list

will undergo two changes: the last (i.e. least recently used) page will be

removed from the “end”, and pi+1 will be added as the head. Removing

the last page from each list does not stop LRUi from being embedded in
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LRUi+1; it simply causes each list to end one page “sooner”, so the page at

the end of LRUi after step n is now the “extra” page at the end of LRUi+1.

Clearly adding the same new head to each list does not inhibit embedding

either, so after n + 1 steps LRUi can still be embedded in LRUi+1.

Case 2b. Assume LRUi has a fault on pn+1 and LRUi+1 does not.

Both lists must contain i pages, after step n, and moreover these must be

the same pages in the same order for LRUi to be embedded in LRUi+1. So

the least recently used page in LRUi will be removed in step n + 1, but

this will not stop LRUi from being embedded, as the removed page is now

the extra page at the end of LRUi+1. Again, clearly the addition of the

same page, pn+1, to the start of both lists does not affect embedding, so

induction is complete.

Problem 5.19. After n−1 steps, the linked list of LRUi can be embedded

in that of LRUi+1. Consider any pn ∈ σ. If pn is in LRUi’s list, then it is

in the same index in LRUi+1, so the cost of accessing pn is identical. If pn
is not in LRUi’s list, it may be the last element of LRUi+1’s list, in which

case LRUi+1 accesses pn with smaller cost than that of LRUi. Otherwise,

it is not in either list, so again the cost is the same. Since this is true for

every p ∈ σ, we can conclude that LRUi(σ) ≤ LRUi+1(σ).

Problem 5.21. FWF really implements the marking bit, so it is almost a

marking algorithm by definition. FIFO is not a marking algorithm because

with k = 3, and the request sequence 1, 2, 3, 4, 2, 1 it will evict 2 in the

second phase even though it is marked.

Problem 5.22. We must assume that the cache is of size k. Otherwise

the claim is not true: for example, suppose that we have a cache of size 1,

and the following sequences: 1, 2, 1, 2. Then, in that sequence of 4 requests

there are only 2 distinct requests, yet with a cache of size 1, there would be

4 faults, for any page-replacement algorithm. With a cache of size k, LRU

is never going to evict a page during this consecutive subsequence, once

the page has been requested. Thus, each distinct page request can only

cause one fault. Same goes for FIFO. Thus, they are both conservative

algorithms. However, it is possible that half-way through the consecutive

subsequence, the cache of FWF is going to get full, and FWF is going to

evict everybody. Hence, FWF may have more than one page fault on the

same page during this consecutive subsequence.

Problem 5.25. If p ∈ σ2 and q ̸∈ σ2, then q would have a “longer forward

distance” than p, and so p would not have been evicted by ALG. Rather,

ALG would have evicted q or some other page that was not to be requested

again.
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Problem 5.29. Let Σs−1 denote the first s− 1 complete phases of σ. We

know that

ALG(Σs−1) ≤
(

k

k − h + 1

)
·OPT(Σs−1).

Clearly, at most k − 1 faults can occur in phase σs in either algorithm,

as it is not a complete k-phase. Therefore,

ALG(σ) ≤ ALG(Σs−1) + k − 1

≤
(

k

k − h + 1

)
·OPT(Σs−1) + k − 1

≤
(

k

k − h + 1

)
·OPT(σ) + k − 1

5.4 Notes

A very complete text book on online algorithms is [Borodin and El-Yaniv

(1998)]. See also [Dorrigiv and López-Ortiz (2009)] from the SIGACT news

online algorithms column.

The traditional approach to studying online algorithms falls within the

framework of distributional, also known as average-case, complexity: a dis-

tribution on event sequences is hypothesized, and the expected payoff per

event is analyzed. The approach in this chapter is the the now more es-

tablished one, namely competitive analysis, whereby the payoff of an online

algorithm is measured by comparing its performance to that of an optimal

offline algorithm.
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Randomized Algorithms

Even a message enciphered on a
three-rotor Enigma might take
twenty-four hours to decode, as
the bombes clattered their way
through the billions of
permutations. A four-rotor
Enigma, multiplying the
numbers by a factor of
twenty-six, would theoretically
take the best part of a month.

Enigma, pg 27 [Harris (1996)]

It is intriguing that we can design procedures which, when confronted

with a profusion of choices, instead of laboriously examining all the possible

answers to those choices, they flip a coin to decide which way to go, and

still “tend to” obtain the right output.

Obviously we save time when we resort to randomness, but what is

surprising is that the output of such procedures can be meaningful. That

is, there are problems that computationally appear very difficult to solve,

but when allowed the use of randomness it is possible to design procedures

that solve those hard problems in a satisfactory manner: the output of the

procedure is correct with a small probability of error. In fact this error can

be made so small that it becomes negligible (say 1 in 2100—the estimated

number of atoms in the observable universe). Thus, many experts believe

that the definition of “feasibly computable” ought to be “computable in

polynomial time with randomness”, rather than just “in polynomial time.”

The advent of randomized algorithms is associated with the problem of

testing primality, which in turn was spurred by the then burgeoning field

121
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of cryptography. Historically the first such algorithm was due to [Solovay

and Strassen (1977)]. Primality testing remains one of the best problems to

showcase the power of randomized algorithms; in this chapter we present the

Rabin-Miller algorithm that came after the Solovay-Strassen algorithm, but

it is somewhat simpler. We also present two other examples of randomized

algorithms: for perfect matching and for string pattern matching. We close

with a short presentation of cryptography.

6.1 Perfect matching

Consider a bipartite graph G = (V ∪ V ′, E), where E ⊆ V × V ′, and its

adjacency matrix is defined as follows: (AG)ij = xij if (i, j′) ∈ EG, and

(AG)ij = 0 otherwise. See the example given in figure 6.1.

1 ◦ // ◦ 1′

2 ◦ // ◦ 2′

3 ◦

!!

◦ 3′

4 ◦

==

◦ 4′


x11 0 0 0

0 x22 0 0

0 0 0 x34

0 0 x43 0



Fig. 6.1 On the left we have a bipartite graph G = (V ∪ V ′, E) where V = {1, 2, 3, 4},
V ′ = {1′, 2′, 3′, 4′} and E ⊆ V × V ′, E = {(1, 1′), (2, 2′), (3, 4′), (4, 3′)}. On the right we

have the corresponding adjacency matrix AG.

Let Sn be the set of all the permutations of n elements. More precisely,

Sn is the set of bijections σ : [n] −→ [n]. Clearly, |Sn| = n!, and it is a well

known result from algebra that any permutation σ ∈ Sn can be written

as a product of transpositions (that is, permutations that simply exchange

two elements in [n] and leave every other element fixed). Any permutation

in Sn may be written as a product of transpositions, and although there

are many ways to do this (i.e., a representation by transpositions is not

unique), the parity of the number of transpositions is constant for any

given permutation σ. Let sgn(σ) be 1 or −1, depending on whether the

parity of σ is even or odd, respectively.



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 123

Randomized Algorithms 123

Recall the Lagrange formula for the determinant:

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Aiσ(i). (6.1)

Lemma 6.1. Let G = (V ∪ V ′, E) be a graph where n = |V | = |V ′| and
E ⊆ V ×V ′. Then, the graph G has a perfect matching (i.e., each vertex in

V can be paired with a unique vertex in V ′) iff it is the case that det(AG) =∑
σ∈Sn

sgn(σ)
∏n

i=1(AG)iσ(i) ̸= 0.

Problem 6.2. Prove lemma 6.1

Since |Sn| = n!, computing the summation over all the σ in Sn, as

in (6.1), is computationally very expensive, so we randomly assign values

to the xij ’s. The integer determinant, unlike the symbolic determinant, can

be computed very efficiently—for example with Berkowitz’s algorithm. Let

AG(x1, . . . , xm), m = |EG|, be AG with its variables renamed to x1, . . . , xm.

Note that m ≤ n2 and each xl represents some xij . We obtain a randomized

algorithm for the perfect matching problem—see algorithm 27.

Algorithm 27 Perfect matching

Choose m random integers i1, . . . , im in {1, . . . ,M} where M = 2m

compute the integer determinant of AG(i1, . . . , im)

if det(AG(i1, . . . , im)) ̸= 0 then

return yes, G has a perfect matching

else

return no, G probably has no perfect matching

end if

Algorithm 27 is a polynomial time Monte Carlo algorithm: “yes” an-

swers are reliable and final, while “no” answers are in danger of a false

negative. The false negative can arise as follows: G may have a perfect

matching, but (i1, . . . , im) may happen to be a root of the polynomial

det(AG(x1, . . . , xm)). However, the probability of a false negative (i.e., the

probability of error) can be made negligibly small, as we shall see shortly.

In line 1 of algorithm 27 we say, somewhat enigmatically, “choose m

random numbers.” How do we “choose” these random numbers? It turns

out that the answer to this question is not easy, and obtaining a source

of randomness is the Achilles heel of randomized algorithms. We have the

science of pseudo-random number generators at our disposal, and other
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approaches, but this formidable topic lies outside the scope of this book,

and so we shall näıvely assume that we have “some source of randomness.”

We want to show the correctness of our randomized algorithm, so we

need to show that the probability of error is negligible. We start with the

Schwarz-Zipper lemma.

Lemma 6.3 (Schwarz-Zippel). Consider polynomials over Z, and let

p(x1, . . . , xm) ̸= 0 be a polynomial, where the degree of each variable is

≤ d (when the polynomial is written out as a sum of monomials), and let

M > 0. Then the number of m-tuples (i1, . . . , im) ∈ {1, 2, . . . ,M}m such

that p(i1, . . . , im) = 0 is ≤ mdMm−1.

Proof. Induction on m (the number of variables). If m = 1, p(x1) can

have at most d = 1 · d ·M1−1 many roots, by the Fundamental Theorem of

Algebra.

Suppose the lemma holds for (m − 1), and now we want to give an

upper bound of mdMm−1 on the number of tuples (i1, . . . , im) such that

p(i1, . . . , im) = 0. First we write p(x1, . . . , xm) as ydx
d
m + · · ·+y0x

0
m, where

each coefficient yi = yi(x1, . . . , xm−1) ∈ Z[x1, . . . , xm−1].

So how many tuples (i1, . . . , im) such that p(i1, . . . , im) = 0 are there?

We partition such tuples into two sets: those that set yd = 0 and those that

do not. The result is bounded above by the sum of the upper bounds of

the two sets; we now give those upper bounds.

Set 1. By the induction hypothesis, yd is zero for at most (m− 1)dMm−2

many (i1, . . . , im−1) tuples, and xm can take M values, and so p(x1, . . . , xm)

is zero for at most (m− 1)dMm−1 tuples. Note that we are over-counting

here; we are taking all tuples that set yd = 0.

Set 2. For each combination of Mm−1 values for x1, . . . , xm−1, there are

at most d roots of the resulting polynomial (again by the Fundamental

Theorem of Algebra), i.e., dMm−1. Note that again we are over-counting

as some of those settings to the x1, . . . , xm will result in yd = 0.

Adding the two upper bounds gives us mdMm−1.

Lemma 6.4. Algorithm 27 is correct.

Proof. We want to show that algorithm 27 for perfect matching is a reliable

Monte Carlo algorithm, which means that “yes” answers are 100% correct,

while “no” answers admit a negligible probability of error.

If the algorithm answers “yes,” then det(AG(i1, . . . , im)) ̸= 0 for

some randomly selected i1, . . . , im, but then the symbolic determinant

det(AG(x1, . . . , xm)) ̸= 0, and so, by lemma 6.1, G has a perfect matching.
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So “yes” answers indicate with absolute certainty that there is a perfect

matching.

Suppose that the answer is “no.” Then we apply lemma 6.3 to

det(AG(x1, . . . , xm)), with M = 2m, and obtain that the probability of

a false negative is

≤ m · d ·Mm−1

Mm
=

m · 1 · (2m)m−1

(2m)m
=

m

2m
=

1

2
.

Now suppose we perform “many independent experiments,” meaning that

we run algorithm 27 k many times, each time choosing a random set

i1, . . . , im. Then, if the answer always comes zero we know that the proba-

bility of error is ≤
(
1
2

)k
= 1

2k
. For k = 100, the error becomes negligible.

In the last paragraph of the proof of lemma 6.4 we say that we run

algorithm 27 k many times, and so bring down the probability of error to

being less than 1
2k

, which for k = 100 is truly negligible. Running the

algorithm k times to get the answer is called amplification (because we

decrease drastically the probability of error, and so amplify the certainty

of having a correct answer); note that the beauty of this approach is that

while we run the algorithm only k times, the probability of error goes down

exponentially quickly to 1
2k

. Just to put things in perspective, if k = 100,

then 1
2100 is so minuscule that by comparison the probability of earth being

hit by a large meteor—while running the algorithm—is a virtual certainty

(and being hit by a large meteor would spare anyone the necessity to run

algorithms in the first place).

Problem 6.5. Show how to use algorithm 27 to find a perfect matching.

Perfect matching can be easily reduced1 to a “max flow problem”: as

an example, consider the perfect matching problem given in figure 6.1; add

two new nodes s, t, and connect s to all the nodes in the left-column of the

matching problem, and connect t to all the nodes in the right-column of the

matching problem, and give each edge a capacity of 1, and ask if there is a

flow ≥ n (where n is the number of nodes in each of the two components

of the given bipartite graph) from s to t; see figure 6.2.

As the max flow problem can be solved in polynomial time without

using randomness, it follows that perfect matching can also be solved in

polynomial time without randomness. Still, the point of this section was to

exhibit a simple randomized algorithm, and that we have accomplished.

1Recall that we have examined briefly the idea of reductions on page 85.
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Fig. 6.2 Reduction of perfect matching to max flow.

6.2 Pattern matching

In this section we design a randomized algorithm for pattern matching.

Consider the set of strings over {0, 1}, and let M : {0, 1} −→ M2×2(Z),

that is, M is a map from strings to 2 × 2 matrices over the integers (Z)

defined as follows:

M(ε) =

[
1 0

0 1

]
; M(0) =

[
1 0

1 1

]
; M(1) =

[
1 1

0 1

]
,

and for strings x, y ∈ {0, 1}∗, M(xy) = M(x)M(y), where the operation

on the left-hand side is concatenation of strings, and the operation on the

right-hand side is multiplication of matrices.

Problem 6.6. Show that M(x) is well defined, that is, no matter how

we evaluate M on x we always get the same result. Also show that M is

one-to-one.

Problem 6.7. Show that for x ∈ {0, 1}n, the entries of M(x) are bounded

by the n-th Fibonacci number. For a formal definition of Fibonacci num-

bers, see problem 9.5 on page 239.

By considering the matrices M(x) modulo a suitable prime p, i.e., by

taking all the entries of M(x) modulo a prime p, we perform efficient ran-

domized pattern matching. We wish to determine whether x is a substring

of y, where |x| = n, |y| = m, n ≤ m. Define

y(i) = yiyi+1 . . . yn+i−1,
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for appropriate i ∈ {1, . . . ,m − n + 1}. Select a prime p ∈ {1, . . . , nm2},
and let A = M(x) (mod p) and A(i) = M(y(i)) (mod p). Note that

A(i + 1) = M−1(yi)A(i)M(yn+i) (mod p),

which makes the computation of subsequent A(i)’s efficient.

Algorithm 28 Pattern matching

Pre-condition: x, y ∈ {0, 1}∗, |x| = n, |y| = m and n ≤ m

1: select a random prime p ≤ nm2

2: A←−M(x) (mod p)

3: B ←−M(y(1)) (mod p)

4: for i = 1, . . . ,m− n + 1 do

5: if A = B then

6: if x = y(i) then

7: return found a match at position i

8: end if

9: end if

10: B ←−M−1(yi) ·B ·M(yn+i)

11: end for

What is the probability of getting a false positive? It is the probability

that A(i) = M(y(i)) (mod p) even though A(i) ̸= M(y(i)). This is less

than the probability that p ∈ {1, . . . , nm2} divides a (non-zero) entry in

A(i) − M(y(i)). Since these entries are bounded by Fn < 2n, less than

n distinct primes can divide any of them. On the other hand, there are

π(nm2) ≈ (nm2)/(log(nm2)) primes in {1, . . . , nm2} (by the Prime Num-

ber Theorem). So the probability of a false positive is O(1/m).

Note that algorithm 28 has no error; it is randomized, but all potential

answers are checked for a false positive (in line 6). Checking for these

potential candidates is called fingerprinting. The idea of fingerprinting is

to check only those substrings that “look” like good candidates, making

sure that when we “sniff” for a candidate we never miss the solution (in

this case, if x = y(i), for some i, then y(i) will always be a candidate).

On the other hand, there may be j’s such that x ̸= y(j) and yet they are

candidates; but the probability of that is small. The use of randomness

in algorithm 28 just lowers the average time complexity of the procedure;

such algorithms are called Las Vegas algorithms.
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6.3 Primality testing

One way to determine whether a number p is prime, is to try all possible

numbers n < p, and check if any are divisors2. Obviously, this brute force

procedure has exponential time complexity in the length of p, and so it

has a prohibitive time cost. Although a polytime (deterministic) algorithm

for primality is now known (see [Agrawal et al. (2004)]), the Rabin-Miller

randomized algorithm for primality testing is simpler and more efficient,

and therefore still used in practice.

Fermat’s Little theorem (see theorem 9.22) provides a “test” of sorts for

primality, called the Fermat test; the Rabin-Miller algorithm (algorithm 29)

is based on this test. When we say that p passes the Fermat test at a, what

we mean is that a(p−1) ≡ 1 (mod p). Thus, all primes pass the Fermat test

for all a ∈ Zp − {0}.
Unfortunately, there are also composite numbers n that pass the Fermat

tests for every a ∈ Z∗n; these are the so called Carmichael numbers, for

example, 561, 1105, 1729, etc.

Lemma 6.8. If p is a composite non-Carmichael number, then it passes at

most half of the tests in Z∗p. That is, if p is a composite non-Carmichael

number, then for at most half of the a’s in the set Z∗p it is the case that

a(p−1) ≡ 1 (mod p).

Proof. We say that a is a witness for p if a fails the Fermat test for p.

That is, a is a witness if a(p−1) ̸≡ 1 (mod p). Let S ⊆ Z∗p consist of those

elements a ∈ Z∗p for which ap−1 ≡ 1 (mod p). It is easy to check that S is in

fact a subgroup of Z∗p. Therefore, by Lagrange’s theorem (theorem 9.2.3),

|S| must divide |Z∗p|. Suppose now that there exists an element a ∈ Z∗p for

which ap−1 ̸≡ 1 (mod p). Then, S ̸= Z∗p, so the next best thing it can be

is “half” of Z∗p, so |S| must be at most half of |Z∗p|.

Problem 6.9. Give an alternative proof of lemma 6.8 sans groups.

A number is pseudoprime if it is either prime or Carmichael. The

last lemma suggests an algorithm for pseudoprimeness: on input p, check

whether a(p−1) ≡ 1 (mod p) for some random a ∈ Zp − {0}. If p fails this

test (i.e., a(p−1) ̸≡ 1 (mod p)), then p is composite for sure. If p passes

the test, then p is probably pseudoprime. We show that the probability of

2This section requires a little bit of number theory; see section 9.2 for all the necessary
background.
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error in this case is ≤ 1
2 . Suppose p is not pseudoprime. If gcd(a, p) ̸= 1,

then a(p−1) ̸≡ 1 (mod p) (by proposition 9.20), so assuming that p passed

the test, it must be the case that gcd(a, p) = 1, and so a ∈ Z∗p. But

then, by lemma 6.8, at least half of the elements of Z∗p are witnesses of

non-pseudoprimeness.

Problem 6.10. Show that if gcd(a, p) ̸= 1 then a(p−1) ̸≡ 1 (mod p).

The informal algorithm for pseudoprimeness described in the paragraph

above is the basis for the Rabin-Miller algorithm which we discuss next.

The Rabin-Miller algorithm extends the pseudoprimeness test to deal with

Carmichael numbers.

Algorithm 29 Rabin-Miller

1: If n = 2, accept; if n is even and n > 2, reject.

2: Choose at random a positive a in Zn.

3: if a(n−1) ̸≡ 1 (mod n) then

4: reject

5: else

6: Find s, h such that s is odd and n− 1 = s2h

7: Compute the sequence as·2
0

, as·2
1

, as·2
2

, . . . , as·2
h

(mod n)

8: if all elements in the sequence are 1 then

9: accept

10: else if the last element different from 1 is −1 then

11: accept

12: else

13: reject

14: end if

15: end if

Note that this is a polytime (randomized) algorithm: computing powers

(mod n) can be done efficiently with repeated squaring,for example, if (n−
1)b = cr . . . c1c0, then compute

a0 = a, a1 = a20, a2 = a21, . . . , ar = a2r−1 (mod n),

and so an−1 = ac00 ac11 · · · acrr (mod n). Thus obtaining the powers in lines 6

and 7 is not a problem.

Problem 6.11. Implement the Rabin-Miller algorithm. In the first näıve

version, the algorithm should run on integer inputs (the built in int type).
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In the second, more sophisticated version, the algorithm should run on in-

puts which are numbers encoded as binary strings, with the trick of repeated

squaring in order to cope with large numbers.

Theorem 6.12. If n is a prime then the Rabin-Miller algorithm accepts it;

if n is composite, then the algorithm rejects it with probability ≥ 1
2 .

Proof. If n is prime, then by Fermat’s Little theorem a(n−1) ≡ 1 (mod n),

so line 4 cannot reject n. Suppose that line 13 rejects n; then there exists

a b in Zn such that b ̸≡ ±1 (mod n) and b2 ≡ 1 (mod n). Therefore,

b2 − 1 ≡ 0 (mod n), and hence

(b− 1)(b + 1) ≡ 0 (mod n).

Since b ̸≡ ±1 (mod n), both (b−1) and (b+1) are strictly between 0 and n,

and so a prime n cannot divide their product. This gives a contradiction,

and therefore no such b exists, and so line 13 cannot reject n.

If n is an odd composite number, then we say that a is a witness (of

compositness) for n if the algorithm rejects on a. We show that if n is an

odd composite number, then at least half of the a’s in Zn are witnesses.

The distribution of those witnesses in Zn appears to be very irregular, but

if we choose our a at random, we hit a witness with probability ≥ 1
2 .

Because n is composite, either n is the power of an odd prime, or n is

the product of two odd co-prime numbers. This yields two cases.

Case 1. Suppose that n = qe where q is an odd prime and e > 1. Set

t := 1 + qe−1. From the binomial expansion of tn we obtain:

tn = (1 + qe−1)n = 1 + nqe−1 +

n∑
l=2

(
n

l

)
(qe−1)l, (6.2)

and therefore tn ≡ 1 (mod n). If tn−1 ≡ 1 (mod n), then tn ≡ t (mod n),

which from the observation about t and tn is not possible, hence t is a line 4

witness. But the set of line 4 non-witnesses, S1 := {a ∈ Zn|a(n−1) ≡ 1

(mod n)}, is a subgroup of Z∗n, and since it is not equal to Z∗n (t is not in

it), by Lagrange’s theorem S1 is at most half of Z∗n, and so it is at most

half of Zn.

Case 2. Suppose that n = qr, where q, r are co-prime. Among all

line 13 non-witnesses, find a non-witness for which the −1 appears in the

largest position in the sequence in line 7 of the algorithm (note that −1 is

a line 13 non-witness, so the set of these non-witnesses is not empty). Let

x be such a non-witness and let j be the position of −1 in its sequence,

where the positions are numbered starting at 0; xs·2j ≡ −1 (mod n) and
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xs·2j+1 ≡ 1 (mod n). The line 13 non-witnesses are a subset of S2 := {a ∈
Z∗n|as·2

j ≡ ±1 (mod n)}, and S2 is a subgroup of Z∗n.

By the CRT there exists t ∈ Zn such that

t ≡ x (mod q)

t ≡ 1 (mod r)
⇒ ts·2

j ≡ −1 (mod q)

ts·2
j ≡ 1 (mod r)

Hence t is a witness because ts·2
j ̸≡ ±1 (mod n) but on the other hand

ts·2
j+1 ≡ 1 (mod n).

Problem 6.13. Show that ts·2
j ̸≡ ±1 (mod n).

Therefore, just as in case 1, we have constructed a t ∈ Z∗n which is not

in S2, and so S2 can be at most half of Z∗n, and so at least half of the

elements in Zn are witnesses.

Problem 6.14. First show that the sets S1 and S2 (in the proof of theo-

rem 6.12) are indeed subgroups of Z∗n, and that in case 2 all non-witnesses

are contained in S2. Then show that at least half of the elements of Zn are

witnesses when n is composite, without using group theory.

Note that by running the algorithm k times on independently chosen

a, we can make sure that it rejects a composite with probability ≥ 1− 1
2k

(it will always accept a prime with probability 1). Thus, for k = 100 the

probability of error, i.e., of a false positive, is negligible.

6.4 Public key cryptography

Cryptography has well known applications to security; for example, we

can use our credit cards when purchasing online because, when we send

our credit card numbers, they are encrypted, and even though they travel

through a public channel, no one but the intended recipient can read them.

Cryptography has also a fascinating history: from the first uses recorded

by Herodotus during the Persian wars five centuries BC, to the exploits

at Bletchley Park during WWII—the reader interested in the history of

cryptography should read the fascinating book [Singh (1999)].

A Public Key Cryptosystem (PKC) consists of three sets: K, the set

of (pairs of) keys, M , the set of plaintext messages, and C, the set of

ciphertext messages. A pair of keys in K is k = (kpriv, kpub); the private

(or secret) key and the publickey, respectively. For each kpub there is a

corresponding encryption function ekpub
: M −→ C and for each kpriv there

is a corresponding decryption function dkpriv
: C −→M .
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The property that the encryption and decryption functions must satisfy

is that if k = (kpriv, kpub) ∈ K, then dkpriv
(ekpub

(m)) = m for all m ∈ M .

The necessary assumption is that it must be difficult to compute dkpriv
(c)

just from knowing kpub and c. But, with the additional trapdoor information

kpriv, it becomes easy to compute dkpriv
(c).

In the following sections we present three different encryption schemes:

Diffie-Hellman, which is not really a PKC but rather a way of agreeing on a

secret key over an insecure channel, as well as ElGamal and RSA. All three

require large primes (in practice about 2,000 bit long); a single prime for

Diffie-Hellman and ElGamal, and a pair of primes for RSA. But how does

one find large primes? The answer will of course involve the Rabin-Miller

algorithm from the previous section.

Here is how we go about it: we know by the Prime Number Theorem

that there are about π(n) = n/ log n many primes ≤ n. This means that

there are 2n/n primes among n-bit integers, roughly 1 in n, and these

primes are fairly uniformly distributed. So we pick an integer at random,

in a given range, and apply the Rabin-Miller algorithm to it.

6.4.1 Diffie-Hellman key exchange

If p is prime, then one can show—though the proof is difficult and we omit

it here—that there exists a g ∈ Z∗p such that ⟨g⟩ = {g1, g2, . . . , gp−1} = Z∗p.

This g is called a primitive root for Z∗p. Given an h ∈ Z∗p, the Discrete Log

Problem (DLP) is the problem of finding an x ∈ {1, . . . , p − 1} such that

gx ≡ h (mod p). That is, x = logg(h).

For example, p = 56609 is a prime number and g = 2 is a generator for

Z∗56609, that is Z∗56609 = {21, 22, 23, . . . , 256608}, and log2(38679) = 11235.

Problem 6.15. If p = 7, explain why g = 3 would work as a generator for

Z∗p. Is every number in Z∗7 a generator for Z∗7?

The DLP is assumed to be a difficult problem. We are going to use

it to set up a way for Alice and Bob to agree on a secret key over an

insecure channel. First Alice and Bob agree on a large prime p and an

integer g ∈ Z∗p. In fact, g does not have to be a primitive root for p; it is

sufficient, and much easier, to pick a number g of order roughly p/2. See,

for example, exercise 1.31 in [Hoffstein et al. (2008)]. The numbers p, g are

public knowledge, that is, kpub = ⟨p, g⟩.
Then Alice picks a secret a and Bob picks a secret b. Alice computes

A := ga (mod p) and Bob computes B := gb (mod p). Then Alice and
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Bob exchange A and B over an insecure link. On her end, Alice computes

A′ := Ba (mod p) and Bob, on his end, computes B′ := Ab (mod p).

Clearly,

A′ ≡p Ba ≡p (gb)a ≡p gab ≡p (ga)b ≡p Ab ≡p B′.

This common value A′ = B′ is their secret key. Thus, Diffie-Hellman is

not really a fully-fledged PKC; it is just a way for two parties to agree on

a secret value over an insecure channel. Also note that computing A and

B involves computing large powers of g modulo the prime p; if this is done

näıvely by multiplying g times itself a many times, then this procedure is

impractical for large a. We use repeated squaring instead; see page 129

where we discuss this procedure.

Problem 6.16. Suppose that Alice and Bob agree on p = 23 and g = 5,

and that Alice’s secret is a = 8 and Bob’s secret is b = 15. Show how the

Diffie-Hellman exchange works in this case. What is the resulting secret

key?

Suppose that Eve is eavesdropping on this exchange. She is capable of

gleaning the following information from it: ⟨p, g, ga (mod p), gb (mod p)⟩.
Computing gab (mod p) (i.e., A′ = B′) from this information is known as

the Diffie-Hellman Problem (DHP), and it is assumed to be difficult when

p is a large prime number.

But suppose that Eve has an efficient way of solving the DLP. Then,

from ga (mod p) she computes a, and from gb (mod p) she computes b,

and now she can easily compute gab (mod p). On the other hand, it is not

known if solving DHP efficiently yields an efficient solution for the DLP.

Problem 6.17. Consider Shank’s algorithm—algorithm 30. Show that

Shank’s algorithm computes x, such that gx ≡p h, in time O(n log n) that

is, in time O(
√
p log(

√
p)).

Problem 6.18. Implement algorithm 30.

While it seems to be difficult to mount a direct attack on Diffie-Hellman,

that is, to attack it by solving the related discrete logarithm problem, there

is a rather insidious way of breaking it, called “the man-in-the-middle”

attack. It consists in Eve taking advantage of the lack of authentication

for the parties; that is, how does Bob know that he is receiving a message

from Alice, and how does Alice know that she is receiving a message from
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Algorithm 30 Shank’s babystep-giantstep

Pre-condition: p prime, ⟨g⟩ = Z∗p, h ∈ Z∗p
1: n←− 1 + ⌊√p⌋
2: L1 ←− {g0, g1, g2, . . . , gn} (mod p)

3: L2 ←− {hg0, hg−n, hg−2n, . . . , hg−n
2} (mod p)

4: Find gi ≡p hg−jn ∈ L1 ∩ L2

5: x←− jn + i

6: return x

Post-condition: gx ≡p h

Bob? Eve can take advantage of that, and intercept a message A from

Alice intended for Bob and replace it with E = ge (mod p), and intercept

the message B from Bob intended for Alice and also replace it with E = ge

(mod p), and from then on read all the correspondence by pretending to

be Bob to Alice, and Alice to Bob, translating message encoded with gae

(mod p) to message encoded with gbe (mod p), and vice versa.

Problem 6.19. Suppose that f : N × N −→ N is a function with the

following properties:

• for all a, b, g ∈ N, f(g, ab) = f(f(g, a), b) = f(f(g, b), a),

• for any g, hg(c) = f(g, c) is a one-way function, that is, a function

that is easy to compute, but whose inverse is difficult to compute3.

Explain how f could be used for public key crypto in the style of Diffie-

Hellman.

6.4.2 ElGamal

This is a true PKC, where Alice and Bob agree on public p, g, such that p

is a prime and Z∗p = ⟨g⟩. Alice also has a private a and publishes a public

A := ga (mod p). Bob wants to send a message m to Alice, so he creates

an ephemeral key b, and sends the pair c1, c2 to Alice where:

c1 := gb (mod p); c2 := mAb (mod p).

Then, in order to read the message, Alice computes:

c−a1 c2 ≡p g−abmgab ≡p m.

3The existence of such functions is one of the underlying assumptions of cryptography;

the discrete logarithm is an example of such a function, but there is no proof of existence,
only a well-founded supposition.
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Note that to compute c−a1 Alice first computes the inverse of c1 in Z∗p, which

she can do efficiently using the extended Euclid’s algorithm (see algorithm 8

or algorithm 20), and then computes the a-th power of the result.

More precisely, here is how we compute the inverse of a k in Z∗n. Observe

that if k ∈ Z∗n, then gcd(k, n) = 1, so using algorithm 8 we obtain s, t such

that sk + tn = 1, and further s, t can be chosen so that s is in Z∗n To see

that, first obtain any s, t, and then just add to s the appropriate number

of positive or negative multiples of n to place it in the set Z∗n, and adjust t

by the same number of multiples of opposite sign.

Problem 6.20. Let p = 7 and g = 3.

(1) Let a = 4 be Alice’s secret key, so

A = ga (mod p) = 34 (mod 7) = 4.

Let p = 7, g = 3, A = 4 be public values.

Suppose that Bob wants to send the message m = 2 to Alice, with

ephemeral key b = 5. What is the corresponding pair ⟨c1, c2⟩ that

he sends to Alice? Show what are the actual values and how are

they computed.

(2) What does Alice do in order to read the message ⟨5, 4⟩? That is,

how does Alice extract m out of ⟨c1, c2⟩ = ⟨5, 4⟩?

Problem 6.21. We say that we can break ElGamal, if we have an efficient

way for computing m from ⟨p, g, A, c1, c2⟩. Show that we can break ElGamal

if and only if we can solve the DHP efficiently.

Problem 6.22. Write an application which implements the ElGamal dig-

ital signature scheme. Your command-line program ought to be invoked as

follows: sign 11 6 3 7 and then accept a single line of ASCII text until

the new-line character appears (i.e., until you press enter). That is, once

you type sign 11 6 3 7 at the command line, and press return, you type

a message: ‘A message’ and after you have pressed return again, the digital

signature, which is going to be a pair of positive integers, will appear below.

We now explain how to obtain this digital signature: first convert the

characters in the string ‘A message’ into the corresponding ASCII codes,

and then obtain a hash of those codes by multiplying them all modulo 11;

the result should be the single number 5.

To see this observe the table:

A 65 10
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32 1

m 109 10

e 101 9

s 115 1

s 115 5

a 97 1

g 103 4

e 101 8

. 46 5

The first column contains the characters, the second the corresponding

ASCII codes, and the i-th entry in the third column contains the product

of the first i codes modulo 11. The last entry in the third column is the

hash value 5.

We sign the hash value, i.e., if the message is m = A message., then

we sign hash(m) = 5. Note that we invoke sign with four arguments, i.e.,

we invoke it with p, g, x, k (in our running example, 11, 6, 3, 7 respectively).

Here p must be a prime, 1 < g, x, k < p− 1, and gcd(k, p− 1) = 1. This

is a condition of the input; you don’t have to test in your program whether

the condition is met—we may assume that it is.

Now the algorithm signs h(m) as follows: it computes

r = gk (mod p)

s = k−1(h(m)− xr) (mod (p− 1))

If s is zero, start over again, by selecting a different k (meeting the required

conditions). The signature of m is precisely the pair of numbers (r, s). In

our running example we have the following values:

m = A message; h(m) = 5; p = 11; g = 6; x = 3; k = 7

and so the signature of ‘A message’ with the given parameters will be:

r = 67 (mod 11) = 8

s = 7−1(5− 3 · 8) (mod (11− 1))

= 3 · (−19) (mod 10)

= 3 · 1 (mod 10) = 3

i.e., the signature of ‘A message’ would be (r, s) = (8, 3).

Problem 6.23. In problem 6.22:
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(1) Can you identify the (possible) weaknesses of this digital signature

scheme? Can you compose a different message m′ such that h(m) =

h(m′)?

(2) If you receive a message m, and a signature pair (r, s), and you

only know p, g and y = gx (mod p), i.e., p, g, y are the public in-

formation, how can you “verify” the signature—and what does it

mean to verify the signature?

(3) Research on the web a better suggestion for a hash function h.

(4) Show that when used without a (good) hash function, ElGamal’s

signature scheme is existentially forgeable; i.e., an adversary Eve

can construct a message m and a valid signature (r, s) for m.

(5) In practice k is a random number; show that it is absolutely nec-

essary to choose a new random number for each message.

(6) Show that in the verification of the signature it is essential to check

whether 1 ≤ r ≤ p − 1, because otherwise Eve would be able to

sign message of her choice, provided she knows one valid signature

(r, s) for some message m, where m is such that 1 ≤ m ≤ p−1 and

gcd(m, p− 1) = 1.

6.4.3 RSA

Choose two odd primes p, q, and set n = pq. Choose k ∈ Z∗ϕ(n), k > 1.

Advertise f , where f(m) ≡ mk (mod n). Compute l, the inverse of k in

Z∗ϕ(n). Now ⟨n, k⟩ are public, and the key l is secret, and so is the function

g, where g(C) ≡ Cl (mod n). Note that g(f(m)) ≡n mkl ≡n m.

Problem 6.24. Show that mkl ≡ m (mod n). In fact there is an implicit

assumption about m in order for this to hold; what is this assumption?

Problem 6.25. Observe that we could break RSA if factoring were easy.

We now make two observations about the security of RSA. The first one

is that the primes p, q cannot be chosen “close” to each other. To see what

we mean, note that:

n =

(
p + q

2

)2

−
(
p− q

2

)2

.

Since p, q are close, we know that s := (p− q)/2 is small, and t := (p+ q)/2

is only slightly larger than
√
n, and t2 − n = s2 is a perfect square. So we

try the following candidate values for t:

⌈
√
n ⌉+ 0, ⌈

√
n ⌉+ 1, ⌈

√
n ⌉+ 2, . . .
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until t2−n is a perfect square s2. Clearly, if s is small, we will quickly find

such a t, and then p = t + s and q = t− s.

The second observation is that if were to break RSA by computing l

efficiently from n and k, then we would be able to factor n in randomized

polynomial time. Since ϕ(n) = ϕ(pq) = (p− 1)(q − 1), it follows that:

p + q = n− ϕ(n) + 1

pq = n,
(6.3)

and from these two equations we obtain:

(x− p)(x− q) = x2 − (p + q)x + pq = x2 − (n− ϕ(n) + 1)x + n.

Thus, we can compute p, q by computing the roots of this last polynomial.

Using the classical quadratic formula x = (−b±
√
b2 − 4ac)/2a, we obtain

that p, q are:

(n− ϕ(n) + 1)±
√

(n− ϕ(n) + 1)2 − 4n

2
.

Suppose that Eve is able to compute l from n and k. If Eve knows l,

then she knows that whatever ϕ(n) is, it divides kl − 1, and so she has

equations (6.3) but with ϕ(n) replaced with (kl − 1)/a, for some a. This

a can be computed in randomized polynomial time, but we do not present

the method here. Thus, the claim follows.

If Eve is able to factor she can obviously break RSA; on the other hand,

if Eve can break RSA—by computing l from n, k—then she would be able

to factor in randomized polytime.

On the other hand, Eve may be able to break RSA without computing l,

so the preceding observations do not imply that breaking RSA is as hard

as factoring.

6.5 Further problems

There is a certain reversal of priorities in cryptography, in that difficult

problem become allies, rather than obstacles. On page 77 we mentioned NP-

hard problems, which are problems for which there are no feasible solutions

when the instances are “big enough.”

The Simple Knapsack Problem (SKS) (see section 4.3) is one such prob-

lem, and we can use it to define a cryptosystem. The Merkle-Hellman

subset-sum cryptosystem is based on SKS, and it works as follows. First,

Alice creates a secret key consisting of the following elements:
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• A super-increasing sequence: r = (r1, r2, . . . , rn) where ri ∈ N, and

the property of being “super-increasing” refers to 2ri ≤ ri+1, for

all 1 ≤ i < n.

• A pair of positive integers A,B with two conditions: 2rn < B and

gcd(A,B) = 1.

The public key consists of M = (M1,M2, . . . ,Mn) where Mi = Ari
(mod B).

Suppose that Bob wants to send a plain-text message x ∈ {0, 1}n, i.e.,

x is a binary string of length n. Then he uses Alice’s public key to compute

S =
∑n

i=1 xiMi, where xi is the i-th bit of x, interpreted as integer 0 or 1.

Bob now sends S to Alice.

For Alice to read the message she computes S′ = A−1S (mod B), and

she solves the subset-sum problem S′ using the super-increasing r. The

subset-sum problem, for a general sequence r, is very difficult, but when

r is super-increasing (note that M is assumed not to be super-increasing!)

the problem can be solved with a simple greedy algorithm.

More precisely, Alice finds a subset of r whose sum is precisely S′. Any

subset of r can be identified with a binary string of length n, by assuming

that xi is 1 iff ri is in this subset. Hence Alice “extracts” x out of S′.

For example, let r = (3, 11, 24, 50, 115), and A = 113, B = 250. Check

that all conditions are met, and verify that M = (89, 243, 212, 150, 245). To

send the secret message x = 10101, we compute

S = 1 · 89 + 0 · 243 + 1 · 212 + 0 · 150 + 1 · 245 = 546.

Upon receiving S, we multiply it times 177, the inverse of 113 in mod 250,

and obtain 142. Now x may be extracted out of 142 with a simple greedy

algorithm.

Problem 6.26. Two parts:

(1) Show that if r = (r1, r2, . . . , rn) is a super-increasing sequence then

ri+1 >
∑i

j=1 rj , for all 1 ≤ i < n.

(2) Suppose that r = (r1, r2, . . . , rn) is a super-increasing sequence,

and suppose that there is a subset of r whose sum is S. Provide

a (natural) greedy algorithm for computing this subset, and show

that your algorithm is correct.

Problem 6.27. Implement the Merkle-Hellman subset-sum cryptosystem.
Call the program sscrypt, and it should work with three switches: -e -d
-v, for encrypt, decrypt and verify. That is,
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sscrypt -e M1 M2 . . . Mn x

encrypts the string x = x1x2 . . . xn ∈ {0, 1}n with the public key given by
M = (M1,M2, . . . ,Mn), and outputs S. On the other hand,

sscrypt -d r1 r2 . . . rn A B S

decrypts the string x = x1x2 . . . xn ∈ {0, 1}n from S using the secret
key given by r = (r1, r2, . . . , rn) and A,B; that is, it outputs x on input
r, A,B, S. Finally,

sscrypt -v r1 r2 . . . rn A B

checks that r = (r1, r2, . . . , rn) is super-increasing, it checks that 2rn < B

and that gcd(A,B) = 1, and outputs the corresponding public key given

by M = (M1,M2, . . . ,Mn).

6.6 Answers to selected problems

Problem 6.5. We use algorithm 27 to find perfect matching (if one exists)

as follows: pick 1 ∈ V , and consider each (1, i′) ∈ E in turn, remove it from

G to obtain G1,i′ = ((V − {1}) ∪ (V ′ − {i′}), E1,i′), where E1,i′ consists of

all the edges of E except those adjacent on 1 or i′, until for some i′ ∈ V ′ we

obtain a G1,i′ for which the algorithm answers “yes.” Then we know that

there is a perfect matching that matches 1 and i′. Continue with G1,i′ .

Problem 6.6. M(x) is well defined because matrix multiplication is asso-

ciative. We now show that M(x) = M(y) implies that x = y (i.e., the map

M is one-to-one). Given M = M(x) we can “decode” x uniquely as follows:

if the first column of M is greater than the second (where the comparison

is made component-wise), then the last bit of x is zero, and otherwise it

is 1. Let M ′ be M where we subtract the smaller column from the larger,

and repeat.

Problem 6.7. For a given string x, M(x1x2 . . . xn) is such that the

“smaller” column is bounded by fn−1 and the “larger” column is bounded

by fn. We can show this inductively: the basis case, x = x1, is obvious.

For the inductive step, assume it holds for x ∈ {0, 1}n, and show it still

holds for x ∈ {0, 1}n+1: this is clear as whether xn+1 is 0 or 1, one column

is added to the other, and the other column remains unchanged.

Problem 6.9. Given that p is composite and non-Carmichael, there is at

least one a ∈ Z∗p such that a(p−1) ̸≡ 1 (mod p) and gcd(p, a) = 1. Let

B = {b1, b2, . . . } be the set of non-witnesses. Multiply each element of B

by a to get witnesses {a1, a2, . . . }. Each of these witnesses is unique, as

a ∈ Z∗p, so there are at least as many witnesses as non-witnesses.
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Let b be a potential non-witness; that is, b is any element of Z∗p such

that gcd(p, b) = 1. if we multiply a by any Fermat Liar (i.e., non-witness),

we get a witness. If there is only one non-witness, we’re done. Otherwise,

let b1, b2 be two non-witnesses. We know gcd(p, b1) = gcd(p, b2) = 1, as

otherwise b1 and b2 would be witnesses. Assume ab1 = ab2 + kp, and let

g = gcd(a, p).

Problem 6.10. Suppose that gcd(a, p) ̸= 1. By proposition 9.20 we know

that if gcd(a, p) ̸= 1, then a does not have a (multiplicative) inverse in

Zp. Thus, it is not possible for a(p−1) ≡ 1 (mod p) to be true, since then

it would follow that a · a(p−2) ≡ 1 (mod p), and hence a would have a

(multiplicative) inverse.

Problem 6.13. To see why ts·2
j ̸≡ ±1 (mod n) observe the following:

suppose that a ≡ −1 (mod q) and a ≡ 1 (mod r), where gcd(q, r) = 1.

Suppose that n = qr|(a+1), then q|(a+1) and r|(a+1), and since r|(a−1)

as well, it follows that r|[(a + 1) − (a − 1)], so r|2, so r = 2, so n must

be even, which is not possible since we deal with even n’s in line 1 of the

algorithm.

Problem 6.14. Showing that S1, S2 are subgroups of Z∗n is easy; it is

obvious in both cases that 1 is there, and closure and existence of inverse

can be readily checked.

To give the same proof without group theory, we follow the cases in the

proof of theorem 6.12. Let t be the witness constructed in case 1. If d is

a (stage 3) non-witness, we have dp−1 ≡ 1 (mod p), but then dt (mod p)

is a witness. Moreover, if d1, d2 are distinct (stage 3) non-witnesses, then

d1t ̸≡ d2t (mod p). Otherwise, d1 ≡p d1 · t · tp−1 ≡p d2 · t · tp−1 ≡p d2. Thus

the number of (stage 3) witnesses must be at least as large as the number

of non-witnesses.

We do the same for case 2; let d be a non-witness. First, ds·2
j ≡ ±1

(mod p) and ds·2
j+1 ≡ 1 (mod p) owing to the way that j was chosen.

Therefore dt (mod p) is a witness because (dt)s·2
j ̸≡ ±1 (mod p) and

(dt)s·2
j+1 ≡ 1 (mod p).

Second, if d1 and d2 are distinct non-witnesses, d1t ̸≡ d2t (mod p). The

reason is that ts·2
j+1 ≡ 1 (mod p). Hence t · ts·2j+1−1 ≡ 1 (mod p). There-

fore, if d1t ≡ d2t (mod p), then d1 ≡p d1t · ts·2
j+1−1 ≡p d2t · ts·2

j+1−1 ≡p d2.

Thus in case 2, as well, the number of witnesses must be at least as large

as the number of non-witnesses.

Problem 6.15. 31 = 3, 32 = 9 = 2, 33 = 2 ·3 = 6, 34 = 6 ·3 = 4, 35 = 4 ·3 =

5, 36 = 5 · 3 = 1, all computations (mod 7), and thus g = 3 generates all

numbers in Z∗7. Not every number is a generator: for example, 4 is not.
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Problem 6.16. Alice and Bob agree to use a prime p = 23 and base g = 5.

Alice chooses secret a = 8; sends Bob A = ga (mod p)

A = 58 (mod 23) = 16

Bob chooses secret b = 15; sends Alice B = gb (mod p)

B = 515 (mod 23) = 19

Alice computes s = Ba (mod p)

s = 198 (mod 23) = 9

Bob computes s = Ab (mod p)

s = 1615 (mod 23) = 9

As can be seen, both end up having s = 9, their shared secret key.

Problem 6.19. Suppose that we have a one-way function as in the ques-

tion. First Alice and Bob agree on a public g and exchange it (the eaves-

dropper knows g therefore). Then, let Alice generate a secret a and let

Bob generate a secret b. Alice sends f(g, a) to Bob and Bob sends f(g, b)

to Alice. Notice that because hg is one-way, an eavesdropper cannot get

a or b from hg(a) = f(g, a) and hg(b) = f(g, b). Finally, Alice computes

f(f(g, b), a) and Bob computes f(f(g, a), b), and by the properties of the

function both are equal to f(g, ab) which is their secret shared key. The

eavesdropper cannot compute f(g, ab) feasibly.

Problem 6.20. For the first part,

c1 = gb (mod p) = 35 (mod 7) = 5

c2 = mAb (mod p) = 2 · 45 (mod 7) = 2 · 2 = 4

For the second part,

m = c−a1 c2 (mod p)

= 5−44 (mod 7)

= (5−1)44 (mod 7)

= 344 (mod 7)

= 4 · 4 (mod 7)

= 2

Problem 6.21. The DHP on input ⟨p, g, A ≡p ga, B ≡p gb⟩ outputs gab

(mod p), and the ElGamal problem, call it ELGP, on input

⟨p, g, A ≡p ga, c1 ≡p gb, c2 ≡p mAb⟩ (6.4)
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outputs m. We want to show that we can break Diffie-Hellman, i.e., solve

DHP efficiently, if and only if we can break ElGamal, i.e., solve ELGP

efficiently. The key-word here is efficiently, meaning in polynomial time.

(⇒) Suppose we can solve DHP efficiently; we give an efficient procedure

for solving ELGP: given the input (6.4) to ELGP, we obtain gab (mod p)

from A ≡p ga and c1 ≡ gb using the efficient solver for DHP. We then

use the extended Euclidean algorithm, see problem 1.9—and note that the

extended Euclid’s algorithm runs in polynomial time, to obtain (gab)−1

(mod p). Now,

c2 · (gab)−1 ≡p mgab(gab)−1 ≡p m = m

where the last equality follows from m ∈ Zp.

(⇐) Suppose we have an efficient solver for the ELGP. To solve the DHP,

we construct the following input to ELGP:

⟨p, g, A ≡p ga, c1 ≡p gb, c2 = 1⟩.

Note that c2 = 1 ≡p (gab)−1︸ ︷︷ ︸
=m

Ab, so using the efficient solver for ELGP

we obtain m ≡p (gab)−1, and now using the extended Euclid’s algorithm

we obtain the inverse of (gab)−1 (mod p), which is just gab (mod p), so we

output that.

Problem 6.23.

(1) The weakness of our scheme lies in the hash function, which com-

putes the same hash values for different messages, and in fact it is

easy to find messages with the same hash value—for example, by

adding pairs of letters (anywhere in the message) such that their

corresponding ASCII values are inverses modulo p.

Examples (from the assignments) of messages with the same hash

value are: “A mess” and “L message.” In general, by its nature,

any hash function is going to have such collisions, i.e., messages

such that:

h(A message.) = h(A mess) = h(L message) = 5,

but there are hash functions which are collision-resistant in the

sense that it is computationally hard to find two messages m,m′

such that h(m) = h(m′). A good hash function is also a one-way

function in the sense that given a value y it is computationally hard

to find an m such that h(m) = y.
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(2) Verifying the signature means checking that it was the person in

possession of x that signed the document m. Two subtle things:

first we say “in possession of x” rather than the “legitimate owner

of x,” simply because x may have been compromised (for example

stolen). Second, and this is why this scheme is so brilliant, we can

check that “someone in possession of x” signed the message, even

without knowing what x is! We know y, where y = gx (mod p),

but for large p, it is difficult to compute x from y (this is called the

Discrete Log Problem, DLP).

Here is how we verify that “someone in possession of x” signed the

message m. We check 0 < r < p and 0 < s < p − 1 (see Q6),

and we compute v := gh(m) (mod p) and w := yrrs (mod p); g, p

are public, m is known, and the function h : N −→ [p − 1] is also

known, and r, s is the given signature. If v and w match, then the

signature is valid.

To see that this works note that we defined s := k−1(h(m) − xr)

(mod p − 1). Thus, h(m) = xr + sk (mod p − 1). Now, Fermat’s

Little Theorem (FLT—see page 114 in the textbook), says that

gp−1 = 1 (mod p), and therefore

gh(m) (∗)
= gxr+sh = (gx)r(gk)s = yrrs (mod p).

The FLT is applied in the (∗) equality: since h(m) = xr + sk

(mod p−1) it follows that (p−1)|(h(m)− (xr+sk)), which means

that (p − 1)z = h(m) − (xr + sk) for some z, and since g(p−1)z =

(g(p−1))z = 1z = 1 (mod p), it follows that gh(m)−(xr+sk) = 1

(mod p), and so gh(m) = gxr+sk (mod p).

(3) Here are the hash functions implemented by GPG, version 2.0.30:

MD5, SHA1, RIPEMD160, SHA256, SHA384, SHA512, SHA224.

(4) To see this, let b, c be numbers such that gcd(c, p − 1) = 1. Set

r = gbyc, s = −rc−1 (mod p − 1) and m = −rbc−1 (mod p − 1).

Then (m, r, s) satisfies gm = yrrs. Since in practice a hash function

h is applied to the message, and it is the hash value that is really

signed, to forge a signature for a meaningful message is not so

easy. An adversary has to find a meaningful message m̃ such that

h(m̃) = h(m), and when h is collision-resistant this is hard.

(5) If the same random number k is used in two different messages m ̸=
m′, then it is possible to compute k as follows: s−s′ = (m−m′)k−1
(mod p− 1), and hence k = (s− s′)−1(m−m′) (mod p− 1).

(6) Let m′ be a message of Eve’s choice, u = m′m−1 (mod p − 1),
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s′ = su (mod p− 1), r′ and integer such that r′ = r (mod p) and

r′ = ru (mod p − 1). This r′ can be obtained by the so called

Chinese Reminder Theorem (see theorem 9.30). Then (m′, r′, s′) is

accepted by the verification procedure.

Problem 6.24. Why mkl ≡n m? Observe that kl = 1 + (−t)ϕ(n), where

(−t) > 0, and so mkl ≡n m1+(−t)ϕ(n) ≡n m · (mϕ(n))(−t) ≡n m, because

mϕ(n) ≡n 1. Note that this last statement does not follow directly from

Euler’s theorem (theorem 9.29), because m ∈ Zn, and not necessarily in

Z∗n. Note that to make sure that m ∈ Z∗n it is enough to insist that we have

0 < m < min{p, q}; so we break a large message into small pieces.

It is interesting to note that we can bypass Euler’s theorem, and just use

Fermat’s Little theorem: we know that m(p−1) ≡p 1 and m(q−1) ≡q 1, so

m(p−1)(q−1) ≡p 1 and m(q−1)(p−1) ≡q 1, thus mϕ(n) ≡p 1 and mϕ(n) ≡q 1.

This means that p|(mϕ(n) − 1) and q|(mϕ(n) − 1), so, since p, q are distinct

primes, it follows that (pq)|(mϕ(n) − 1), and so mϕ(n) ≡n 1.

Problem 6.25. If factoring integers were easy, RSA would be easily bro-

ken: if we were able to factor n, we would obtain the primes p, q, and hence

it would be easy to compute ϕ(n) = ϕ(pq) = (p− 1)(q − 1), and from this

we obtain l, the inverse of k.

Problem 6.26. We show that ∀i ∈ [n− 1] it is the case that ri+1

∑i
j=1 rj

by induction on i. The basis case is i− 1, so

r2 ≥ 2r1 > r1 =

i∑
j=1

rj ,

where r2 ≥ 2r1 by the property of being super-increasing. For the induction

step we have

ri+1 ≥ 2ri = ri + ri > ri +

i−1∑
j=1

rj =

i∑
j=1

rj ,

where we used the property of being super-increasing and the induction

hypothesis.

Here is the algorithm for the second question:

and let the pre-condition state that {ri}ni=1 is super-increasing and that

there exists an S ⊆ {ri}ni=1 such that
∑

i∈S ri = S. Let the post-condition

state that
∑

i∈Y ri = S.

Define the following loop invariant: “Y is promising” in the sense that it

can be extended, with indices of weights not considered yet, into a solution.

That is, after considering i, there exists a subset E of {i − 1, . . . , 1} such

that
∑

j∈X∪E rj = S.
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X ←− S

Y ←− ∅
for i = n . . . 1 do

if (ri ≤ X) then

X ←− X − ri
Y ←− Y ∪ {i}

end if

end for

The basis case is trivial since initially X = ∅, and since the pre-condition

guarantees the existence of a solution, X can be extended into that solution.

For the induction step, consider two cases. If ri > X then i is not

added, but Y can be extended with E′ ⊆ {i − 1, i − 2, . . . , 1}. The reason

is that by induction hypothesis X was extended into a solution by some

E ⊆ {i, i − 1, . . . , 1} and i was not part of the extension as ri was too big

to fit with what was already in Y , i.e., E′ = E.

If ri ≤ X then i ∈ E since by previous part the remaining weights would

not be able to close the gap between S and
∑

j∈Y rj .

6.7 Notes

Regarding the epigraph at the beginning of the chapter, the novel

Enigma [Harris (1996)] is a great introduction to the early days of crypto-

analysis; also, there is a great 2001 movie adaptation.

Although we have not discussed the Min-Cut Max-Flow problem in this

book, most introductions to algorithms do. See for example chapter 7

in [Kleinberg and Tardos (2006)]. Also, [Fernández and Soltys (2013)] dis-

cusses the Min-Max principle, and relates it to several other fundamental

principles of combinatorics.

It is difficult to generate random numbers; see, for example, chapter 7

in [Press et al. (2007)].

Algorithm 29, the Rabin-Miller algorithm, abbreviated here as RM,

is implemented in OpenSSL, which is a toolkit for the Transport Layer

Security (TLS) and Secure Sockets Layer (SSL) protocols. It is also a

general-purpose cryptography library.

One can test huge numbers for primality with the command:

openssl prime <number>
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Newer versions of OpenSSL can also generate a prime number of a given

number of bits:

openssl prime -generate -bits 2048

Also note that one can easily compute large powers of a number modulo a

prime with Python, just give the command:

>>> pow(x,y,z)

which returns xy (mod z).

Section 6.3 on the Rabin-Miller algorithm was written while the author

was spending a sabbatical year at the University of Colorado in Boulder,

2007-08, and this section was much improved from the discussions with Jan

Mycielski.

Credit for inventing the Monte Carlo method often goes to Stanis law

Ulam, a Polish born mathematician who worked with John von Neumann

on the United States Manhattan Project during World War II. Ulam is also

known for designing the hydrogen bomb with Edward Teller in 1951. He

invented the Monte Carlo method in 1946 while pondering the probabilities

of winning a card game of solitaire.

Section 6.2 is based on [Karp and Rabin (1987)].

The first polytime algorithm for primality testing was devised

by [Agrawal et al. (2004)]. This algorithm is known as the “AKS Primality

Test” (following the last names of the inventors: Agrawal-Kayal-Saxena).

However, AKS is not feasible; RM is still the standard for primality testing.

In fact, it was the randomized test for primality that stirred interest in ran-

domized computation in the late 1970’s. Historically, the first randomized

algorithm for primality was given by [Solovay and Strassen (1977)]; a good

exposition of this algorithm, with all the necessary background, can be

found in §11.1 in [Papadimitriou (1994)], and another in §18.5 in [von zur

Gathen and Gerhard (1999)].

R. D. Carmichael first noted the existence of the Carmichael numbers

in 1910, computed fifteen examples, and conjectured that though they are

infrequent there were infinitely many. In 1956, Erdös sketched a technique

for constructing large Carmichael numbers ([Hoffman (1998)]), and a proof

was given by [Alford et al. (1994)] in 1994.

The first three Carmichael numbers are 561, 1105, 1729, where the last

number shown on this list is called the Hardy-Ramanujan number, after

a famous anecdote of the British mathematician G. H. Hardy regarding a

hospital visit to the Indian mathematician Srinivasa Ramanujan. Hardy
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wrote: I remember once going to see him when he was ill at Putney. I had

ridden in taxi cab number 1729 and remarked that the number seemed to

me rather a dull one, and that I hoped it was not an unfavorable omen.

“No,” he replied, “it is a very interesting number; it is the smallest number

expressible as the sum of two cubes in two different ways.”. The reader

is encouraged to see the movie The Man Who Knew Infinity, a 2015 film

about Srinivasa Ramanujan.

Section 6.4 is based on material from [Hoffstein et al. (2008)] and [Delfs

and Knebl (2007)].

RSA is named following the last names of its inventors: Rivest-Shamir-

Adleman.

GnuPG, or GPG, is a free implementation of the OpenPGP standard

as defined by RFC4880 (also known as PGP). GPG allows to encrypt and

sign data and communication, and it features a complete key management

system. Here are some more examples of usage of GPG:

gpg --gen-keys

gpg --list-keys

gpg --armor -r 9B070A58 -e example.txt

gpg --armor --clearsign example.txt

gpg --verify example.txt.asc

The first command generates a new public and secret key pair. The second

lists all the keys in the key-ring, and displays a summary about each. The

third line encrypts the text file example.txt with the public key with id

9B070A58, which is the key of the author4. The fourth line produces a

signature of example.txt which ensures that the file has not been modified;

the signature is attached as text to the file. The last command verifies the

signature resulting from the previous command.

Public keys can be advertised on personal homepages, or uploaded to

the Public Key Infrastructure (PKI). An example of PKI is the MIT PGP

Public Key Server, https://pgp.mit.edu, which can be searched for keys

(by ids, names, emails, etc.):

gpg --keyserver hkp://pgp.mit.edu --search-keys 0x9B070A58

Note that the URL of the keyserver is given with the HKP protocol, where

HKP stands for “OpenPGP HTTP Keyserver Protocol.”

Similar operations can be performed with OpenSSL; for example, we

4The author’s GPG public key with id 9B070A58: http://www.msoltys.com/gpgkey
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can generate RSA secret keys as follows:

openssl genrsa -out mysecretrsakey.pem 512

openssl genrsa -out mysecretrsakey.pem 4096

The two parameters 512 and 4096 give the size of the primes; note that

with 4096 the generation is a bit longer; this is where the Rabin Miller

algorithm is employed. The following option generates the corresponding

public key:

openssl rsa -in mysecretrsakey.pem -pubout

We can generating an elliptic curve key:

openssl ecparam -out myeckey.pem -name prime256v1 -genkey

and a complete list of types of elliptic curves:

openssl ecparam -list_curves

As was already discussed, we can use OpenSSL to test directly for primality:

openssl prime 32948230523084029834023

note that the number returned is always hexadecimal; it is amazing that

such large numbers can be tested for primality; it is because of the RM

theorem that this can be done so quickly.
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Chapter 7

Parallel Algorithms in Linear Algebra

Kraj bez matematyki nie
wytrzyma wspó lzawodnictwa z
tymi, którzy uprawiaja̧
matematykȩ. A country without
mathematics cannot compete
with those who pursue it.

Hugo Steinhaus quoted on
page 147 of [Duda (1977)]

7.1 Introduction

This chapter requires basic linear algebra, but not much beyond linear

independence, determinants, and the characteristic polynomial. We are

going to focus on matrices, in some case on matrices over finite fields. For

the reader who is unfamiliar with the foundations of Linear Algebra we

recommend [Halmos (1995)].

We say that a set of vectors {v1, v2, . . . , vn} is linearly independent if∑n
i=1 civi = 0 implies that ci = 0 for all i, and that they span a vector space

V ⊆ Rn if whenever v ∈ V , then there exist ci ∈ R such that v =
∑n

i=1 civi.

We denote this as V = span{v1, v2, . . . , vn}. A set of vectors {v1, v2, . . . , vn}
in Rn is a basis for a vector space V ⊆ Rn if they are linearly independent

and span V . Let x · y denote the dot-product of two vectors, defined as

x · y = (x1, x2, . . . , xn) · (y1, y2, . . . , yn) =
∑n

i=1 xiyi, and the norm of a

vector x is defined as ∥x∥ =
√
x · x. Two vectors x, y are orthogonal if

x · y = 0.

151
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7.2 Gaussian Elimination

Gaussian Elimination is a historic algorithm, just like Euclid’s algorithm

(Section 1.1.3). It was first proposed by Isaac Newton ([Gravesande

(1752)]), and later refined by Carl Friedrich Gauss.

We say that a matrix is in row-echelon form if it satisfies the following

two conditions: (i) if there are non-zero rows, the first non-zero entry of

such rows is 1, (the pivot), and (ii) the first non-zero entry of row i+1 is

to the right of the first non-zero entry of row i. In short, a matrix is in

row-echelon form if it looks as follows:

1 ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗
1 ∗ . . . ∗ ∗ ∗ . . . ∗ ∗

. . . 1 ∗ . . . ∗ ∗
0 1 . . .

. . .
...

. . .

 (7.1)

where the ∗’s indicate arbitrary entries.

We define the function Gaussian Elimination, GE : Mn×m −→ Mn×n,

to be the function which when given an n×m matrix A as input, it outputs

an n×n matrix GE(A), with the property that GE(A)A is in row-echelon

form. We call this property the correctness condition of GE.

We show how to compute GE(A), given A. The idea is, of course,

that GE(A) is equal to a product of elementary matrices which bring A to

row-echelon form. We start by defining elementary matrices. Let Tij be a

matrix with zeros everywhere except in the (i, j)-th position, where it has

a 1. Let I be the identity matrix which has 1s on the main diagonal, and

zeros elsewhere.

Using Tij and I as building blocks, we can define elementary matrices.

A matrix E is an elementary matrix if E has one of the following three

forms:

I + aTij i ̸= j (elementary of type 1)

I + Tij + Tji − Tii − Tjj (elementary of type 2)

I + (c− 1)Tii c ̸= 0 (elementary of type 3)

Let A be any matrix. If E is an elementary matrix of type 1, then EA is A

with the i-th row replaced by the sum of the i-th row and a times the j-th

row. If E is an elementary matrix of type 2, then EA is A with the i-th

and j-th rows interchanged. If E is an elementary matrix of type 3, then

EA is A with the i-th row multiplied by c ̸= 0.
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Gaussian Elimination is a divide and conquer algorithm, with a recursive

call to smaller matrices. That is, we compute GE recursively, on the number

of rows of A. If A is a 1×m matrix, A = [a11a12 . . . a1m], then:

GE(A) =

{
[1/a1i] where i = min{1, 2, . . . ,m} such that ai1 ̸= 0

[1] if a11 = a12 = · · · = a1m = 0
(7.2)

In the first case, GE(A) = [1/a1i], GE(A) is just an elementary matrix

of size 1 × 1, and type 3, c = ai1. In the second case, GE(A) is a 1 × 1

identity, so an elementary matrix of type 1 with a = 0. Also note that in

the first case we divide by a1i. This is not needed when the underlying field

is Z2, since a non-zero entry is necessarily 1. However, our arguments hold

regardless of the underlying field, so we want to make the function GE field

independent.

Suppose now that n > 1. If A = 0, let GE(A) = I. Otherwise, let:

GE(A) =

[
1 0

0 GE((EA)[1|1])

]
E (7.3)

where E is a product of at most n + 1 elementary matrices, defined below.

Note that C[i|j] denotes the matrix C with row i and j deleted, so (EA)[1|1]

is the matrix A multiplied by E on the left, and then the first row and

column are deleted from the result. Also note that we make sure that

GE(A) is of the appropriate size (i.e., it is an n × n matrix), by placing

GE((EA)[1|1]) inside a matrix padded with a 1 in the upper-left corner,

and zeros in the remaining of the first row and column.

We now define the matrix E in (7.3), given an A as input. There are

two cases: the first column of A is zero or it is not.

Case 1: If the first column of A is zero, let j be the first non-zero

column of A (such a column exists by the assumption A ̸= 0). Let i be

the index of the first row of A such that Aij ̸= 0. If i > 1, let E = I1i (E

interchanges row 1 and row i). If i = 1, but Alj = 0 for 1 < l ≤ n, then

E = I (do nothing). If i = 1, and 1 < i′1 < i′2 < · · · < i′k are the indices

of the other rows with Ai′lj
̸= 0, let E = Ei′1

Ei′2
· · ·Ei′k

, where Ei′l
is the

elementary matrix that adds the first row of A to the i′l-th row, of A so

that it clears the j-th entry of the i′l-th row (this is over Z2; over a bigger

field, we might need a multiple of the first row to clear the i′l-th row).

Case 2: If the first column of A is not zero, then let ai1 be its first

non-zero entry (i.e., aj1 = 0 if j < i). We want to compute a sequence of

elementary matrices, whose product will be denoted by E, which accomplish

the following sequence of steps:
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(1) interchange the first and i-th row,

(2) divide the first row by ai1,

(3) use the first row to clear all the other entries in the first column.

Let ai11, ai21, . . . , aik1 be the list of all the non-zero entries in the first

column of A, not including ai1, ordered so that:

i < i1 < i2 < · · · < ik

Let the convention be that if ai1 is the only non-zero entry in the first row,

then k = 0. Define E to be:

E = Ei1Ei2 · · ·EikE
′E′′

where Eij = I − aij1Tij1, so Eij clears the first entry from the ij-th row of

A. Note that if k = 0 (if ai1 is the only non-zero entry in the first column

of A), then E = E′′E′. Let

E′′ = I +

(
1

ai1
− 1

)
T11 and E′ = I + Ti1 + T1i − Tii − T11

Thus, E′′ divides the first row by ai1, and E′ interchanges the first row and

the i-th row. This is summarized in Algorithm 31.

Problem 7.1. Implement algorithm 31 over the field R using floating point

arithmetic.

7.2.1 Formal proofs of correctness over Z2

In this book we have focused on the proofs of correctness of algorithms,

starting with the very first section, “What is correctness?” (Section 1.1).

It turns out that proofs of correctness of algorithms are a lot more than a

stamp of approval; the proofs themselves capture the essence of the given

algorithm, and in fact an algorithm and its proof of correctness are two sides

of the same coin. Given an algorithm, we construct its proof of correctness,

and sometimes given a proof of the existence of a mathematical object, we

can derive the algorithm for its construction from the proof.

Furthermore, the proofs also give an insight to the complexity of the

algorithms. The idea is that the complexity of the intermediate objects

constructed in the proof, ought to match the complexity of the algorithm.

That is, the concepts needed to prove the correctness of an algorithm should

not have to be more potent than the algorithm itself. These notions have

been made precise in the beautiful field of Proof Complexity; for instance,

see [Buss (1986); Soltys and Cook (2004); Cook and Nguyen (2010)].
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Algorithm 31 Gaussian Elimination

Pre-condition: An n×m matrix A = [aij ] over some field F
1: if n = 1 then

2: if a11 = a12 = · · · = a1m = 0 then

3: return [1]

4: else

5: return [1/a1ℓ] where ℓ = mini∈[n]{a1i ̸= 0}
6: end if

7: else

8: if A = 0 then

9: return I

10: else

11: if first column of A is zero then

12: Compute E as in Case 1.

13: else

14: Compute E as in Case 2.

15: end if

16: return

[
1 0

0 GE((EA)[1|1])

]
E

17: end if

18: end if

Post-condition: GE(A) is in row-echelon form

This section contains optional material, and the reader is encouraged to

first review section 9.4, and in particular 9.4.1.1, which present the back-

ground related to the propositional proof systems PK and EPK.

In order to simplify the presentation, we limit ourselves to the field of

two elements Z2 = {0, 1}, but these results holds over more general fields.

However, over bigger fields one has to contend with the encoding of the

field elements with Boolean variables; this is trivial in the case of the two

element field Z2.

We define the Boolean formula RowEchelon(C11, C12, . . . , Cnm) to be

the disjunction of (7.4) and (7.5) below:∧
1≤i≤n,1≤j≤m

¬Cij (7.4)

∧
1≤i<n,1<j≤m

(¬C(i+1)1 ∧ . . . ∧ ¬C(i+1)(j−1) ∧ C(i+1)j) ⊃
∨

1≤k≤j−1

Cik


(7.5)
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Note that (7.4) states that C is the zero matrix, and (7.5) states that the

first non-zero entry of row i + 1 is to the right of the first non-zero entry

of row i. Moreover, if the (i + 1)-st row has a non-zero entry, then the i-th

row must also have a non-zero entry. Note that we do not need to state the

condition that the first non-zero entry of each row is 1, since the field is Z2;

over more general fields, we would have to state this condition as well.

We will abuse notation slightly, and sometimes write RowEchelon(C)

in place of RowEchelon(C11, C12, . . . , Cnm). We use the notation ∥ · ∥
to indicate translation into Boolean formulas. For example, if A,B are

n× n matrices over Z2, then ∥A = B∥ translates into
∧

1≤i,j≤n Aij ↔ Bij .

Again, this translation is easy in the case of Z2. We sometimes parametrize

the translation, to indicate the sizes of the matrices; that is, we write

∥A = B∥n,m to indicate the translation of the relation A = B into Boolean

formulas, where A,B are matrices of n rows and m columns.

Theorem 7.1. EPK proves the correctness of GE with proofs of size poly-

nomial in the given matrix. More precisely, the family of tautologies given

by:

{
∧
∥C = GE(A)A∥n,m ⊃ RowEchelon(C)} (7.6)

has short EPK proofs, that is, proofs of size polynomial in the size of the

matrix A.

Proof. We prove that (7.6) has short EPK proofs. More precisely, from

the constructions of the derivations given below, it is possible to come up

with a constant d, so that the size of these derivations (measured in the

number of symbols) is bounded by (n + m)d, n,m ≥ 1.

We build the proof of (7.6) inductively on n. Suppose first that A is a

1 × m matrix. Let G = GE(A), then from (7.2) we see that G = [1], so

it is represented by the single extension definition G11 ↔ 1. Now, define

C = GA with m extension definitions, and show that
∧
∥C = A∥1,m. Since

A has only one row, and it is a matrix over Z2, it follows that A is in

row-echelon form, and hence RowEchelon(C) follows.

Now suppose that A is a (n+1)×m matrix. Let G′ = GE((EA)[1|1]),

and we already have the set of extension definitions for G′ by induction.

Thus, from:

G =

[
1 0

0 G′

]
E

we obtain the set of extension definitions for G = GE(A). This set is short

because the definition of E is short, and because the definition of G′ is

short, by induction.
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More precisely, E is given by at most n + 2 elementary matrices of

size (n + 1) × (n + 1) each; thus, it involves n + 1 new matrix definitions,

each definition of size bounded by O((n + 1)3) (just recall the definition

of ∥C = AB∥n+1). Each of the elementary matrices that make up E

has a definition of constant size, in terms of the entries of A. Thus, the

extension definitions of E are of size bounded by O((n+1)4). Therefore, G

can be defined with O((n + 1)4) + (number of extension definitions for G′)

extension definitions, which is O(
∑n+1

k=1 k
4) ≤ O((n + 1)5) many extension

definitions in total for G.

Let C ′ = G′((EA)[1|1]), and C = GA. By induction,∧
∥C ′ = G′((EA)[1|1])∥n ⊃ RowEchelon(C ′)

has an EPK proof of size bounded by (n + m)d. We now want to show

that given the extension definitions for G′ and G, RowEchelon(C ′) ⊃
RowEchelon(C) has short EPK proofs. Since

C = GA =

[
1 0

0 G′

]
EA =

[
first row of EA

0 G′((EA)[1|1])

]
=

[
first row of EA

0 C ′

]
To see this, note that the first column of EA is zero, except possibly for

the first entry. By the choice of E, either (EA)11 ̸= 0, in which case we

have RowEchelon(C), or the first non-zero entry of the first row of EA is

to the left of the first non-zero column of C ′, in which case we also have

RowEchelon(C). Also note that we use associativity of iterated matrix

products in the above reasoning. That is, we assume that the way we

parenthesize an iterated matrix product is not important, since by associa-

tivity we always get the same result. This can be shown with short EPK

proofs as well.

Problem 7.2. Compute the exponent d in Theorem 7.1 explicitly.

Theorem 7.2. The existence of the inverse of GE(A) can be shown with

short EPK proofs.

Proof. We have to show that given ∥G = GE(A)∥n, the Boolean variables

G−111 , G
−1
12 , . . . , G

−1
nn , corresponding to G−1, can be constructed with short

extension definitions, and that EPK proves ∥GG−1 = I∥n with short proofs.

Just as we defined G inductively with extension definitions, we define

G−1 inductively. Given E = Ei1Ei2 · · ·EikE
′E′′, we can compute E−1

immediately by letting it be E′′−1E′−1E−1ik
· · ·E−1i2

E−1i1
. Each of these in-

verses can be computed very easily, because they are elementary matrices.
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So, since we are dealing with Z2, E′′ = E′′, and E′ is also its own inverse,

and Eij is a matrix with 1s on the diagonal, and 1 in the position (p, q), so

E−1ij
is a matrix with 1s on the diagonal, and a 1 in position (q, p).

Thus, we showed how to compute G−1. We still need to show that

the family of tautologies {∥GG−1 = I∥n,m} has short EPK proofs, for any

n ×m matrix A. We can prove this inductively on the number of rows of

A, just as in the proof of Theorem 7.1, so we do not repeat it here.

Problem 7.3. Finish the proof of Theorem 7.2 by constructing in detail

the derivation of ∥GG−1 = I∥n,m and argue that its size is polynomial in

the parameters n,m.

The following Corollary, which builds on the Theorems in this section,

proves the correctness of the Gaussian Elimination algorithm. That is,

given a matrix A, the function GE(A), computed by Algorithm 31, is such

that GE(A)A is in row echelon form. Furthermore, this proof is of polyno-

mial size, which shows that the concepts needed to prove the correctness of

Gaussina Elimination do not exceed the complexity of the algorithm.

Corollary 7.1. It can be shown with short EPK proofs that GE(A)A has

1s on the main diagonal, or its last row is zero.

Proof. The truth of this assertion is obvious from (7.1). Let C = GA, and

suppose that there is a zero entry on the diagonal, i.e., ¬
∧

1≤i≤n Cii ↔ 1.

We want to show that the last row is zero,
∧

1≤i≤n Cni ↔ 0. We know that

RowEchelon(C) is valid, and provable in polysize EPK (by Theorem (7.1)).

From (7.5) we can conclude with short EPK proofs that:∧
1≤j≤k

¬Cij ⊃
∧

1≤j≤k+1

¬C(i+1)j (7.7)

That is, if the first k entries of row i are zero, then the first (k + 1) entries

of row (i + 1) are zero. Let Cii be the zero, with the smallest i. Now,

from (7.7) we prove that: ∧
1≤j≤i

Cij ↔ 0 (7.8)

Using (7.7) repeatedly, for 0 ≤ k ≤ n − i, we show that the first (i + k)

entries of row (i + k) are zero. Thus, we can conclude that the first n

entries of the n-th row are zero, and, therefore, the n-th (last) row is zero

altogether.

In fact, note that given RowEchelon(C), all we needed was polysize PK

to prove that if some Cii is zero, then the last row of C is zero.
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7.3 Gram-Schmidt

Orthogonality is an important concept in Linear Algebra, familiar from the

Euclidean space R2 where it indicates that two vectors in a plane are at

90◦ to each other. We can test if two vectors are orthogonal in R2 with the

inner product (aka, dot product), which is defined as follows: if v = (v1, v2)

and w = (w1, w2) are two vectors in R2, then their inner product, denoted

v ·w, is v1 ·w1 + v2 ·w2. Two vectors v, w ∈ R2 are orthogonal (i.e., at 90◦

to each other) if and only if v · w = 0.

Since the inner product can be generalized to bigger dimensions, and

other fields, as: v · w =
∑

i vi · wi, it is also possible to generalize the

concept of orthogonality to other dimensions and fields. The Gram-Schmidt

algorithm, just like the Gaussian Elimination algorithm (Section 7.2), works

over any dimension and field in order to produce an orthogonal basis from

any given basis. In Euclidean space, the norm of a vector, i.e., its length, is

defined as follows ∥v∥ =
√
v · v, and since the algorithm works with ∥v∥2,

this generalizes to other fields as there is no need to compute square roots.

Let V be an n-dimensional vector space, and {v1, v2, . . . , vn} its basis.

The Gram-Schmidt algorithm produces an orthogonal basis {v∗1 , v∗2 , . . . , v∗n}
for V . What this means is that for all i, j, such that i ̸= j, v∗i · v∗j = 0, and

span{v1, v2, . . . , vn} = span{v∗1 , v∗2 , . . . , v∗n}.

Algorithm 32 Gram-Schmidt

Pre-condition: {v1, . . . , vn} a basis for Rn

1: v∗1 ←− v1
2: for i = 2, 3, . . . , n do

3: for j = 1, 2, . . . , (i− 1) do

4: µij ←− (vi · v∗j )/∥v∗j ∥2
5: end for

6: v∗i ←− vi −
∑i−1

j=1 µijv
∗
j

7: end for

Post-condition: {v∗1 , . . . , v∗n} an orthogonal basis for Rn

Problem 7.4. Algorithm 32 line 4 has a division by the square of the norm

of v∗j ; show that this will never result in an attempted division by zero.

Problem 7.5. Show that algorithm 32 is correct.

Problem 7.6. Implement algorithm 32.
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7.4 Gaussian lattice reduction

Suppose that {v1, v2, . . . , vn} are linearly independent vectors in Rn. The

lattice L spanned by these vectors is the set {
∑n

i=1 civi : ci ∈ Z}, i.e.,

L consists of linear combinations of the vectors {v1, v2, . . . , vn} where the

coefficients are limited to be integers. It is considered a hard problem to

find the shortest vector in such a lattice, except in the case of R2, where

this can be accomplished with algorithm 33.

◦

OO

//

v1

JJ

v2

FF

v∗
1

KS
v∗
2

-5

Fig. 7.1 Example lattice in R2, where only the upper-right quadrant is shown: it is

spanned by two “long” vectors, v1, v2, but in fact it can also be spanned by v∗1 , v
∗
2 ,

where v∗1 has the additional feature of being the shortest vector in the lattice.

Problem 7.7. Consider algorithm 33 over R2, and let {v1, v2} be two

vectors that span a lattice. Show that the algorithm terminates and outputs

a new basis {v1, v2} for L where v1 is the shortest vector in the lattice L,

i.e., ∥v1∥ is as small as possible among all the vectors of L.

Problem 7.8. Implement algorithm 33.
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Algorithm 33 Gauss lattice reduction in dimension 2

Pre-condition: {v1, v2} are linearly independent in R2

1: loop

2: if ∥v2∥ < ∥v1∥ then
3: swap v1 and v2
4: end if

5: m←− ⌊v1 · v2/∥v1∥2⌉ (note that ⌊x⌉ = ⌊x + 1/2⌋)
6: if m = 0 then

7: return v1, v2
8: else

9: v2 ←− v2 −mv1
10: end if

11: end loop

7.5 Computing the characteristic polynomial

Now that we covered some fundamental Linear Algebra algorithms, we are

going to introduce parallel computations. It is customary to measure the

degree of parallelism of a given algorithm in terms of circuits; that is, an

algorithm is parallelizable if it can be computed with a family of circuit

that are “shallow.”

More precisely, an algorithm is computed by a circuit family {Cn} if

there exists an integer constant k, and a parameter n, such that for inputs

of size O(nk), the output of the algorithm can be computed with Cn. The

algorithm is parallelizable with {Cn} if there exist three integer constants

k1, k2, k3 such that, given a parameter n, for inputs of size O(nk1), the size

and depth of Cn is O(nk2) and O(logk2 n), respectively. The size and depth

of a circuit is measured as the number of gates, and the longest path from an

input gate to an ouput gate, respectively. If the depth is polylogarithmic,

i.e., constant power of a logarithm, then the circuit family is considered

shallow and the algorithm parallelizable.

For example, Gaussian Elimination (Section 7.2) is not parallelizable as

it requires polynomial (not polylogarithmic!) depth circuits to compute.

This can be seen from the fact that the elementary matrices are defined

from the input matrix, and the effect of the previous elementary matrices

on the input matrix. This creates a linear chain of dependencies that results

in polynomial depth in the circuits.

Problem 7.9. Design the circuit family Cn for algorithm 31.
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We next present two algorithms that are parallelizable (we will just say

parallel algorithms); both algorithms compute the characteristic polynomial

of a matrix. The first algorithm is Csanky’s, given in Section 7.5.1, and the

second algorithms is Berkowitz’s, given in Section 7.5.2. Both algorithms

are parallel in that they are parallelizable, i.e., can be computed with circuit

families of polynomial size and polylogarithmic depth.

The characteristic polynomial of a matrix A is pA(x) = det(xI−A). Let

pcsankyA and pberkA denote the coefficients of the characteristic polynomial of

A given as column vectors, and computed by Csanky’s and Berkowitz’s

algorithms, respectively. Let pcsankyA (x) and pberkA (x) denote the actual

characteristic polynomials, with coefficients computed by the respective

algorithms.

7.5.1 Csanky’s algorithm

Given a matrix A, its trace is defined as the sum of the diagonal entries,

i.e., tr(A) =
∑

i aii. Using traces we can compute the Newton’s symmetric

polynomials which are defined as follows: s0 = 1, and for 1 ≤ k ≤ n, by:

sk =
1

k

k∑
i=1

(−1)i−1sk−itr(A
i). (7.9)

Then, it turns out that pA(x) = s0x
n − s1x

n−1 + s2x
n−2 − · · · ± snx

0,

that is, Newton’s symmetric polynomials compute the coefficients of the

characteristic polynomial, pA(x) = det(xI −A).

Problem 7.10. Prove that:

pA(x) = det(xI −A) = s0x
n − s1x

n−1 + s2x
n−2 − · · · ± snx

0,

that is, prove that Newton’s symmetric polynomials compute the coeffcients

of the characteristic polynomial.

Problem 7.11. Compute Newton’s symmetric polynomials with a Divide

and Conquer as well as a Dynamic Programming algorithm.

Csanky’s algorithm is a way to parallelize the computation of Newton’s

symmetric polynomials. By itself, (7.9) is not enough to parallelize the

computation, although it leads naturally to recursion as explored in prob-

lem 7.11. We need to find a more efficient way of computing (7.9) that

leads to the parallelization; the key idea to accomplish this is shown in

§13.4 of [von zur Gathen (1993)], which we present next.
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Csanky’s algorithm, which parallelizes the computation (7.9), consists

in defining three matrices, s, T, b, as follows:


s1
s2
...

sn

 ,



0 0 0 . . .

1
2 tr(A) 0 0 . . .

1
3 tr(A2) 1

3 tr(A) 0 . . .

1
4 tr(A3) 1

4 tr(A2) 1
4 tr(A) . . .

...
...

...
. . .


,



tr(A)

1
2 tr(A2)

...

1
n tr(An)


(7.10)

respectively, where for the sake of clarity we did not show that there is

a (−1) coefficient in front of every even powered trace in T and b. Then

Newton’s symmetric polynomials, defined in (7.9), can be represented as:

s = Ts− b

for si, i ≥ 1, and solving for s we get

s = b(I − T )−1. (7.11)

Note that (I − T ) is an invertible matrix as it is lower triangular, with 1s

on the main diagonal. The inverse of (I − T ) can be computed recursively

using the following idea: if C is lower-triangular, with no zeros on the main

diagonal, then

C =

(
C1 0

E C2

)
⇒ C−1 =

(
C−11 0

−C−12 EC−11 C−12

)
(7.12)

We apply this to (7.11), and obtain the so called Csanky’s algorithm, which

can be implemented with circuits of polynomial size and depth O(log2(n)).

Problem 7.12. Present Csanky’s algorithm as Divide and Conquer based

on the ideas in (7.11) and (7.12). Show that the algorithm can be computed

with a family of polynomial size and polylogarithmic depth circuits, in order

to conclude that it is a parallel algorithm.

Problem 7.13. Implement Csanky’s algorithm as defined in exercise 7.12.

7.5.2 Berkowitz’s Algorithm

Berkowitz’s algorithm, just as Csanky’s algorithm, allows us to reduce the

computation of the characteristic polynomial to matrix powering, and then

parallelize the computation.
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Berkowitz’s algorithm is also Divide and Conquer, and it computes the

characteristic polynomial of A from the characteristic polynomial of its

principal minor, i.e., the matrix M obtained from deleting the first row

and column of A:

A =

(
a11 R

S M

)
, (7.13)

where R is an 1×(n−1) row matrix and S is a (n−1)×1 column matrix and

M is (n− 1)× (n− 1). Let p(x) and q(x) be the characteristic polynomials

of A and M respectively. Suppose that the coefficients of p form the column

vector:

p =
(
pn pn−1 . . . p0

)t
, (7.14)

where pi is the coefficient of xi in det(xI −A), and similarly for q. Then:

p = C1q, (7.15)

where C1 is an (n+1)×n Toeplitz lower triangular matrix (Toeplitz means

that the values on each diagonal are constant) and where the entries in the

first column are defined as follows: ci1 = 1 if i = 1, ci1 = −a11 if i = 2, and

ci1 = −(RM i−3S) if i ≥ 3. Berkowitz’s algorithm consists in repeating this

for q, and continuing so that p is expressed as a product of matrices. Thus:

pberkA = C1C2 · · ·Cn, (7.16)

where Ci is an (n+2−i)×(n+1−i) Toeplitz matrix defined as above except

A is replaced by its i-th principal sub-matrix. Note that Cn = (1 − ann)t.

Since each element of Ci can be explicitly defined in terms of A using

matrix powering, and since the iterated matrix product can be reduced to

matrix powering by a standard method, the entire product (7.16) can be

expressed in terms of A using matrix powering.

Problem 7.14. Reduce iterated matrix product to matrix powering. That

is, given a sequence of matrices C1, C2, . . . , Cn, where their sizes are such

that
∏

Ci is well defined, construct a new matrix C, consisting of blocks of

Ci’s, such that Cn has in it a block equal to
∏

Ci. As a hint, suppose that

C1 = [c1] and C2 = [c2], and let:

C =

 1 c1 0

0 1 c2
0 0 1

 so that C2 =

 1 2c1 c1c2
0 1 2c2
0 0 1

 .

As you can see the product C1C2 is in the upper-right corner of C2.

Problem 7.15. Present Berkowitz’s algorithm based on (7.16), and show

that it is a parallel algorithm.

Problem 7.16. Write a program implementing Berkowitz’s algorithm.
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7.5.3 Proving properties of the characteristic polynomial

In Section 7.2.1 we provided a formal proof of correctness of the Gaussian

Elimination algorithm. In this section we prove the correctness of Csanky’s

algorithm, where we take correctness to mean that pcsankyA (A) = 0. Our

aim is to give this approach a proof complexity slant, meaning that we are

interested in a proof where the concepts are of a complexity proportional

to the complexity of the computation.

While it is true that pcsankyA can be formalized with polysize circuits, of

polylogarithmic depth, i.e., it can be parallelized, the proofs of correctness

given here require polysize and polydepth circuits. For a discussion of this

matter, see the Notes.

Lemma 7.1. Similar matrices have the same characteristic polynomial;

that is, if P is any invertible matrix, then pA = pPAP−1 .

Proof. Observe that:

tr(AB) =
∑
i

∑
j

aijbji =
∑
j

∑
i

bjiaij = tr(BA),

so using the associativity of matrix multiplication:

tr(PAiP−1) = tr(AiPP−1) = tr(Ai).

Inspecting (7.9), we see that a proof by induction on the si proves this

lemma.

Lemma 7.2. If A is a matrix of the form:(
B 0

C D

)
, (7.17)

where B and D are square matrices (not necessarily of the same size), and

the upper-right corner is zero, then pA(x) = pB(x) · pD(x).

Proof. Let sAi , s
B
i , s

D
i be the coefficients of the characteristic polynomials

(as given by (7.9)) of A,B,D, respectively. We want to show by induction

on i that

sAi =
∑

j+k=i

sBj s
D
k ,

from which the claim of the lemma follows. The Basis Case: sA0 = sB0 =

sD0 = 1. For the Induction Step, by definition and by the induction hypoth-

esis, we have that sAi+1 equals

=

i∑
j=0

(−1)jsAi−jtr(A
j+1) =

i∑
j=0

(−1)j

 ∑
p+q=i−j

sBp s
D
q

 tr(Aj+1)
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and by the form of A (i.e., (7.17)):

=

i∑
j=0

(−1)j

 ∑
p+q=i−j

sBp s
D
q

 (tr(Bj+1) + tr(Dj+1))

to see how this formula simplifies, we divide it into two parts:

=

i∑
j=0

(−1)j

 ∑
p+q=i−j

sBp s
D
q

 tr(Bj+1) +

i∑
j=0

(−1)j

 ∑
p+q=i−j

sBp s
D
q

 tr(Dj+1).

Consider first the left-hand side. When q = 0, p ranges over {i, i−1, . . . , 0},
and j+1 ranges over {1, 2, . . . , i+1}, and therefore, by definition, we obtain

sBi+1. Similarly, when q = 1, we obtain sBi , and so on, until we obtain sB1 .

Hence we have:

=

i+1∑
j=0

sBi−js
D
j +

i∑
j=0

(−1)j

 ∑
p+q=i−j

sBp s
D
q

 tr(Dj+1).

The same reasoning, but fixing p instead of q on the right-hand side, gives

us:

=

i+1∑
j=0

sBi−js
D
j +

i+1∑
j=0

sBj s
D
i−j =

∑
j+k=i+1

sBj s
D
k

which gives us the induction step and the proof of the lemma.

To show that pA(A) = 0 it is sufficient to show that pA(A)ei = 0 for

all vectors ei in the standard basis {e1, e2, . . . , en}. Let k be the largest

integer such that

{ei, Aei, . . . , A
k−1ei} (7.18)

is linearly independent; we know that k − 1 < n, by the principle of linear

independence (this is the first place where we use linear independence).

Then, (7.18) is a basis for a subspace W of Fn, and W is invariant under

A, i.e., given any w ∈W , Aw ∈W .

Using Gaussian Elimination we write Akei as a linear combination of

the vectors in (7.18). Using the coefficients of this linear combination we

write a monic polynomial

g(x) = xk + c1x
k−1 + · · ·+ ckx

0 (7.19)

such that g(A)ei = 0.
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Let AW be A restricted to the basis (7.18), that is, AW is a matrix rep-

resenting the linear transformation TA : Fn −→ Fn induced by A, restricted

to the subspace W . The matrix At
W has the following simple form:

0 0 0 . . . 0 −ck
1 0 0 . . . 0 −ck−1
0 1 0 . . . 0 −ck−2
...

. . .
...

0 0 0 . . . 1 −c1

 (7.20)

i.e., it is the companion matrix of the polynomial g(x). Since pA = pAt , we

consider the transpose of AW , since At
W has the property that its principal

submatrix is also a companion matrix, and that will be used in a proof by

induction in the next lemma.

Lemma 7.3. The polynomial g(x) is the characteristic polynomial of AW ,

in other words, g(x) = pAW
(x).

Proof. We will drop the W from AW as there is no danger of confusion

(the original matrix A does not appear in the proof); thus, A is a k × k

matrix, with 1s below the main diagonal, and zeros everywhere else except

(possibly) in the last column where it has the negations of the coefficients

of g(x).

As was noted above, A is divided into four quadrants, with the upper-

left containing just 0. Let R = ( 0 . . . 0 −ck ) be the row vector in the

upper-right quadrant. Let S = e1 be the column vector in the lower-left

quadrant, i.e., the first column of A without the top entry. Finally, let M

be the principal submatrix of A, M = A[1|1]; the lower-right quadrant.

Let s0, s1, . . . , sk be the Newton’s symmetric polynomials of A.

To prove that g(x) = pATW
(x) we prove something stronger: we show

that (i) for all 0 ≤ i ≤ k (−1)isi = ci, and (ii) pA(A) = 0.

We show this by induction on the size of the matrix A. Since the

principal submatrix of A (i.e., M) is also a companion matrix, we assume

that for i < k, the coefficients of the symmetric polynomial of M are equal

to the ci’s, and that pM (M) = 0. (Note that the Basis Case of the induction

is a 1× 1 matrix, and it is trivial to prove.)

Since for i < k, tr(Ai) = tr(M i), it follows from (7.9) and the induction

hypothesis that for i < k, (−1)isi = ci (note that s0 = c0 = 1).

Next we show that (−1)ksk = ck. By definition (i.e., by (7.9)) we have
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that sk is equal to:

1

k
(sk−1tr(A)− sk−2tr(A2) + · · ·+ (−1)k−2s1tr(Ak−1) + (−1)k−1s0tr(Ak))

and by the induction hypothesis and the fact that for i < k tr(Ai) = tr(M i)

we have:

=
1

k
(−1)k−1(ck−1tr(M) + ck−2tr(M2) + · · ·+ c1tr(Mk−1) + c0tr(Ak)).

Note that tr(Ak) = −kck + tr(Mk), so:

=
1

k
(−1)k−1

[
ck−1tr(M) + ck−2tr(M2) + · · ·+ c1tr(Mk−1) + c0tr(Mk)

]
+ (−1)kck

Observe that

tr(ck−1M + ck−2M
2 + · · ·+ c1M

k−1 + c0M
k) = tr(pM (M)M) = tr(0) = 0

since pM (M) = 0 by the induction hypothesis. Therefore, sk = (−1)kck.

It remains to prove that pA(A) =
∑k

i=0 ciA
k−i = 0. First, show that

for 1 ≤ i ≤ (k − 1):

Ai+1 =


0 RM i

M iS
∑i−1

j=0 M
jSRM (i−1)−j + M i+1

 (7.21)

(For A of the form given by (7.20), and R,S,M defined as in the first

paragraph of the proof.) Define wi, Xi, Yi, Zi as follows:

Ai+1 =

(
wi+1 Xi+1

Yi+1 Zi+1

)
=

(
wi Xi

Yi Zi

)(
0 R

S M

)
=

(
XiS wiR + XiM

ZiS YiR + ZiM

) (7.22)

We want to show that the right-most matrix of (7.22) is equal to the right-

hand side of (7.21). First note that:

Xi+1 =

i∑
j=0

wi−jRM j wi+1 =

i−1∑
j=0

(RM jS)wi−1−j (7.23)

With the convention that w0 = 1. Since w1 = 0, a straight-forward induc-

tion shows that wi+1 = 0. Therefore, at this point the right-most matrix

of (7.22) can be simplified to:(
0 RM i

ZiS YiR + ZiM

)
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Again by Lemma 5.1 in [Soltys and Cook (2004)] we have:

Yi+1 = M iS +

i−2∑
j=0

(RM jS)Yi−1−j Zi+1 = M i+1 +

i−1∑
j=0

Yi−1−jRM j

By the same reasoning as above,
∑i−2

j=0(RM jS)Yi−1−j = 0, so putting it

all together we obtain the right-hand side of (7.21).

Using the induction hypothesis (pM (M) = 0) it is easy to show that the

first row and column of pA(A) are zero. Also, by the induction hypothesis,

the term M i+1 in the principal submatrix of pA(A) disappears but leaves

ckI. Therefore, it will follow that pA(A) = 0 if we show that

k∑
i=2

ck−i

i−2∑
j=0

M jSRM (i−2)−j (7.24)

is equal to −ckI.

Some observations about (7.24): for 0 ≤ j ≤ i − 2 ≤ k − 2, the first

column of M j is just ej+1. And SR is a matrix of zeros, with −ck in the

upper-right corner. Thus M jSR is a matrix of zeros except for the last

column which is −ckej+1. Thus, M jSRM (i−2)−j is a matrix with zeros

everywhere, except in row (j + 1) where it has the bottom row of M (i−2)−j

multiplied by −ck. Let m(i−2)−j denote the 1×(k−1) row vector consisting

of the bottom row of M (i−2)−j . Therefore, (7.24) is equal to:

−ck ·



∑k
i=2 ck−im

(i−2)

∑k
i=3 ck−im

(i−3)

...∑k
i=k ck−im

(i−k)


(7.25)

We want to show that (7.25) is equal to −ckI to finish the proof of pA(A) =

0. To accomplish this, let l denote the l-th row of the matrix in (7.25)

starting with the bottom row. We want to show, by induction on l, that

the l-th row is equal to ek−l.

The Basis Case is l = 0:

k∑
i=k

ck−im
(i−k) = c0m

0 = ek,

and we are done.
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For the induction step, note that ml+1 is equal to ml shifted to the left

by one position, and with

ml · (−ck−1 −ck−2 . . . −c1 )t (7.26)

in the last position. We introduce some more notation: let rl denote the

k − l row of (7.25). Thus rl is 1 × (k − 1) row vector. Let
←
r l denote rl

shifted by one position to the left, and with a zero in the last position. This

can be stated succinctly as follows:

←
r l

def
= λij⟨1, (k − 1), e(rl, 1, i + 1))⟩.

Based on (7.25) and (7.26) we can see that:

rl+1 =
←
r l +[rl · (−ck−1 −ck−2 . . . −c1 )t]ek + clm

0.

(Here the “·” in the square brackets denotes the dot product of the two

vectors.) Using the induction hypothesis:
←
r l= ek−(l+1), and

rl · (−ck−1 −ck−2 . . . −c1 )t = ek−l · (−ck−1 −ck−2 . . . −c1 )t = −cl
so rl+1 = ek−l− clek + clek = ek−(l+1) as desired. This finishes the proof of

the fact that the matrix in (7.25) is the identity matrix, which in turn proves

that (7.24) is equal to −ckI, and this ends the proof of pA(A) = 0, which

finally finishes the main induction argument, and proves the lemma.

It is interesting to note that lemma 7.3 can also be proved (feasibly)

for Berkowitz’s algorithm instead, and the proof is in fact much simpler:

consider again the matrix given by (7.20). We assume inductively that pberkM

(the characteristic polynomial of the principal submatrix of (7.20)) is given

by ( 1 c1 c2 . . . ck−1 )t. Since R = ( 0 . . . 0 −ck ) and S = e1, pberkA = B ·
pberkM , where B (the matrix given by Berkowitz’s algorithm) is an (n+1)×n
matrix with 1s on the main diagonal, 0s everywhere else, except for +ck
in position (n + 1, 1). From this, it is easy to see that pberkA is given by

( 1 c1 c2 . . . ck )t.

Lemma 7.4. The polynomial g(x) divides pA(x).

Proof. Extend (7.18) to a full basis of Fn:

B = {ei, Aei, . . . , A
k−1ei, ej1 , ej2 , . . . , ejn−k

}.

This extension can be carried out easily with Gaussian Elimination, by

checking which vectors from the standard basis ({e1, e2, . . . , en}) are in the

span consisting of (7.18) and those vectors that have already been added,

and adding only those that are not. This is the only other place (besides
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the paragraph following the proof of lemma 7.2) where we need to use the

principle of linear independence.

Let P be the change of basis for A from the standard basis to B. Then,

PAP−1 =

(
AW 0

∗ E

)
where AW is a k×k block, and E is a (n−k)×(k−n) block (corresponding to

the extension), and we have a block of zeros above E since W is invariant

under A. By lemma 7.2 it follows that pA(x) = pPAP−1(x) = pAW
(x) ·

pE(x). By lemma 7.3, pAW
= g(x), and so g(x) divides pA(x).

Theorem 7.3. We can prove the Cayley-Hamilton Theorem (CHT) from

the principle of linear independence, when the characteristic polynomial is

computed by Csanky’s algorithm.

Proof. By lemma 7.4,

pA(A)ei = (pAW
(A) · pE(A))ei = (g(A) · pE(A))ei = pE(A) · (g(A)ei) = 0.

Since this is true for any ei in the standard basis, it follows pA(A) = 0.

7.6 Answers to selected problems

Problem 7.5. We are going to prove a loop invariant on the outer loop

of algorithm 32, that is, we are going to prove a loop invariant on the for-

loop (indexed on i) that starts on line 2 and ends on line 7. Our invariant

consists of two parts: after the k-th iteration of the loop, the following two

statements hold true:

(1) the set {v∗1 , . . . , v∗k+1} is orthogonal, and

(2) span{v1, . . . , vk+1} = span{v∗1 , . . . , v∗k+1}.

Basis case: after zero iterations of the for-loop, that is, before the for-loop

is ever executed, we have, from line 1 of the algorithm, that v∗1 ←− v1, and

so the first statement is true because {v∗1} is orthogonal (a set consisting of

a single non-zero vector is always orthogonal—and v∗1 = v1 ̸= 0 because the

assumption (i.e., pre-condition) is that {v1, . . . , vn} is linearly independent,

and so none of these vectors can be zero), and the second statement also

holds trivially since if v∗1 = v1 then span{v1} = span{v∗1}.
Induction Step: Suppose that the two conditions hold after the first k

iterations of the loop; we are going to show that they continue to hold after
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the k + 1 iteration. Consider:

v∗k+2 = vk+2 −
k+1∑
j=1

µ(k+1)jv
∗
j ,

which we obtain directly from line 6 of the algorithm; note that the outer

for-loop is indexed on i which goes from 2 to n, so after the k-th execution

of line 2, for k ≥ 1, the value of the index i is k + 1. We show the first

statement, i.e., that {v∗1 , . . . , v∗k+2} are orthogonal. Since, by induction

hypothesis, we know that {v∗1 , . . . , v∗k+1} are already orthogonal, it is enough

to show that for 1 ≤ l ≤ k + 1, v∗l · v∗k+2 = 0, which we do next:

v∗l · v∗k+2 = v∗l ·

vk+2 −
k+1∑
j=1

µ(k+2)jv
∗
j


= (v∗l · vk+2)−

k+1∑
j=1

µ(k+2)j(v
∗
l · v∗j )

and since v∗l · v∗j = 0 unless l = j, we have:

= (v∗l · vk+2)− µ(k+2)l(v
∗
l · v∗l )

and using line 4 of the algorithm we write:

= (v∗l · vk+2)− vk+2 · v∗l
∥v∗l ∥2

(v∗l · v∗l ) = 0

where we have used the fact that vl ·vl = ∥vl∥2 and that v∗l ·vk+2 = vk+2 ·v∗l .

For the second statement of the loop invariant we need to show that

span{v1, . . . , vk+2} = span{v∗1 , . . . , v∗k+2}, (7.27)

assuming, by the induction hypothesis, that span{v1, . . . , vk+1} =

span{v∗1 , . . . , v∗k+1}. The argument will be based on line 6 of the algorithm,

which provides us with the following equality:

v∗k+2 = vk+2 −
k+1∑
j=1

µ(k+2)jv
∗
j . (7.28)

Given the induction hypothesis, to show (7.27) we need only show the

following two things:

(1) vk+2 ∈ span{v∗1 , . . . , v∗k+2}, and

(2) v∗k+2 ∈ span{v1, . . . , vk+2}.
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Using (7.28) we obtain immediately that vk+2 = v∗k+2 +
∑k+1

j=1 µ(k+2)jv
∗
j

and so we have (1). To show (2) we note that

span{v1, . . . , vk+2} = span{v∗1 , . . . , v∗k+1, vk+2}

by the induction hypothesis, and so we have what we need directly

from (7.28).

Finally, note that we never divide by zero in line 4 of the algorithm

because we always divide by ∥v∗j ∥, and the only way for the norm to be zero

is if the vector itself, v∗j , is zero. But we know from the post-condition that

{v∗1 , . . . , v∗n} is a basis, and so these vectors must be linearly independent,

and so none of them can be zero.

Problem 7.7. A reference for this algorithm can be found in [Hoffstein

et al. (2008)] in §6.12.1. Also [von zur Gathen and Gerhard (1999)], §16.2,

gives a treatment of the algorithm in higher dimensions.

Let p = v1 · v2/∥v1∥2, and keep the following relationship in mind:

⌊p⌉ = ⌊p +
1

2
⌋ = m ∈ Z ⇐⇒ p ∈ [m− 1

2
,m +

1

2
) ⊆ R,

where, following standard calculus terminology, the set [a, b), for a, b ∈ R,

denotes the set of all x ∈ R such that a ≤ x < b.

E

D

ii

C

D′

II

A

DD

B

88

Fig. 7.2 The projection of v2, given as A⃗E, onto v1, given as A⃗B. The resulting vector

is A⃗C = v2 − pv1, where p = v1 · v2/∥v1∥2. Letting m = ⌊p⌉, the vector v2 − mv1,
is given by D⃗′E or D⃗E, depending on whether m < p or not, respectively. Of course,
D′ = C = D when p = m.

We now give a proof of termination. Suppose first that |p| = 1
2 . If

p = − 1
2 , then m = 0 and the algorithm stops. If p = 1

2 , then m = 1,

which means that we go through the loop one more time with v′1 = v1 and

∥v′2∥ = ∥v2−v1∥ = ∥v2∥, and, more importantly, in the next round p = − 1
2 ,

and again the algorithm terminates.
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If p = m, i.e., p was an integer to begin with (giving C⃗E = D⃗′E = D⃗E

in figure 7.2), then simply by the Pythagorean theorem ∥C⃗E∥ has to be

shorter than ∥A⃗E∥ (as v1, v2 are non-zero, as m ̸= 0).

So we may assume that |p| ≠ 1
2 and p ̸= m. The two cases where m < p,

giving D′, or m > p, giving D, are symmetric, and so we treat only the

latter case. It must be that |p| > 1
2 for otherwise m would have been zero,

resulting in termination. Note that ∥C⃗D∥ ≤ 1
2∥A⃗B∥, because A⃗D = mA⃗B.

From this and the Pythagorean theorem we know that:

∥A⃗E∥2 = ∥A⃗C∥2 + ∥C⃗E∥2 = p2∥A⃗B∥2 + ∥C⃗E∥2

∥D⃗E∥2 = ∥C⃗D∥2 + ∥C⃗E∥2 ≤ p2∥A⃗B∥2 + ∥C⃗E∥2

and so ∥A⃗E∥2−∥D⃗E∥2 ≥ (p2− 1
4 )∥A⃗B∥2, and, as we already noted, if the

algorithm does not end in line 6 that means that |p| > 1
2 , and so it follows

that ∥A⃗E∥ > ∥D⃗E∥, that is, v2 is longer than v2 −mv1, and so the new v2
(line 9) is shorter than the old one.

Let v′1, v
′
2 be the two vectors resulting in one iteration of the loop from

v1, v2. As we noted above, when |p| = 1
2 termination comes in one or two

steps. Otherwise, ∥v′1∥+∥v′2∥ < ∥v1∥+∥v2∥, and as there are finitely many

pairs of points in a lattice bounded by the sum of the two norms of the

original vectors, and the algorithm ends when one of the vectors becomes

zero, this procedure must end in finitely many steps.

7.7 Notes

This chapter is based on several articles of the author. Sections 7.2

and 7.2.1, Gaussian Elimination and its proof of correctness, are base on

section 3.1 in [Soltys (2002b)]. section 7.5 is based on a sequence of papers

where the author was looking for feasible proofs of the main properties of the

characteristic polynomial (properties such as the fact that the characteristic

polynomial of a matrix is also its annihilator and that the constant term is

the determinant of the matrix). Several algorithms were studies in this line

of research: Csanky’s algorithm, section 7.5.1, is based on [Soltys (2005)],

and Berkowitz’s algorithm, section 7.5.2, is based on [Soltys (2002a)]. The

original presentation of Berkowitz’s algorithm can be found here [Berkowitz

(1984)].
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Chapter 8

Computational Foundations

Technology is the making of
metaphors from the natural
world. Flight is the metaphor of
air, wheels are the metaphor of
water, food is the metaphor of
earth. The metaphor of fire is
electricity.

E. L. Doctorow [Doctorow
(1971)], pg. 224

8.1 Introduction

The first serious attempt to build a computer was undertaken in the 1820s

by Charles Babbage. The machine was called a Difference Engine and it

computed with the decimal number system and was powered by cranking

a handle. Alas, Babbage never managed to build a finished product, as

the manufacturing of precision parts was a prodigious engineering problem

given the technology of his time.

Computer programs are nothing but implementations of algorithms in

a chosen programming language. Programs run on hardware, and just

like programs are instantiations of algorithms, hardware is the material

incarnation of a particular computing model. In this chapter we will explore

different models of computation, which are then instantiated in a machine

running on electricity. We will introduce several types of finite automata,

and conclude with the presentation of a Turing machine.

175
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8.2 Alphabets, strings and languages

An alphabet is a finite, non-empty set of distinct symbols, denoted by Σ. For

example, Σ = {0, 1}, the usual binary alphabet, or Σ = {a, b, c, . . . , z}, the

usual lower-case letters of the English alphabet. A string, also called word,

is a finite ordered sequence of symbols chosen from some alphabet. For

example, 010011101011 is a string over the binary alphabet. The notation

|w| denotes the length of the string w, e.g., |010011101011| = 12. The empty

string, ε, is the unique string such that |ε| = 0. We sometimes write Σε to

emphasize that ε ∈ Σ. Σk is the set of strings over Σ of length exactly k,

for example, if Σ = {0, 1}, then:

Σ0 = {ε},
Σ1 = Σ,

Σ2 = {00, 01, 10, 11}.
The set Σ∗ is called Kleene’s star of Σ, and it is the set of all strings over

Σ. Note that Σ∗ = Σ0 ∪Σ1 ∪Σ2 ∪ . . ., while Σ+ = Σ1 ∪Σ2 ∪ . . .. If x, y are

strings, and x = a1a2 . . . am and y = b1b2 . . . bn then their concatenation is

just their juxtaposition, i.e., x · y = a1a2 . . . amb1b2 . . . bn. We often write

xy, instead of x · y, and wε = εw = w. A language L is a collection of

strings over some alphabet Σ, i.e., L ⊆ Σ∗. For example,

L = {ε, 01, 0011, 000111, . . .} = {0n1n|n ≥ 0} (8.1)

Note that {ε} ≠ ∅; one is the language consisting of the single string ε, and

the other is the empty language.

We let Σℓ denote a generic alphabet of size ℓ. For example, we can let

Σ1 = {1},Σ2 = {0, 1}, etc.

Problem 8.1. What is the size of Σk
2? What is the size of Σk

ℓ ? Let L be

the set of strings over Σℓ where no symbol can occur more than once; what

is |L|?

Let w = w1w2 . . . wn, where for each i, wi ∈ Σ. In order to emphasize

the array structure of w, we sometimes represent it as w[1..n]. We say that

v is a subword of w if v = wiwi+1 . . . wj , where i ≤ j. If i = j, then v is a

single symbol in w; if i = 1 and j = n, then v = w; if i = 1, then v is a

prefix of w (sometimes denoted v ⊑ w) and if j = n, then v is a suffix of

w (sometimes denoted w ⊒ v). We can express that v is a subword more

succinctly as follows: v = w[i..j], and when the delimiters do not have to

be expressed explicitly, we use the notation v ≤ w. We say that v is a

subsequence of w if v = wi1wi2 . . . wik , for i1 < i2 < . . . < ik.
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8.3 Regular languages

In this chapter we examine different types of languages, i.e., different types

of sets of strings. We classify them according to the computational mod-

els that describe them. Regular languages are in some sense the simplest

languages, in that they are described by computers without memory, also

known as Finite Automata. Not surprisingly, only certain languages are reg-

ular, and we require stronger models of computation, such as Push-Down

Automata (section 8.4.2) or Turing Machines (section 8.5) to describe more

complicated languages.

8.3.1 Deterministic Finite Automaton

A Deterministic Finite Automaton (DFA) is a model of computation given

by a tuple A = (Q,Σ, δ, q0, F ) where:

i Q is a finite set of states.

ii Σ is an alphabet, i.e., a finite set of input symbols.

iii δ : Q×Σ −→ Q is a transition function i.e., the “program” that runs the

DFA. Given q ∈ Q, a ∈ Σ, δ computes the next state δ(q, a) = p ∈ Q.

iv q0 is the start state, also called an initial state (q0).

v F is a set of final or accepting states.

To see whether A accepts a string w, we “run” A on w = a1a2 . . . an
as follows: δ(q0, a1) = q1, δ(q1, a2) = q2, until δ(qn−1, an) = qn. We say

that A accepts w iff qn ∈ F , i.e., if qn is one of the final (accepting) states.

More precisely: A accepts w if there exists a sequence of states r0, r1, . . . , rn,

where n = |w|, such that r0 = q0, δ(ri, wi+1) = ri+1 where i = 0, 1, . . . , n−1

and wj is the j-th symbol of w, and rn ∈ F . Otherewise, we say that A

rejects w.

For example, consider the language

L01 = {w| w is of the form x01y ∈ Σ∗ },
which is the set of strings that have 01 as a substring. So, 111 ̸∈ L01, but

001 ∈ L01.

Suppose that we want to design a DFA A = (Q,Σ, δ, q0, F ) for L01.

That is, A accepts the strings in L01, and rejects the strings not in L01.

Let Σ = {0, 1}, Q = {q0, q1, q2}, and F = {q1}. There are two ways to

present δ: as a transition diagram or as a transition table; see Figure 8.1.

At this point we know that simply presenting A as a candidate DFA for

L01 is not sufficient. We must also prove that A is correct. This will be
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// q0

1
��

0 // q2

0
��

1 // q1

0,1
��

0 1

q0 q2 q0
q1 q1 q1
q2 q2 q1

Fig. 8.1 DFA accepting L = {w| w is of the form x01y ∈ Σ∗ }. On the left given as a

transition diagram, and on the right as a transition table.

easier once we define an extended transition function later in this section,

but for now a simple argument by induction on the length of w ∈ Σ∗ will

do.

Problem 8.2. Prove that A is a correct DFA for L01.

Problem 8.3. Design a DFA for {w : |w| ≥ 3 and its third symbol is 0}.

Problem 8.4. Design a DFA for {w : every odd position of w is a 1}.

Problem 8.5. Consider the following two languages:

Bn = {ak = aa · · · a︸ ︷︷ ︸
k

: k is a multiple of n } ⊆ {a}∗

Cn = {(w)b ∈ {0, 1}∗ : w is divisible by n }

Note that (w)b is the binary representation of the number w ∈ N. What

are their DFAs?

Problem 8.6. Consider a vending machine which takes coins as input,

where the allowed coins constitute the following alphabet of symbols:

1 , 5 , 10 , 25 .

Naturally, a string is just an ordered sequence of coins. Design a transition

function for the vending machine which accepts any sequence of coins where

the total value of the coins sums up to a multiple of 25.

Given a transition function δ, its extended transition function (ETF),

denoted δ̂, is defined inductively. The basis case: δ̂(q, ε) = q, and the

induction step: if w = xa, w, x ∈ Σ∗ and a ∈ Σ, then

δ̂(q, w) = δ̂(q, xa) = δ(δ̂(q, x), a).

Thus δ̂ : Q × Σ∗ −→ Q, and w ∈ L(A) ⇐⇒ δ̂(q0, w) ∈ F . Here L(A) is

the set of all those strings (and only those) which are accepted by A, called

the language of A.
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We can now define the language of a DFA A to be

L(A) = {w|δ̂(q0, w) ∈ F},

and we can say that a language L is regular iff there exists a DFA A such

that L = L(A). The next natural question to ask is what operations on

languages preserve their regularity. Regular languages are well behaved,

and many natural operations preserve their regularity; we start with the

three basic ones, which are called regular operations:

i Union: L ∪M = {w|w ∈ L or w ∈M}
ii Concatenation: LM = {xy|x ∈ L and y ∈M}

iii Kleene’s Star (or Kleene’s closure):

L∗ = {w|w = x1x2 . . . xn and xi ∈ L}.

We have already introduced Kleene’s Star in the context of alphabets (sec-

tion 8.2), where alphabets can be seen as a particular language (of strings

of length one). But there is an important difference in how Kleene’s Star

acts on the two: note that Σ+ = Σ∗ − {ε}, but it is not true in general for

languages that L+ = L∗ − {ε}.

Problem 8.7. Why is L+ = L∗ − {ε} not necessarily true?

Theorem 8.8. Regular languages are closed under regular operations

(union, concatenation and Kleene’s Star).

Proof. Suppose we have two regular languages, A,B, and so they have

their corresponding DFAs, M1,M2. Consider the union A ∪ B: take the

corresponding DFAs M1 and M2; let M be such that QM = QM1
× QM2

,

i.e., the Cartesian product of the two state sets. Let:

δM ((r1, r2), a) = (δM1
(r1, a), δM2

(r2, a))

For concatenation and star we need the notion of “nondeterminism,” which

we introduce in the next section—see Problem 8.15.

The key idea in the proof of Theorem 8.8 is to expand the notion of

a state. A set of states is really a finite set of “descriptors” of different

situations. These descriptors can be literally anything, such as sets of states

from another machines—as we shall see when we introduce nondeterministic

finite automata next.
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8.3.2 Nondeterministic Finite Automata

A Nondeterministic Finite Automaton (NFA) is defined similarly to a DFA,

except that the transition function δ becomes a transition relation. Thus,

δ ⊆ Q × Σ × Q, i.e., on the same pair (q, a) there may be more than one

possible new state (or none). This can also be stated as δ : Q×Σ −→ P(Q),

where P(Q) is the power set of Q.

NFAs are similar to DFAs, but they allow “branching.” What this

means is that in a particular configuration, where a DFA is in one state,

an NFA can be in several (or one, or none). A good analogy is the forking

mechanism in the C programming language. Since an NFA can be in several

states simultaneously, it allows for a certain degree of parallelism.

For example, we consider Ln = {w| n-th symbol from the end is 1 }.
An NFA for Ln is given in Figure 8.2

// q0

0,1
��

1 // q1
0,1 // q2

0,1 // . . .
0,1 // qn

Fig. 8.2 NFA for Ln = {w| n-th symbol from the end is 1 }.

Problem 8.9. At least how many states does any DFA recognizing Ln

require?

The definition of acceptance changes slightly: and NFA N accepts w

if w = y1y2 . . . ym where yi ∈ Σε, so that there exists a sequence of states

r0, r1, . . . , rm such that r0 = q0, and ri+1 ∈ δ(ri, yi+1) for i = 0, 1, . . . ,m−1

and rm ∈ F . That is, w is accepted if there exists a padding of w with ε’s

for which there exists an accepting sequence of states.

Problem 8.10. When padding a string with ε’s we never need a contiguous

stretch of ε’s longer than the number of states. In other words, if a padding

exists, it can be found in a finite number of steps. Explain why, and bound

the time of the search for a working padding.

The ε transitions are convenient when designing NFAs. Consider the

NFA in Figure 8.3, where we use ε transitions to descibe various ways to

have a decimal point in a number; for example, we allow 3.14 and 51., that

is, we can have digits after the decimal point, but we can also have none.

Also, we allow .14, that is, no digits before the decimal point. But we do

not want a decimal point by itself (no digits at all).
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// q0
ε,+,− // q1

0,1,...,9
��

. //

0,1,...,9
$$

q2
0,1,...,9 // q3

0,1,...,9
��

ε // q5

q4

.

::

Fig. 8.3 NFA for the set of decimal numbers.

To define the concept of the extended transition function for NFAs, i.e.,

δ̂, we need the concept of ε-closure. Given q, ε-close(q) is the set of all states

p which are reachable from q by following arrows labeled by ε. Formally,

q ∈ ε-close(q), and if p ∈ ε-close(q), and p
ε−→ r, then r ∈ ε-close(q).

We can now define the extended transition relation for NFAs as follows:

δ̂(q, ε) = ε-close(q); suppose w = xa and δ̂(q, x) = {p1, p2, . . . , pn}, and

furthermore ∪ni=1δ(pi, a) = {r1, r2, . . . , rm}. Then,

δ̂(q, w) =

m⋃
i=1

ε-close(ri).

Theorem 8.11. DFAs and NFAs are equivalent.

Proof. We must show that for every DFA M there exists an NFA N such

that L(M) = L(N), and conversly, for every NFA N there exists a DFA M

such that L(N) = L(M). The first direction is trivial, as every DFA is a

restricted type of NFA (with no ε-transitions and a δ that is a function).

In order to show that every NFA N has an equivalent DFA M , we use

a technique called the subset construction. Given an NFA N , let M be

designed as follows:

QM = P(QN )

(qM )0 = {(qN )0}
∀Q ∈ P(QN ),∀a ∈ ΣN FM = {Q ∈ P(QN ) : Q ∩ FN ̸= ∅}

δM (Q, a) =
⋃
q∈Q

ε-closure(δN (q, a))

where P(QN ) is the power-set of QN , meaning that it consists of all the

possible subsets of states in QN . Note that the construction has a cost:

since |P(QN )| = 2|QN |, we can see that there is an exponential increase of

states. Something like this was to be expected, as we are simulating a more

expressive model of computation (an NFA) with one that is more restricted

(a DFA).
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We show as an example the conversion from the NFA for L2 (L2 is the

set of strings where the penultimate symbol is 0), given on Figure 8.4 into

the corresponding DFA, given in Figure 8.5.

//

0,1

�� 0 // 0,1 // 0,1 //

0,1



Fig. 8.4 NFA for L2.

// q0

1
��

0

xx

q1
0,1 // q2

0,1 // q3

0,1
��

q0, q1
1 //
0

&&

q0, q2
1 //
0

''

q0, q3

1
��

0��

q1, q2

0,1

**
q1, q3

0,1
// q2, q3

0,1
ff

q0, q1, q2

1

99

0 //

q0, q1, q3
1
//

0 ((

q0, q2, q3
0

uu
1

hh

q1, q2, q3
0,1

88

q0, q1, q2, q3

1
OO 0
��

Fig. 8.5 DFA for L2.

Observe that in the subset construction that builds the DFA (figure 8.4)

from the NFA (figure 8.5) results in a lot of “unreachable” states. Those

are the states in the upper-right portion of the diagram in figure 8.5. This

illustrates that the subset construction may result in unnecessary states.

Problem 8.12. Modify the subset construction to be such that only states

reachable from the initial state are added. That is, start generating states

and connections from {q0}.

Problem 8.13. Construct a family of NFAs Nk such that the family of

DFAs Dk, where L(Dk) = L(Nk), is such that for all k, |QNk
| = O(k), but

|QDk
| = O(2k).

Corollary 8.14. A language is regular ⇐⇒ it is recognized by some DFA

⇐⇒ it is recognized by some NFA.

Problem 8.15. Finish the proof of Theorem 8.8, that is, show that the

operations of concatenation and star preserve regularity.
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8.3.3 Regular Expressions

Regular Expressions are familiar to anyone using a computer. They are the

means of finding patterns in text. This author is an avid user of the text

editor VIM1, and it is hard to find an editor with a more versatile pattern

matching and replacement feature. For example, the command

:23,43s/\(.*\n\)\{3\}/&\r/

inserts a blank line every third line, between lines 23 and 43 (inclusive). In

fact, VIM, like most text processors, implements a set of commands that

are well beyond the scope of using just regular expressions.

A Regular Expression, abbreviated as RE, is a syntactic object meant

to express a set of strings, i.e., a language. In this sense, REs are a model

of computation, just like DFAs or NFAs. They are defined formally by

structural induction. In the Basis Case: a ∈ Σ, ε, ∅. In the Induction Step:

If E,F are regular expressions, then so are E + F,EF, (E)∗, (E).

Using your intuition about RE, you should be able to do Problem 8.16.

Problem 8.16. What are L(a), L(ε), L(∅), L(E+F ), L(EF ), L(E∗)? This

problem is asking you to define the semantics of RE.

Problem 8.17. Give a RE for the set of strings of 0s and 1s not containing

101 as a substring.

Theorem 8.18. A language is regular if and only if it is given by some

regular expression.

We are going to prove Theorem 8.18 in two parts. First, suppose we

wish to convert a regular expression R to an NFA A. To this end we

use structural induction, and at each step of the construction we ensure

that the NFA A has the following three properties (i.e., invariants of the

construction): (i) exactly one accepting state; (ii) no arrow into the initial

state; (iii) no arrow out of the accepting state.

We follow the convention that if there is no arrow out of a state on a

particular symbol, then the computation rejects. Formally, we can institute

a “trash state,” T , which is a rejecting state with a self-loop on all symbols

in Σ, and imagine that there is an arrow on σ ∈ Σ from state q to T if there

was no arrow on σ out of q. Basis Case: the regular expression R is of the

form: ε, ∅, a ∈ Σ. In this case, the NFA has one of three corresponding

forms depicted in Figure 8.6.

1http://www.vim.org
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// ε // // // a //

Fig. 8.6 ε, ∅, a NFAs.

For the induction step, we construct bigger regular expressions from

smaller ones in three possible ways: R + S,RS,R∗. The corresponding

NFAs are constructed, respectively, as follows:

R

ε

��//

ε

??

ε
��

S

ε

??

// R ε // S

// ε //

ε

77
R

ε

�� ε //

Fig. 8.7 R+S,RS,R∗ NFAs. We use dotted circles to denote the initial and final states
of the previous NFA, and the wiggly line denotes all of its other states.

As an example, we convert the regular expression (0 + 01)∗ to an NFA

using this procedure.

0 : // 0 //

1 : // 1 //

01 : // 0 // ε // 1 //
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0 // ε // 1 //

ε

��
(0 + 01) : //

ε

@@

ε

�� 0 // ε

>>

0 // ε // 1 //

ε

��
(0 + 01)∗ : // ε //

ε

@@

ε

�� 0 //

ε

OO

We are now going to prove the other direction of Theorem 8.18: given

an NFA, we will construct a corresponding regular expression. We present

two ways to accomplish this construction.

8.3.3.1 Method 1: Dynamic Programming

This method uses Dynamic Programming, which we covered in Chapter 4.

Suppose that DFA A has n states, and let R
(k)
ij denote the RE whose

language is the set of strings w such that: w takes A from state qi to state

qj with all intermediate states with their index ≤ k. Then, the R such that

L(R) = L(A) is given by the following expression:

R = R
(n)
1j1

+ R
(n)
1j2

+ · · ·+ R
(n)
1jk

,

where F = {qj1 , qj2 , . . . , qjk}. So now we build R
(k)
ij by induction on k. For

the basis case, let k = 0, and R
(0)
ij = x + a1 + a2 + · · · + ak where i

al−→ j

and x = ∅ if i ̸= j and x = ε if i = j. In the induction step k > 0, and

R
(k)
ij = R

(k−1)
ij︸ ︷︷ ︸

path does not visit k

+ R
(k−1)
ik

(
R

(k−1)
kk

)∗
R

(k−1)
kj︸ ︷︷ ︸

visits k at least once

.

Clearly, this process builds the appropriate R from the ground up.

As an example we convert a DFA that accepts only those strings that

have 00 as a substring. The DFA is given in Figure 8.8.
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// q1

1
�� 0 **

q2
0 //

1

jj q3

0,1
��

Fig. 8.8 A DFA that accepts only those strings that have 00 as a substring.

Then:

R
(0)
11 = ε + 1

R
(0)
12 = R

(0)
23 = 0

R
(0)
13 = R

(0)
31 = R

(0)
32 = ∅

R
(0)
21 = 1

R
(0)
22 = ε

R
(0)
33 = ε + 0 + 1

Problem 8.19. Finish the construction by computing R(1), R(2), R(3), and

finally R.

8.3.3.2 Method 2: Generalized NFA

We convert a DFA into a RE by first converting it into a Generalized NFA

(GNFA), which is an NFA with ε transitions that allows regular expressions

as labels of its arrows. We then simplify the GNFA in stages until it yields

the corresponding RE.

We define a Generalized NFA (GNFA) formally as follows:

δ : (Q− {qaccept})× (Q− {q0}) −→ R

where the initial and the accept states are both unique. We say that G

accepts w = w1w2 . . . wn, wi ∈ Σ∗, if there exists a sequence of states q0 =

q0, q1, . . . , qn = qaccept such that for all i, wi ∈ L(Ri) where Ri = δ(qi−1, qi).

Problem 8.20. Show that NFAs and GNFAs are equivalent, i.e., they

recognize exactly the same class of languages.

When translating from a DFA into a GNFA, if there is no arrow i −→ j,

we label it with ∅. For each i, we label the self-loop with ε. We now elimi-

nate states from G until left with just qstart
R−→ qaccept. The elimination of

states is accomplished as shown in Figure 8.9.

This ends the proof of Theorem 8.18.
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qi

R1

��

R4 // qj

q

R3

??

R2

TT

qi
R1R

∗
2R3+R4 // qj

Fig. 8.9 A step in reduction of states.

8.3.4 Algebraic Laws for Regular Expressions

Regular Expressions obey a number of algebraic laws; these laws can be

used to simplify RE, or to restate RE in a different way.
Law Description

R + P = P + R commutativity of +

(R + P ) + Q = R + (P + Q) associativity of +

(RP )Q = R(PQ) associativity of concatenation

∅+ R = R + ∅ = R ∅ identity for +

εR = Rε = R ε identity for concatenation

∅R = R∅ = ∅ ∅ annihilator for concatenation

R(P + Q) = RP + RQ left-distributivity

(P + Q)R = PR + QR right-distributivity

R + R = R idempotent law for union

Note that commutativity of concatenation, RP = PR, is conspicuously

missing, as it is not true in general for RE; indeed, ab ̸= ba as strings. Here

are six more laws associated with Kleene’s star:

(R∗)∗ = R∗ ∅∗ = ε ε∗ = ε

R+ = RR∗ = R∗R R∗ = R+ + ε (R + P )∗ = (R∗P ∗)∗

Note that R∗ = R+ + ε does not mean that L(R+) = L(R∗)− {ε}.
The question now is how can we check if a given statement is a valid

algebraic law? The answer is fascinating because it contradicts everything

that we learned in mathematics: we can check that an alleged law is valid

by testing it on a particular instance. Thus, we can verify a universal

statement with a single instance. In other words, to test whether E = F ,

where E,F are RE with variables (R,P,Q, . . .), convert E,F to concrete

RE C,D by replacing variables by symbols. Then check if L(C) = L(D),

and if so, we can conclude that E = F .
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For example, to show that (R + P )∗ = (R∗P ∗)∗, we replace R,P by

a, b ∈ Σ, to obtain (a+ b)∗ = (a∗b∗)∗, and we check whether this particular

instance is true. It is, so we can conclude that (R+P )∗ = (R∗P ∗)∗ is true.

This property is often referred to as the “Test for RE Algebraic Laws.”

8.3.5 Closure Properties of Regular Languages

We list operations on languages that preserve regularity. Note that the first

three operations have been presented in Theorem 8.8.

i Union: If L,M are regular, so is L ∪M .

ii Concatenation: If L,M are regular, so is L ·M .

iii Kleene’s Star: If L is regular, so is L∗.

iv Complementation: If L is regular, so is Lc = Σ∗ − L.

v Intersection: If L,M are regular, so is L ∩M .

vi Reversal: If L is regular, so is LR = {wR|w ∈ L}, where

(w1w2 . . . wn)R = wnwn−1 . . . w1.

vii Homomorphism: h : Σ∗ −→ Σ∗, where

h(w) = h(w1w2 . . . wn) = h(w1)h(w2) . . . h(wn).

For example, h(0) = ab, h(1) = ε, then h(0011) = abab. h(L) =

{h(w)|w ∈ L}. If L is regular, then so is h(L).

viii Inverse Homomorphism: h−1(L) = {w|h(w) ∈ L}. Let A be the

DFA for L; construct a DFA for h−1(L) as follows: δ(q, a) = δ̂A(q, h(a)).

ix Not proper prefix: If A is regular, so is the language

NOPREFIX(A) = {w ∈ A : no proper prefix of w is in A }.

x Does not extend: If A is regular, so is the language

NOEXTEND(A) = {w ∈ A : w is not a proper prefix of any string in A }.

Problem 8.21. Show that the above operations preserve regularity.

8.3.6 Complexity of transformations and decisions

In this section we summarize the complexity, i.e., best known algorithm, for

transformations between various formalizations of regular languages. We

are going to use the notation A ↪→ B to denote the transformation from

formalism A to formalism B.

i NFA ↪→ DFA: O(n32n)
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ii DFA ↪→ NFA: O(n)

iii DFA ↪→ RE: O(n34n)

iv RE ↪→ NFA: O(n)

Problem 8.22. Justify the complexities for each transformation above.

Now consider the following decision properties for regular languages:

i Is a given language empty?

ii Is a given string in a given language?

iii Are two given languages actually the same language?

Problem 8.23. What is the complexity of the above three decision prob-

lems? Note that in each case it must be clarified what “given” means; that

is, how a given language is “given.”

8.3.7 Equivalence and minimization of automata

In some applications we may want to find a minimal DFA for a given

language. We say that two states are equivalent if for all strings w, δ̂(p, w)

is accepting ⇐⇒ δ̂(q, w) is accepting. If two states are not equivalent,

they are distinguishable.

We have a recursive (divide-and-conquer) procedure for finding pairs of

distinguishable states. First, if p is accepting and q is not, then {p, q} is a

pair of distinguishable states. This is the “bottom” case of the recursion.

If r = δ(p, a) and s = δ(q, a), where a ∈ Σ and {r, s} are already found

to be distinguishable, then {p, q} are distinguishable; this is the recursive

case. We want to formalize this with the so called table filling algorithm,

which is a recursive algorithm for finding distinguishable pairs of states.

// A
0 //

1

��

B
1 //

0

��

C

1




0

{{
D

0oo

1

��
E

1 //

0

;;F

0

BB

1 // G
0TT

1
cc H

0oo

1

\\

A B C D E F G

B ×
C × ×
D × × ×
E × × ×
F × × × ×
G × × × × × ×
H × × × × × ×

Fig. 8.10 An example of a DFA and the corresponding table. Distinguishable states
are marked by “×”; the table is only filled below the diagonal, as it is symmetric.
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Problem 8.24. Design the recursive table filling algorithm. Prove that in

your algorithm, if two states are not distinguished by the algorithm, then

the two states are equivalent.

We now use the table filling algorithm to show both the equivalence of

automata and to minimize them. Suppose D1, D2 are two DFAs. To see if

they are equivalent, i.e., L(D1) = L(D2), run the table-filling algorithm on

their “union”, and check if qD1
0 and qD2

0 are equivalent.

Note that the equivalence of states is an equivalence relation (see sec-

tion 9.3). We can use this fact to minimize DFAs. For a given DFA, we

run the Table Filling Algorithm, to find all the equivalent states, and hence

all the equivalence classes. We call each equivalence class a block. In the

example in figure 8.10, the blocks would be:

{E,A}, {H,B}, {C}, {F,D}, {G}

The states within each block are equivalent, and the blocks are disjoint.

We now build a minimal DFA with states given by the blocks as follows:

γ(S, a) = T , where δ(p, a) ∈ T for p ∈ S. We must show that γ is well

defined; suppose we choose a different q ∈ S. Is it still true that δ(q, a) ∈ T?

Suppose not, i.e., δ(q, a) ∈ T ′, so δ(p, a) = t ∈ T , and δ(q, a) = t′ ∈ T ′.

Since T ̸= T ′, {t, t′} is a distinguishable pair. But then so is {p, q}, which

contradicts that they are both in S.

Problem 8.25. Show that we obtain a minimal DFA from this procedure.

Problem 8.26. Implement the minimization algorithm. Assume that the

input is given as a transition table, where the alphabet is fixed to be {0, 1},
and the rows represent states, where the first row stands for the initial

state. Indicate the rows that correspond to accepting states with a special

symbol, for example, ∗.
2 0

1 1

* 2 1

Fig. 8.11

Note that with this convention you do not need to label the

rows and columns of the input, except for the ∗ denoting the

accepting states. Thus, the transition table given in Figure 8.1

would be represented as in Figure 8.11.

8.3.8 Languages that are not regular

It is easy to show that a language is regular; all we have to do is exhibit

one of the models of computation that describe regular languages: a DFA,

an NFA, or a regular expression. Thus, it is an existential proof, in that
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given an (alleged) regular language L, we have to show the existence of a

machine A such that L(A) = L.

But how do we show that a language is not regular? Ostensibly, we have

to show that for every machine A, L(A) ̸= L, which par contre is a uni-

versal proof. This, intuitively, seems like a harder proposition because we

cannot possibly list infinitely many machines, and check each one of them.

Thus, we need a new technique; in fact, we propose two: the “Pumping

Lemma,” and the Myhill-Nerode Theorem. Thus, we enter a very chal-

lenging area of the theory of computation: proving impossibility results.

Fortunately, impossibility results for regular languages, i.e., showing that

a given language is not regular, are quite easy. This is because regular

languages are described by relatively weak machines. The stronger a model

of computation, the harder it is to give impossibility results for it.

We are interested in properties of regular languages because it is im-

portant to understand computation “without memory.” Many embedded

devices such as pacemakers do not have memory, or battery power to main-

tain a memory. Regular languages can be decided with devices without

memory.

8.3.8.1 Pumping Lemma

Lemma 8.27 (Pumping Lemma). Let L be a regular language. Then

there exists a constant n (depending on L) such that for all w ∈ L, |w| ≥ n,

we can break w into three parts w = xyz such that:

(1) y ̸= ε

(2) |xy| ≤ n

(3) For all k ≥ 0, xykz ∈ L

Proof. Suppose L is regular. Then there exists a DFA A such that L =

L(A). Let n be the number of states of A. Consider any w = a1a2 . . . am,

m ≥ n:

↑
p0

x︷ ︸︸ ︷
a1 ↑
p1

a2 ↑
p2

a3 . . . ai ↑
pi

y︷ ︸︸ ︷
ai+1 . . . aj ↑

pj

z︷ ︸︸ ︷
aj+1 . . . am ↑

pm

Problem 8.28. Show L = {0n1n|n ≥ 0} is not regular.

Problem 8.29. Show L = {1p| p is prime } is not regular.
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8.3.8.2 Myhill-Nerode Theorem

The Myhill-Nerode Theorem furnishes a definition of regular languages that

is given without mention of a model of computation. It characterizes regular

languages in terms of relational properties of strings. See section 9.3 for a

refresher on equivalence relations.

We start with some definitions and observations. Given a language

L ⊆ Σ∗, let ≡L be a relation on Σ∗ × Σ∗ such that x ≡L y if for all z,

xz ∈ L ⇐⇒ yz ∈ L.

Problem 8.30. Show that ≡L is in fact an equivalence relation.

Suppose some DFA D recognizes L, and k = |QD|. We say that X is

a set that is pairwise distinguishable by L iff for every two distinct x, y ∈
X, x ̸≡L y. We show that if |QD| = k then |X| ≤ k. Suppose that

{x1, x2, . . . , xk+1} ⊆ X. Since there are k states, there are two xi, xj ,

distinct, so that

δ̂D(q0, xi) = δ̂(q0, xj)

⇒∀z[δ̂D(q0, xiz) = δ̂(q0, xjz)]

⇒∀z[xiz ∈ L ⇐⇒ xjz ∈ L]

⇒xi ≡L xj

Thus, it is not possible for |X| > k. We denote with index(L) the cardinality

|X| of a largest pairwise distinguishable set X ⊆ L.

Theorem 8.31 (Myhill-Nerode). L is regular iff index(L) is finite. Fur-

thermore, index(L) is the size of the smallest DFA for L.

Proof. Suppose that index(L) = k and let X = {x1, x2, . . . , xk}; first note

that for any x ∈ Σ∗, x ≡L xi for some (unique) xi ∈ X; otherwise X ∪ {x}
would be a bigger “pairwise distinguishable by L” set. Uniqueness follows

by transitivity.

Let D be such that QD = {q1, . . . , qk} and

δD(qi, a) = qj ⇐⇒ xia ≡L xj

The fact that a (unique) xj exists such that xia ≡L xj follows from the

above observation. Thus δ̂(qi, w) = qj ⇐⇒ xiw ≡L xj .

Let FD = {qi ∈ QD : xi ∈ L} and let q0 := qi such that xi ≡L ε.

It is easy to show that our D works: x ∈ L ⇐⇒ x ≡L xi for some

xi ∈ L. To see this note that x ≡L xi for a unique xi, and if this xi ̸∈ L

then xε ∈ L while xiε ̸∈ L, so we get the contradiction x ̸≡L xi. Finally,

x ≡L xi iff δ̂(q0, x) = qi ∈ FD.
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8.3.9 Automata on terms

See section 9.4 for the necessary background in logic. In first order logic a

vocabulary

V = {f1, f2, f3, . . . ;R1,R2,R3, . . .}

is a set of function (f) and relation (R) symbols. Each function and relation

has an arity, i.e., “how many arguments it takes.” A function of arity 0 is

called a constant.

We define V-terms (just terms when V is understood from the context)

by structural induction as follows: any constant c (i.e., arity(c) = 0) is a

term, and if t1, . . . , tn are n terms, and f is a function symbol of arity n,

then ft1 . . . tn is also a term. That is, terms are constructed by juxtaposi-

tion. Let T be the set of all terms. Note that unlike in first order logic we

do not introduce variables.

Problem 8.32. Show that terms are “uniquely readable.” (Hint: compare

with Theorem 9.80.)

A V-algebra (just algebra when V is understood from the context) is

an interpretation of a given vocabulary V. That is, A is a V-algebra if

it consists of a non-empty set A (called the universe of A), together with

an interpretation of all the function and relation symbols of V. That is,

given f ∈ V of arity n, A provides an interpretation for f in the sense that

it assigns f a meaning f : An −→ A. We write fA to denote f , or just

fA = f .

A assigns each term t an interpretation tA ∈ A.

Problem 8.33. Define tA for arbitrary terms. What is the data structure

that can be naturally associated with the carrying out of this interpretation?

What is the natural interpretation for relations, i.e., what is (Rt1 . . . tn)A?

State explicitly the difference in “type” between fA and RA.

We say that an algebra A is an automaton if the universe A is finite

and V has a single unary relation symbol R. We say that A accepts a term

t ∈ T if tA ∈ RA. Just like in the case of DFAs, we let L(A) be the set of

t ∈ T that are accepted by A.

Problem 8.34. Let Σ be a finite alphabet, and let V = Σ′ ∪ {c} where

c is a new symbol denoting a function of arity 0, and each a ∈ Σ is in-

terpreted as a distinct unary function symbol a in Σ′ (thus |Σ| = |Σ′|).
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Show that a language L over Σ is regular iff some automaton A accepts

L′ = {an . . .a2a1c : a1a2 . . . an ∈ L}.

We say that a subset L ⊆ T is regular if L = L(A) for some automaton

A. Note that this a wider definition of regularity, as not all functions

in V are necessarily unary (when they are, as problem 8.34. showed, this

definition of “regular” corresponds to the classical definition of “regular”).

Problem 8.35. Show that regular languages (in this new setting), are

closed under union, complementation and intersection.

8.4 Context-free languages

[Chomsky (1965)] is concerned with the problem of defining a “generative”

grammar for the English language, that is, with the formalization of the

syntax that defines strings which are well-formed sentences of the English

language. Even though this approach did not fully work in linguistics, it had

collosal consequences in Computer Science, as it provided the techniques

needed to define preciesly the syntax of a programming language.

The first language to be designed according to those principles was

ALGOL (the great grand-parent of C, C++, Pascal, etc.). ALGOL was

based on Chomsky grammars, and hence unreadable for humans; this is

why first ALGOL programmers introduced the notion of indentation.

8.4.1 Context-free grammars

A context-free grammar (CFG) is expressed by the tuple G = (V, T, P, S),

where the letters stand for a set of variables, terminals, productions and

the specified start variable.

For example, the grammar for the language of palindromes uses the

following production: P −→ ε|0|1|0P0|1P1. And the grammar for the lan-

guage of (reduced) algebraic expressions is G = ({E, T, F},Σ, P, E) where

Σ = {a,+,×, (, )} and P is the following set of productions:

E −→ E + T |T
T −→ T × F |F
F −→ (E)|a

Here we use E for expressions, T for terms, and F for factors. Under the

normal interpretations of + and ×, the three productions above respectively

reflect the following structural facts about algebraic expressions:
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• An expression is a term or the sum of an expression and a term;

• a term is either a factor or the product of a term and a factor;

• a factor is a either parenthesized expression or the terminal ‘a’.

So the simplest expression would be one consisting of a single term, which

in turn consists of a single factor: a.

Consider a string αAβ over the alphabet (V ∪ T )∗, where A ∈ V , and

A −→ γ is a production. Then we can say that αAβ yields αγβ, in symbols:

αAβ ⇒ αγβ. We use
∗⇒ to denote 0 or more steps. We can now define the

language of a grammar as: L(G) = {w ∈ T ∗|S ∗⇒ w}

Lemma 8.36. L(({P}, {0, 1}, {P −→ ε|0|1|0P0|1P1}, P )) is the set of

Palindromes over {0, 1}.

Proof. Suppose w is a palindrome. We show by induction on |w| that

P
∗⇒ w. Basis Case: |w| ≤ 1, so w = ε, 0, 1, so use a single rule P −→ ε, 0, 1.

Induction Step: For |w| ≥ 2, w = 0x0, 1x1, and by the Induction Hypothesis

P
∗⇒ x.

Suppose that P
∗⇒ w. We show by induction on the number of steps

in the derivation that w = wR. Basis Case: the derivation has one step.

Induction Step:

P ⇒ 0P0
∗⇒ 0x0 = w,

where the 0 can be replaced with a 1 instead.

Suppose that we have a grammar G = (V, T, P, S), and S
∗⇒ α, where

α ∈ (V ∪T )∗. Then α is called a sentential form (of this particular grammar

G). We let L(G) be the set of those sentential forms which are in T ∗. In

other words, just as in the case of regular languages, L(G) is the language

of G. We define the parse tree for (G,w) as follows: it is a rooted tree,

with S labeling the root, and the leaves are labeled left-to-right with the

symbols of w. For each interior node, that is all the nodes except the leaves,

the labels have the following form: A

X1 X2 . . . Xn

where A −→ X1X2X3 . . . Xn is a rule in P .

There are a number of ways to demonstrate that a given word w can be

generated with the grammar G, that is, to prove that w ∈ L(G). These are:

recursive inference, derivation, left-most derivation, right-most derivation

and yield of a parse tree. A recursive inference is just like a derivation,

except we generate the derivation from w to S. A left(right)-most derivation
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is a derivation which always applies the rule to the left(right)-most variable

in the intermediate sentential form.

We say that a grammar is ambiguous if there are words which have two

different parse trees. For example, G = ({E}, [0−9], {E → E+E,E∗E}, E)

is ambiguous as the parse trees corresponding to these two derivations are

distinct:

E ⇒ E + E ⇒ E + E ∗ E
E ⇒ E ∗ E ⇒ E + E ∗ E

The issue is that parse trees assign meaning to a string, and two different

parse trees assign two possible meanings, hence the “ambiguity.”

Problem 8.37. Show that the extended regular languages, as defined in

section 8.3.9, are contained in the class of context free languages.

8.4.2 Pushdown automata

As mentioned in the introduction to this section, context-free grammars

are the result of work in linguistics. In the 1960s, when they were imported

into Computer Science, engineers did not think in terms of algorithms, but

rather in terms of imaginary machines, i.e., in terms of hardware. Pushdown

automatons (PDAs) are the machines corresponding to CFGs, just like

DFAs correspond to regular languages. The main difference is that the

former allow for dynamic allocation of memory, albeit in the most primitive

data structure type: a stack.

A Pushdown Automaton (PDA) is an NFA with a stack. The formal

definition of a PDA is given as follows: P = (Q,Σ,Γ, δ, q0, F ) where:

i Q finite set of states

ii Σ finite input alphabet

iii Γ finite stack alphabet

iv δ(q, x, a) = {(p1, b1), . . . , (pn, bn)}
v q0 initial state

vi F accepting states

Problem 8.38. What is a simple PDA for {wwR|w ∈ {0, 1}∗} ?

A P computes as follows: it accepts a given string w in Σ∗ if w =

w1w2 . . . wm where wi ∈ Σε, where |w| = n ≤ m. That is, there exists a ε

padding of w such that there exists a sequence of states r0, r1, . . . , rm in Q,

and a sequence of stack contents s0, s1, . . . , sm ∈ Γ∗ such that the following

three hold:
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i r0 = q0 and s0 = ε

ii (ri+1, b) ∈ δ(ri, wi+1, a), where si = at, si+1 = bt and a, b ∈ Γε and

t ∈ Γ∗. That is, M moves properly according to state, stack and next

input symbol.

iii rm ∈ F .

A configuration is a tuple (q, w, γ): state, remaining input, contents of

the stack. If (p, α) ∈ δ(q, a,X), then (q, aw,Xβ)→ (p, w, αβ)

Lemma 8.39. If (q, x, α)
∗⇒ (p, y, β), then (q, xw, αγ)

∗⇒ (p, yw, βγ).

Problem 8.40. Prove Lemma 8.39.

There are two equivalent ways to define precisely what it meas for a

PDA to accept an input word. There is acceptance by final state, where

we let:

L(P ) = {w|(q0, w, $)
∗⇒ (q, ε, α), q ∈ F},

and there is acceptance by empty stack:

L(P ) = {w|(q0, w, $)
∗⇒ (q, ε, ε)}.

When designing PDAs it might be more convenient to use one of these def-

initions rather than the other, but as the following Theorem demonstrates,

both definitions capture the same set of languages.

Lemma 8.41. L is accepted by PDA by final state iff it is accepted by PDA

by empty stack.

Problem 8.42. Prove Lemma 8.41

Theorem 8.43. CFGs and PDAs are equivalent.

Proof. We show first how to translate a CFG to an equivalent PDA. A left

sentential form is a particular way to express a configuration where:

x︸︷︷︸
∈T∗

tail︷︸︸︷
Aα .

The tail appears on the stack, and x is the prefix of the input that has

been consumed so far. The idea is that the input to the PDA is given by

w = xy, and Aα
∗⇒ y.

Suppose that a PDA is in configuration (q, y, Aα), and that it uses the

rule A −→ β, and enters (q, y, βγ). The PDA simulates the grammar as
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follows: the initial segment of β is parsed, and if there are terminal symbols,

they are compared against the input and removed, until the first variable

of β is exposed on top of the stack. This process is repeated, and the PDA

accepts by empty stack.

For example, consider P −→ ε|0|1|0P0|1P1. The corresponding PDA

has transitions:
δ(q0, ε, $) = {(q, P$)}
δ(q, ε, P ) = {(q, 0P0), (q, 0), (q, ε), (q, 1P1), (q, 1)}
δ(q, 0, 0) = δ(q, 1, 1) = {(q, ε)}
δ(q, 0, 1) = δ(q, 1, 0) = ∅
δ(q, ε, $) = (q, ε)

The computation is depicted in Figure 8.12.

Z P 1 P 0 P 0 P 0 0 1 Z

Z P 1 P 0 P 0 0 1 Z

1 Z 0 1 0 0 1 Z

Z 1 Z 0 1 Z

Z 1 Z

Z

Fig. 8.12 The computation for P ⇒ 1P1 ⇒ 10P01 ⇒ 100P001 ⇒ 100001

We now outline how to translate from a PDA to a CFG. The idea is

that of “net popping” of one symbol of the stack, while consuming some

input. The variables are: A[pXq], for p, q ∈ Q, X ∈ Γ. A[pXq]
∗⇒ w iff w

takes PDA from state p to state q, and pops X off the stack. Productions:

for all p, S −→ A[q0$p], and whenever we have:

(r, Y1Y2 . . . Yk) ∈ δ(q, a,X),

we bring aboard the rule:

A[qXrk] −→ aA[rY1r1]A[r1Y2r2] . . . A[rk−1Ykrk],

where a ∈ Σ ∪ {ε}, r1, r2, . . . , rk ∈ Q are all possible lists of states.

If (r, ε) ∈ δ(q, a,X), then we have A[qXr] −→ a.

Problem 8.44. Show that A[qXp]
∗⇒ w iff (q, w,X)

∗⇒ (p, ε, ε).

This finishes the proof of the Lemma.

A PDA is deterministic if |δ(q, a,X)| ≤ 1, and the second condition is

that if for some a ∈ Σ |δ(q, a,X)| = 1, then |δ(q, ε,X)| = 0. We call such

machines DPDAs.
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Lemma 8.45. If L is regular, then L = L(P ) for some DPDA P .

Proof. Simply observe that a DFA is a DPDA.

Note that DPDAs that accept by final state are not equivalent to DPDAs

that accept by empty stack. In order to examine the relationship between

acceptance by state or empty stack in the context of DPDAs, we introduce

the following property of languages: L has the prefix property if there exists

a pair (x, y), x, y ∈ L, such that y = xz for some z. For example, {0}∗ has

the prefix property.

Lemma 8.46. L is accepted by a DPDA by empty stack ⇐⇒ L is accepted

by a DPDA by final state and L does not have the prefix property.

Lemma 8.47. If L is accepted by a DPDA, then L is unambiguous.

8.4.3 Chomsky Normal Form

In this section we show that every CFG can be put in an especially simple

form, called the Chomsky Normal Form (CNF). A CFG is in Chomsky

Normal Form if all the rules take one of the following three forms:

(1) S −→ ε, where S is the start variable;

(2) A −→ BC, where A,B,C are variables, possibly repeated;

(3) A −→ a, where A is a variable and a an alphabet symbol (not ε).

The CNF has many desirable properties, but one of the most important

consequences is the so called CYK Algorithm (algorithm 34, section 8.4.4),

which is a dynamic programming algorithm for deciding w ∈ L(G), for a

given word w and CFG G.

We are now going to show how to convert an arbitrary CFG into CNF.

In the discussion that follows, S is a variable, X ∈ V ∪ T , w ∈ T ∗ and

α, β ∈ (V ∪ T )∗. We say that the symbol X is useful if there exists a

derivation such that S
∗⇒ αXβ

∗⇒ w.

We say that X is generating if X
∗⇒ w ∈ T ∗, and we say that X is

reachable if there exists a derivation S
∗⇒ αXβ. A symbol that is useful

will be both generating and reachable. Thus, if we eliminate non-generating

symbols first, and then from the remaining grammar the non-reachable

symbols, we will have only useful symbols left.
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Problem 8.48. Prove that if we eliminate non-generating symbols first,

and then from the remaining grammar the non-reachable symbols, we will

have only useful symbols left.

This is how we establish the set of generating symbols, and the set of

reachable symbols. Clearly every symbol in T is generating, and if A −→ α

is a production, and every symbol in α is generating (or α = ε) then A

is also generating. Similarly, S is reachable, and if A is reachable, and

A −→ α is a production, then every symbol in α is reachable.

Claim 8.49. If L has a CFG, then L−{ε} has a CFG without productions

of the form A −→ ε, and without productions of the form A −→ B.

Proof. A variable is nullable if A
∗⇒ ε. To compute nullable variables:

if A −→ ε is a production, then A is nullable, if B −→ C1C2 . . . Ck is a

production and all the Ci’s are nullable, then so is B. Once we have all

the nullable variables, we eliminate ε-productions as follows: eliminate all

A −→ ε.

If A −→ X1X2 . . . Xk is a production, and m ≤ k of the Xi’s are

nullable, then add the 2m versions of the rule the nullable variables

present/absent (if m = k, do not add the case where they are all absent).

Eliminating unit productions: A −→ B. If A
∗⇒ B, then (A,B) is a

unit pair. Find all unit pairs: (A,A) is a unit pair, and if (A,B) is a unit

pair, and B −→ C is a production, then (A,C) is a unit pair. To eliminate

unit productions: compute all unit pairs, and if (A,B) is a unit pair and

B −→ α is a non-unit production, add the production A −→ α. Throw out

all the unit productions.

Theorem 8.50. Every CFL has a CFG in CNF.

Proof. To convert G into CNF, start by eliminating all ε-productions, unit

productions and useless symbols. Arrange all bodies of length ≥ 2 to consist

of only variables (by introducing new variables), and finally break bodies

of length ≥ 3 into a cascade of productions, each with a body of length

exactly 2.
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8.4.4 CYK algorithm

Given a grammar G in CNF, and a string w = a1a2 . . . an, we can test

whether w ∈ L(G) using the CYK2 dynamic algorithm (algorithm 34). On

input G,w = a1a2 . . . an algorithm 34 builds an n× n table T , where each

entry contains a subset of V . At the end, w ∈ L(G) iff the start variable

S is contained in position (1, n) of T . The main idea is to put variable X1

in position (i, j) if X2 is in position (i, k) and X3 is in position (k + 1, j)

and X1 −→ X2X3 is a rule. The reasoning is that X1 is in position (i, k)

iff X1
∗⇒ ai . . . ak, that is, the substring ai . . . ak of the input string can be

generated from X1. Let V = {X1, X2, . . . , Xm}.

Algorithm 34 CYK

for i = 1..n do

for j = 1..m do

Place variable Xj in (i, i) iff Xj −→ ai is a rule of G

end for

end for

for 1 ≤ i < j ≤ n do

for k = i..(j − 1) do

if (∃Xp ∈ (i, k)∧ ∃Xq ∈ (k + 1, j)∧ ∃Xr −→ XpXq) then

Put Xr in (i, j)

end if

end for

end for

In the example in figure 8.13, we show which entries in the table we

need to use to compute the contents of (2, 5).

Problem 8.51. Show the correctness of algorithm 34.

Problem 8.52. Implement the CYK algorithm. Choose a convention for

representing CFGs, and document it well in your code. You may assume

the grammar is given in CNF; or, you may check that explicitly. To make

the project even more ambitious, you may implement a translation of a

general grammar to CNF.

2Named after the inventors: Cocke-Younger-Kasami, who developed the algorithm
independently—see [Younger (1967)] and [Firsov and Uustalu (2014)].
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× (2,2) (2,3) (2,4) (2,5)

× × (3,5)

× × × (4,5)

× × × × (5,5)

Fig. 8.13 Computing the entry (2, 5): note that we require all the entries on the same
row and column (except those that are below the main diagonal). Thus the CYK algo-

rithm computes the entries dynamically by diagonals, starting with the main diagonal,

and ending in the upper-right corner.

8.4.5 Pumping Lemma for CFLs

Lemma 8.53 (Pumping Lemma for CFLs). There exists a p so that

any s, |s| ≥ p, can be written as s = uvxyz, and:

(1) uvixyiz is in the language, for all i ≥ 0,

(2) |vy| > 0,

(3) |vxy| ≤ p

Proof. Following the Pigeon Hole reasoning used to show the Pumping

Lemma for regular languages (see section 8.3.8.1, Lemma 8.27), Figure 8.14

should be sufficient to convince the reader: It turns out that this argument

S

R

R

u v
x

y z

Fig. 8.14 If the word is long enough, the height of the parse tree is big enough to force

the repetition of some variable (R) along some branch.

is best carried out with a translation of the grammar to CNF (section 8.4.3).

Then find the length of inputs that guarantees a tree height of at least

|V |+ 1. The details are left to the reader.
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Problem 8.54. Finish the proof of Lemma 8.53.

Problem 8.55. Show that L = {0n1n2n|n ≥ 1} is not a CFL.

8.4.6 Further observations about CFL

CFLs do not have the same wide closure properties as regular languages

(see section 8.3.5). CFLs are closed under union, concatenation, Kleene’s

star (∗), homomorphisms and reversals. For homomorphism note that a

homomorphism can be applied to a derviation. For reversals, just replace

each A −→ α by A −→ αR).

CFLs are not closed under intersection or complement. To see that

they are not closed under intersection, note that L1 = {0n1n2i|n, i ≥ 1}
and L2 = {0i1n2n|n, i ≥ 1} are CFLs, but L1 ∩ L2 = {0n1n2n|n ≥ 1} is

not.

To see that CFLs are not closed under complementation, note that the

language L = {ww : w ∈ {a, b}∗} is not a CFL, but Lc is a CFL. It turns

out that it is not trivial to show that Lc is a CFL; designing the CFG is

tricky: first note that no odd strings are of the form ww, so the first rule

ought to be:

S −→ O|E
O −→ a|b|aaO|abO|baO|bbO

here O generates all the odd strings. On the other hand, E generates even

length strings not of the form ww, i.e., all strings of the form:

X = a b Y = b a

We need the rule:

E −→ X|Y

and now

X −→ PQ Y −→ VW

P −→ RPR V −→ SV S

P −→ a V −→ b

Q −→ RQR W −→ SWS

Q −→ b W −→ a

R −→ a|b S −→ a|b

Note that R’s can be replaced with any a or b, giving us the desirable

property.
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Problem 8.56. Show that if L is a CFL, and R is a regular language, then

L ∩R is a CFL.

Problem 8.57. We know that CFL are closed under substitutions (a type

of homomorphism): for every a ∈ Σ we choose La, which we call s(a). For

any w ∈ Σ∗, s(w) is the language of x1x2 . . . xn, xi ∈ s(ai). Show that if L

is a CFL, and s(a) is a CFL ∀a ∈ Σ, then s(L) = ∪w∈Ls(w) is also a CFL.

While the CYK algorithm allows us to decide whether a given string w

is in the language of some given CFG G, there are many properties of CFG

that are unfortunately undecidable. What does this mean? It means that

there are computational problems regarding CFGs for which there are no

algorithms. For example:

(1) Is a given CFG G ambiguous?

(2) Is a given CFL inherently ambiguous?

(3) Is the intersection of two CFL empty?

(4) Given G1, G2, is L(G1) = L(G2)?

(5) Is a given CFG equal to Σ∗?

It is difficult to show that a particular problem does not have an algorithm

that solves it. In fact, we must introduce a new technique in order to show

that the five questions above are “undecidable.” We do so in section 8.5.

For the impatient, see section 8.5.9.

8.4.7 Other grammars

Context-sensitive grammars (CSG) have rules of the form:

α→ β

where α, β ∈ (T ∪ V )∗ and |α| ≤ |β|. A language is context-sensitive if

it has a CSG. In an elegant connection with complexity, CSLs turn out

to describe precisely the set of those languages which can be decided by

Nondeterministic TMs in linear time (see the next section).

A rewriting system (also called a Semi-Thue system) is a grammar where

there are no restrictions; α→ β for arbitrary α, β ∈ (V ∪ T )∗.

Rewriting systems correspond to the most general model of computa-

tion, in the sense that anything that can be solved algorithmically can be

solved with a rewriting system. Thus, a language has a rewriting system

iff it is “computable,” the topic of the next sections.
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8.5 Turing machines

A Turing machine is an automaton with a finite control and an infinite

tape, where the infinite tape captures the intuition of “unlimited space.”

Initially the input is placed on the tape, the head of the tape is positioned

on the first symbol of the input, and the state is q0. All the other squares

contain blanks.

w1 w2 w3 . . . wn □ □ □ . . .

Fig. 8.15 Initial contents of the tape; the head is scanning w1.

Formally, a Turing machine is a tuple (Q,Σ,Γ, δ, q0, qaccept, qreject) where

the input alphabet Σ is contained in the tape alphabet Γ, and □ is the

“blank” symbol, i.e., Σ ∪ {□} ⊆ Γ. The transition function δ(q,X) =

(p, Y,D) where D is the direction of the motion of the tape, “left” or “right”,

sometimes denoted as “←” or “→.”

A configuration is a string upv, where u, v ∈ Γ∗ and p ∈ Q, meaning

that the state is p, the head is scanning the first symbol of v, and the

tape contains only blanks following the last symbol of v. Initially, the

configuration is q0w where w = w1w2 . . . wn, wi ∈ Σ, is the input, and the

first symbol of w, w1, is placed on the left-most square of the tape. In order

to be extra careful, we say that the symbol immediately to the left of the

last symbol of v has the property of being □ and having the smallest index

among all those squares in the tape satisfying two conditions: (i) it is to

the right of the head; (ii) there are no symbols other than □ to its right.

If δ(qi, b) = (qj , c, L) then configuration uaqibv yields configuration

uqjacv, and if δ(qi, b) = (qj , c, R) then uaqibv yields uacqjv. Sometimes

“C1 yields C2” is written as C1 → C2. We assume that a TM halts when it

enters an accepting or rejecting state, and we define the language of a TM

M , denoted L(M), as follows: L(M) = {w ∈ Σ∗|q0w
∗⇒ αqacceptβ}

Problem 8.58. Design a TM M such that L(M) is the language of palin-

dromes.

Different variants of TMs are equivalent; this notion is called robustness.

For example, the tape infinite in only one direction, or several tapes. It is

easy to “translate” between the different models.

Languages accepted by TMs are called recursively enumerable (RE), or

recognizable, or Turing-recognizable (e.g., in [Sipser (2013)]). A language L
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is RE if there exists a TM M that halts in an accepting state for all x ∈ L,

and does not accept x ̸∈ L. In other words, L is RE if there exists an M

such that L = L(M) (but M does not necessarily halt on all inputs).

A language L is recursive, or decidable, or Turing-decidable (e.g., [Sipser

(2013)]), if there exists a TM M that halts in qaccept for all x ∈ L, and halts

in qreject for all x /∈ L. In other words, L is decidable if there exists a TM

M such that L = L(M) (i.e., M recognizes/accepts L) and also M always

halts. Recursive languages correspond to languages that can be recognized

algorithmically; more about this in Section 8.5.4

8.5.1 Nondeterministic TMs

Recall that in section 8.3.2 we defined NFA, Nondeterministic Finite Au-

tomata. Nondeterminism allows the possibility of several possible moves on

the same configuration. This idea is now exploited in the context of Turing

Machines.

A Nondeterministic TM is just like a normal TM except that the tran-

sition function is now a transition relation; thus there are several possible

moves on a given state and symbol:

δ(q, a) = {(q1, b1, D1), (q2, b2, D2), . . . , (qk, bk, Dk)}.

Just like for NFA, nondeterminism does not strengthen the model of com-

putation, at least not in the context of decidability. But it allows for a

more convenient design formalism.

For example, consider the TM N which decides the following language

L(N) = {w ∈ {0, 1}∗| last symbol of w is 1 }. The description of N , to-

gether with a computation tree of N on input 011, can be found in Fig-

ure 8.16.

Theorem 8.59. If N is a nondet TM, then there exists a det TM D such

that L(N) = L(D).

Proof. D tries out all the possible moves of N , using “breadth-first” search.

D maintains a sequence of configurations on tape 1:

· · · config1 config2 config⋆3 · · ·

and uses a second tape for scratch work. The configuration marked with

‘⋆’ is the current config. D copies it to the second tape, and examines

it to see if it is accepting. If it is, it accepts. If it is not, and N has k

possible moves, D appends the k new configurations resulting from these
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δ(q0, 0) = {(q0, 0,→), (q, 0,→)}
δ(q0, 1) = {(q0, 1,→), (r, 1,→)}
δ(r,□) = {(qaccept,□,→)}

δ(r, 0/1) = {(q, 0,→)}

q0011

0q011

01q01

011q0

×

011r

011□qaccept

01r1

010q

×

0q11

×

Fig. 8.16 Definition of N together with a run on 011.

moves to tape 1, and marks the next config on the list as current. If

maximum number of possible choices of N is m, i.e., m is the degree of

nondeterminism of N , and N makes n moves before accepting, D examines

1 + m + m2 + m3 + · · ·+ mn ≈ nmn many configurations.

In effect, what is happening in the above proof is that D simulates N ;

the idea of simulation will be an important thread in the topic of com-

putability. We can always have one Turing machine simulate another; the

“other” Turing machine can be encoded in the states of the simulator. This

is not surprising as a Turing machine is a “finite object” that can be “en-

coded” with finitely many symbols (more on that below). Alternatively, the

description of the “other” machine can be placed on the tape, and the sim-

ulator checks this description to simulate each move on another dedicated

tape. In short, the fact that this can be done should not be surprising,

given that Turing machines capture what we understand to be the notion

of a “computer.” Further, we also have simulations in the “real world”—for

example, we can use VMware software to simulate Windows OS on a Linux

box.

Problem 8.60. Show how M1 can simulate M2. One idea is to have states

(son, p) and (soff , p) where some of the p’s are in QM2
and some correspond

to the actions of M1. Here son, soff indicate if the simulation is on or off,

and the states of M1 are such pairs.
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8.5.2 Encodings

A fundational concept in computer science is that of an encoding3. Everyone

is familiar with ASCII, which stands for “American Standard Code for

Information Interchange,” where standard symbols are encoded with 7 bits,

and hence there is room for 128 symbols: the first 32 are legacy non-printing

characters from the time of teletypes, and the remaining characters are

familiar from the standard keyboard (e.g., character 65 is ‘A’ and character

90 is ‘Z’). Thus, with the ASCII encoding we can write:

01001000︸ ︷︷ ︸
H

01000101︸ ︷︷ ︸
E

01001100︸ ︷︷ ︸
L

01001100︸ ︷︷ ︸
L

01001111︸ ︷︷ ︸
O

.

Note that we encode ASCII in bytes, i.e., in chunks of 8 bits, where the first

bit is always 0. Extended ASCII includes standard ASCII, as well as 128

special symbols (where the first bit of the byte is 1); for example symbol

251 is ‘
√

’.

A more complete, and current, encoding scheme is Unicode, the standard

for text in most of the world’s writing systems. The most common Unicode

encoding is UTF-8, a variable width character encoding capable of encoding

all 1,112,064 valid code points in Unicode using one to four 8-bit bytes. Note

that UTF-8 extends Extended ASCII.

Much of computing consists in translating between encodings: whether

from XML to JSON, or from binary encoding to Base64 which is a radix-64

encoding (i.e., using 64 symbols to encode chunks of 6 bits). In fact Base64,

which was originally designed to be MIME (Multipurpose Internet Mail

Extensions), is often the choice encoding in cryptographic applications.

We naturally think of encodings as schemes to capture human language,

but in reality any object can be encoded. For example, recall that a DFA B

is just (Q,Σ, δ, q0, F ); we assume that Σ = {0, 1} and Q = {q1, q2, . . . , qn}
where q0 is always q1. Assume also that F = {qi1 , . . . , qik}. Then,

⟨B⟩ := 0n10l
0
110l

1
110l

0
210l

1
21 . . . 0l

0
n10l

1
n10i110i21 . . . 10ik

where 0l
0
j 10l

1
j means that on qj the DFA B moves to ql0j on 0 and to ql1j on 1,

the initial 0n denotes that there are n states, and the final 0i110i21 . . . 10ik

denotes the accepting states. Note that there are no two contiguous 1s in

this representation, so ⟨B,w⟩ := ⟨B⟩11w is a good encoding of the pair

(B,w) since the encoding of B, ⟨B⟩, and the encoding of w are separated

by the word 11.

3A great introduction to codes and encodings can be found in [Petzold (2000)].
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Problem 8.61. Describe in two or three sentences what is an encoding,

and explain the difference between an encoding scheme and an encryption

scheme.

Similarly, we can encode every Turing machine with a string over {0, 1}.
For example, if M is a TM ({q1, q2}, {0, 1}, δ, . . .) and δ(q1, 1) = (q2, 0,→)

is one of the transitions, then it could be encoded as:

00︸︷︷︸
2 states

11

δ(q1,1)=(q2,0,→)︷ ︸︸ ︷
0︸︷︷︸
q1

1 00︸︷︷︸
1

1 00︸︷︷︸
q2

1 0︸︷︷︸
0

1 0︸︷︷︸
→

11 . . . . . . . . . . . . . . . . . .︸ ︷︷ ︸
encoding of remaining

transitions

Not every string is going to be a valid encoding of a TM; for example

the string 1 does not encode anything in our convention. We say that a

string x ∈ {0, 1}∗ is a well formed string (WFS) if there exists a TM M

and a string w so that x = ⟨M,w⟩; that is, x is a proper encoding of a pair

(M,w). It is easy to see that we can design a decider that checks whether

x is a WFS, or, in other words, the language of WFS is decidable.

8.5.3 Decidability

As was defined at the end of Section 8.5, a language L is decidable if there

exists a TM that always halts, and accepts the strings in L, and rejects the

strings not in L.

Theorem 8.62. Regular languages are decidable and context-free lan-

guages are also decidable.

The following are examples of decidable languages:

ADFA := {⟨B,w⟩ : B is a DFA that accepts input string w}
ANFA := {⟨B,w⟩ : B is a NFA that accepts input string w}
AREX := {⟨R,w⟩ : R is a Reg Exp that accepts input string w}
EDFA := {⟨A⟩ : A is a DFA such that L(A) = ∅}
EQDFA := {⟨A,B⟩ : A,B are DFAs such that L(A) = L(B)}
ECFG := {⟨G⟩ : G is a CFG such that L(G) = ∅}
For EQDFA use symmetric difference: C = (A ∩B) ∪ (A ∩B).

Theorem 8.63. If L is decidable, so is its complement.

Proof. Let L = Σ∗ − L be the complement of L, and suppose that L is

decidable by M . Let M ′ be the following modification of M : on input x,

M ′ runs just like M . However, when M is about to accept, M ′ rejects,
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and when M is about to reject, M ′ accepts. Clearly, L̄ = L(M ′). Since M

always halts, so does M ′, so by definition, L̄ is decidable.

Theorem 8.64. If both L and L are RE, then L is decidable.

Proof. Let L = L(M1) and L = L(M2). Let M be the following TM: on

input x it simulates M1 on x on one tape, and M2 on x on another tape.

Since L ∪ L = Σ∗, x must be accepted by one or the other. If M1 accepts,

so does M ; if M2 accepts, M rejects.

8.5.4 Church-Turing thesis

The intuitive notion of algorithm is captured by the formal def-
inition of a TM.

This philosophically profound statement is called a “thesis” because the

notion of algorithm is vague. We all have an intuitive understanding of the

notion of “algorithm,” as a recipe, a procedure, a set of instructions that

for any input of a certain kind yields a desired outcome, but it is this thesis

that proposes a definition.

Consider the language:

ATM = {⟨M,w⟩ : M is a TM and M accepts w},

called the universal language. It is recognizable because it is recognized by

the universal Turing machine (UTM); U is a machine that on input ⟨M,w⟩,
where M is a TM and w is a string, checks that ⟨M,w⟩ is a WFS, and if it

is, it simulates M on w, and answers accordingly to what M(w) answers.

Note, however, that U does not decide ATM.

The UTM was a revolutionary idea of Turing; it was a concept that

went against the engineering principles of his times. In Turing’s epoch, the

practice of engineering was to have “one machine to solve one problem.”

Thus, to propose a UTM, that can solve “all” problems, was to go against

the established principles. But our modern computers are precisely UTMs;

that is, we do not build a computer to run one algorithm, but rather, our

computers can run anything we program on them.

It is not difficult to see that a UTM can be constructed, but care must

be taken to establish a convention of encoding TMs, and a convention for

encoding ⟨M,w⟩ (see section 8.5.2). The UTM can have several tapes,

one of them reserved for ⟨M⟩, i.e., a tape containing the “program,” and

another tape on which U simulates the computation M(w).
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In the 1960s, Marvin Minsky, the head of the AI department at MIT,

proposed the smallest UTM at the time: 7 states and 2 symbols. Currently,

since 2008, the record is held by Alex Smith, who proposed a UTM with 2

states and 3 symbols.

Problem 8.65. It is an important exercise for anyone seriously engaged

in computer science to design once a UTM. This requires the design of a

rudimentary programming language (i.e., ⟨M⟩), and an interpreter (i.e., the

U capable of simulating any M on any input). Going through these details

reifies many notions in computer science.

8.5.5 Undecidability

Theorem 8.66. ATM is undecidable.

Proof. Suppose that it is decidable, and that H decides it. Then,

L(H) = ATM, and H always halts (observe that L(H) = L(U), but U ,

as we already mentioned, is not guaranteed to be a decider). Define a

new machine D (here D stands for “diagonal,” since this argument follows

Cantor’s “diagonal argument”):

D(⟨M⟩) :=

{
accept if H(⟨M, ⟨M⟩⟩) = reject

reject if H(⟨M, ⟨M⟩⟩) = accept

that is, D does the “opposite.” Then we can see that D(⟨D⟩) accepts iff it

rejects. Contradiction; so ATM cannot be decidable.

What is the practical consequence of this theorem? Imagine that you

are developing a debugger for some programming language—something in

the style of GDB for C. In the words of the “GNU Project” team, the GDB

debugger allows you to see what is going on “inside” another program

while it executes—or what another program was doing at the moment it

crashed. A very useful feature would be to query the debugger whether

your program is going to halt on a given input. For example, you run your

program on some input x, and nothing happened for a long time until you

pressed the CNTRL+D key to interrupt the execution. Did you press it too

quickly? Perhaps if you waited longer your answer would have come; or,

perhaps, it would never have halted on its own. The “halting feature” in

your debugger would give you the answer. However, theorem 8.66 says that

this feature cannot be implemented.
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Let’s make sure we understand what theorem 8.66 claims: it says that

ATM is undecidable, and so there is no TM that on any ⟨M,w⟩ halts with

the right answer. This does not negate the possibility of developing a TM

that halts on some (perhaps even infinitely many) ⟨M,w⟩ with the right

answer. What theorem 8.66 says is that no algorithm exists that works

correctly for every input.

See article by Moshe Vardi, regarding termination/unsolvability, from

the July 2011 ACM Communications, “Solving the unsolvable.”

Problem 8.67. Is there a TM M such that L(M) = ATM − L′ where

|L′| <∞? That is, M decides ATM for all but finitely many ⟨M,w⟩.

The Busy Beaver (BB) function, Σ(n,m), outputs the maximum num-

ber of squares that can be written with a TM with n states and m alphabet

symbols starting on empty tape. Fixing m = 2, and letting Σ(n) be Σ(n, 2),

it is known that Σ(2) = 4; Σ(3) = 6; Σ(4) = 13; Σ(5) ≥ 4098; Σ(6) ≥
3.5 × 1018267. The BB function is undecidable; suppose that it were de-

cidable. Then we could use it to decide ATM as follows: on input ⟨M,w⟩,
construct a TM M ′ that on an empty tape writes w, and returns to the first

square, and simulates M on w. Then compute i = Σ(|QM ′ |, |ΓM ′ |), and

simulate M ′. If M ′ ever crosses the i-th square, we know that M(w) does

not halt; if M ′ is circumscribed within the first i squares, then it will either

halt or it will enter a “loop.” We can detect this “loop” by keeping track

of the different configurations, and making sure that they do not repeat.

When the space is bounded by i, the number of configurations is bounded

by |QM |i|Γ|i.

Corollary 8.68. ATM is not RE.

Proof. Since ATM is RE (as L(U) = ATM), by theorem 8.64 we know that

if ATM were also RE, then ATM would be decidable, which by theorem 8.66

it is not.

An enumerator is a TM that has a work tape, empty on input, and

an output tape on which it writes strings, separated by some symbols, say

#, never moving left. The idea is that it “enumerates” the strings in a

language. A language is enumerable if there exists an enumerator E such

that L = L(E).

Theorem 8.69. A language is recognizable iff it is enumerable.
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Proof. If L is enumerable, then let M on in input w simulate L’s enumer-

ator and accept if w appears in the output. For the other direction we have

to be more careful: suppose L is recognizable by M . Let the enumerator

E work as follows: in phase i it simulates M on the first i strings of Σ∗

(in lexicographic order), each for i steps. When M accepts some string, E

outputs it. This is the idea of “dovetailing.”

8.5.6 Reductions

Using the notion of reduction we can show that many other languages are

not RE or not decidable. Consider the language:

HALTTM := {⟨M,w⟩ : M is a TM that halts on w}.

This language is undecidable, and we can show it as follows: suppose that it

is decidable, and that its decider is H. Consider H ′ which on input ⟨M,w⟩
runs H(⟨M,w⟩). If H accepts our H ′ simulates M on w and answers

accordingly; otherwise, H ′ rejects. Clearly, L(H ′) = ATM, but since H was

a decider, so is H ′. But this contradicts the undecidability of ATM. Hence,

we have just shown by contradiction that HALTTM cannot be decidable,

i.e., it is undecidable.

Consider now

ETM := {⟨M⟩ : M is a TM such that L(M) = ∅}.

This language is undecidable: suppose that ETM is decidable; let R be

the TM that decides it. Consider the TM R′ designed as follows: on in-

put ⟨M,w⟩, it first constructs a machine Mw where on x, Mw first checks

whether x = w; if not, Mw rejects. Otherwise, Mw runs M on w and accepts

if M accepts. Finally, R′ simulates R on ⟨Mw⟩. Clearly, L(R′) = ATM, and

since R′ is a decider, this cannot be.

Consider the language

REGULARTM := {⟨M⟩ : M is a TM and L(M) is regular}.

This language is not decidable; suppose that it were, and R is its decider.

We design S as follows: on input ⟨M,w⟩, S first constructs M ′ which works

as follows: M ′ in input x checks if x has form 0n1n, and accepts if so. If x

does not have this form, it runs M on w and accepts if M accepts. Finally,

S runs R on ⟨M2⟩. Note that L(M ′) is either the nonregular language

{0n1n} (if M rejects w) or the regular language {0, 1}∗ (if M accepts w).
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8.5.7 Rice’s theorem

It turns out that nontrivial properties of languages of Turing machines are

undecidable. What do we mean by “nontrivial properties”? We mean, for

example, the property of not accepting any strings, i.e., ETM.

More formally, a property P is just a subset of {⟨M⟩ : M is a TM}. We

say that a property is nontrivial if P ≠ ∅ and P ≠ ∅. Further, we require

the following: given two TMs M1 and M2 such that L(M1) = L(M2), then

either both ⟨M1⟩ and ⟨M2⟩ are in P or both are not in P. That is, whether

⟨M⟩ is in P depends only on the properties of the language of M , and not

on, say, syntactic properties of the machine, such as the number of states.

Theorem 8.70 (Rice’s). Every nontrivial property is undecidable.

8.5.8 Post’s Correspondence Problem

Recall that the Myhill-Nerode Theorem (section 8.3.8.2) provides a charac-

terization of regular languages without mention of a model of computation.

Post’s problem does the same for undecidable languages; it provides an

example of a concrete undecidable language without mention of Turing

machines, or any other model of computation. This illustrates that un-

decidability is not a quirk of a particular model of computation, but an

immutable property of certain languages.

An instance of the Post’s Correspondence Problem (PCP) consists of

two finite lists of strings over some alphabet Σ. The two lists must be of

equal length:

A = w1, w2, . . . , wk

B = x1, x2, . . . , xk

For each i, the pair (wi, xi) is said to be a corresponding pair. We say that

this instance of PCP has a solution if there is a sequence of one or more

indices:

i1, i2, . . . , im, m ≥ 1,

where the indices can repeat, such that:

wi1wi2 . . . wim = xi1xi2 . . . xim .

The PCP is the following: given two lists (A,B) of equal length, does it

have a solution? We can express PCP as a language:

LPCP := {⟨A,B⟩|(A,B) instance of PCP with solution}.
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For example, consider (A,B) given by:

A = 1, 10111, 10

B = 111, 10, 0

Then i1 = 2, i2 = 1, i3 = 1, i4 = 3 is a solution as:

10111︸ ︷︷ ︸
w2

1︸︷︷︸
w1

1︸︷︷︸
w1

10︸︷︷︸
w3

= 10︸︷︷︸
x2

111︸︷︷︸
x1

111︸︷︷︸
x1

0︸︷︷︸
x3

.

Note that i1 = 2, i2 = 1, i3 = 1, i4 = 3, i5 = 2, i6 = 1, i7 = 1, i8 = 3 is

another solution.

Problem 8.71. Show that A = 10, 011, 101 and B = 101, 11, 011 does not

have a solution.

The Modified Post’s Correspondence Problem (MPCP) has an additional

requirement that the first pair in the solution must be the first pair of

(A,B). So i1, i2, . . . , im, m ≥ 0, is a solution to the (A,B) instance of

MPCP if:

w1wi1wi2 . . . wim = x1xi1xi2 . . . xim

We also say that i1, i2, . . . , ir is a partial solution of (M)PCP if one of the

following is the prefix of the other:

(w1)wi1wi2 . . . wir (x1)xi1xi2 . . . xir

In the case of MPCP, we further require that i1 = 1.

With all these elements in place, we can now proceed to show that PCP

is undecidable. We are going to do so in three steps: first, we show that

if PCP is decidable, then so is MPCP. Second, we show that if MPCP is

decidable, then so is ATM. Third, since ATM is not decidable, neither is

(M)PCP.

Lemma 8.72. If PCP is decidable then MPCP is decidable.

Proof. We show that given an instance (A,B) of MPCP, we can construct

an instance (A′, B′) of PCP such that:

(A,B) has solution ⇐⇒ (A′, B′) has solution

Let (A,B) be an instance of MPCP over the alphabet Σ. Then (A′, B′) is

an instance of PCP over the alphabet Σ′ = Σ ∪ {∗, $}, where ∗, $ are new

symbols.

If A = w1, w2, w3, . . . , wk, then A′ = ∗w̄1∗, w̄1∗, w̄2∗, w̄3∗, . . . , w̄k∗, $.
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If B = x1, x2, x3, . . . , xk, then B′ = ∗x̄1, ∗x̄1, ∗x̄2, ∗x̄3, . . . , ∗x̄k, ∗$,

where if x = a1a2a3 . . . an ∈ Σ∗, then x̄ = a1 ∗ a2 ∗ a3 ∗ . . . ∗ an.

For example, if (A,B) is an instance if MPCP given as: A = 1, 10111, 10

and B = 111, 10, 0, then (A′, B′) is an instance of PCP given by the pair:

A′ = ∗1∗, 1∗, 1∗0∗1∗1∗1∗, 1∗0∗, $ and B′ = ∗1∗1∗1, ∗1∗1∗1, ∗1∗0, ∗0, ∗$.

Problem 8.73 finishes the proof.

Problem 8.73. Finish the proof of Lemma 8.5.8.

Lemma 8.74. If MPCP is decidable then ATM is decidable.

Proof. Given a pair (M,w) we construct an instance (A,B) of MPCP such

that:

TM M accepts w ⇐⇒ (A,B) has a solution.

The main idea is the following: the MPCP instance (A,B) simulates, in

its partial solutions, the computation of M on w. That is, partial solutions

will be of the form:

#α1#α2#α3# . . .

where α1 is the initial config of M on w, and for all i, configuration αi

yields configuration αi+1.

The partial solution from the B list will always be “one configuration

ahead” of the A list; the A list will be allowed to “catch-up” only when

M accepts w. For simplification, we assume that TMs do not print blank

symbols (i.e., they do not print ‘□’), so that the configurations are of the

form αqβ where α, β ∈ (Γ− {□})∗ and q ∈ Q.

Problem 8.75. Show that TM that cannot print blank symbols are equiv-

alent in power to those TM that can print them.

Let M be a TM and w ∈ Σ∗; we construct an instance (A,B) of MPCP

as follows:

(1) A: #

B: #q0w#

(2) A: a1, a2, . . . , an, #

B: a1, a2, . . . , an, #

where the ai ∈ (Γ− {□})∗.
(3) To simulate a move of M , for all q ∈ Q− {qaccept}:
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list A list B

qa bp if δ(q, a) = (p, b,→)

cqa pcb if δ(q, a) = (p, b,←)

q# bp# if δ(q,□) = (p, b,→)

cq# pcb# if δ(q,□) = (p, b,←)

(4) If the configuration at the end of B is accepting (i.e., of the form

αqacceptβ), then we need to allow A to catch up with B. So, for all

a, b ∈ (Γ− {□})∗ we need the following corresponding pairs:

list A list B

aqacceptb qaccept
aqaccept qaccept
qacceptb qaccept

(5) Finally, after using 4 and 3 above, we end up with x# and

x#qaccept#, where x is a long string. Thus we need qaccept## in

A and # in B to complete the catching up.

For example, consider the following TM M with states {q1, q2, q3} where

q1 abbreviates qinit and q3 abbreviates qaccept, and where δ is given by the

transition table:

0 1 □
q1 (q2, 1,→) (q2, 0,←) (q2, 1,←)

q2 (q3, 0,←) (q1, 0,→) (q2, 0,→)

From this M and input w = 01 we obtain the following MPCP problem:
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Rule list A list B Source

1 # #q101#

2 0 0

1 1

# #

3 q10 1q2 δ(q1, 0) = (q2, 1,→)

0q11 q200 δ(q1, 1) = (q2, 0,←)

1q11 q210 δ(q1, 1) = (q2, 0,←)

0q1# q201# δ(q1, B) = (q2, 1,←)

1q1# q211# δ(q1, B) = (q2, 1,←)

0q20 q300 δ(q2, 0) = (q3, 0,←)

1q20 q310 δ(q2, 0) = (q3, 0,←)

q21 0q1 δ(q2, 1) = (q1, 0,→)

q2# 0q2# δ(q2, B) = (q2, 0,→)

4 0q30 q3
0q31 q3
1q30 q3
1q31 q3
0q3 q3
1q3 q3
q30 q3
q31 q3

5 q3## #

The TM M accepts the input w = 01 by the sequence of moves repre-

sented by the following chain of configurations:

q101→ 1q21→ 10q1 → 1q201→ q3101.

We examine the sequence of partial solutions that mimics this computation

of M on w and eventually leads to a solution. We must start with the first

pair (MPCP):

A : #

B : #q101#

The only way to extend this partial solution is with the corresponding pair

(q10, 1q2), so we obtain:

A : #q10

B : #q101#1q2

Now using copying pairs we obtain:

A : #q101#1

B : #q101#1q21#1

Next corresponding pair is (q21, 0q1):

A : #q101#1q21

B : #q101#1q21#10q1
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Now careful! We only copy the next two symbols to obtain:

A : #q101#1q21#1

B : #q101#1q21#10q1#1

because we need the 0q1 as the head now moves left, and use the next

appropriate corresponding pair which is (0q1#, q201#) and obtain:

A : #q101#1q21#10q1#

B : #q101#1q21#10q1#1q201#

We can now use another corresponding pair (1q20, q310) right away to ob-

tain:

A : #q101#1q21#10q1#1q20

B : #q101#1q21#10q1#1q201#q310

and note that we have an accepting state! We use two copying pairs to get:

A : #q101#1q21#10q1#1q201#

B : #q101#1q21#10q1#1q201#q3101#

and we can now start using the rules in 4. to make A catch up with B:

A : . . . #q31

B : . . . #q3101#q3

and we copy three symbols:

A : . . . #q3101#

B : . . . #q3101#q301#

And again catch up a little:

A : . . . #q3101#q30

B : . . . #q3101#q301#q3

Copy two symbols:

A : . . . #q3101#q301#

B : . . . #q3101#q301#q31#

and catch up:

A : . . . #q3101#q301#q31

B : . . . #q3101#q301#q31#q3
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and copy:

A : . . . #q3101#q301#q31#

B : . . . #q3101#q301#q31#q3#

And now end it all with the corresponding pair (q3##, #) given by rule 5.

to get matching strings:

A : . . . #q3101#q301#q31#q3##

B : . . . #q3101#q301#q31#q3##

Thus, given an instance ⟨M,w⟩ of ATM, we construct an instance

(A,B)⟨M,w⟩ of MPCP so that the following relationship holds:

M accepts w ⇐⇒ (A,B)⟨M,w⟩ has a solution. (8.2)

In other words, we have reduced ATM to MPCP, and our reduction is given

by the (computable) function f : {0, 1}∗ −→ {0, 1}∗ which is defined as

follows: f(⟨M,w⟩) = ⟨(A,B)⟨M,w⟩⟩. This shows that if MPCP is decidable

so is ATM. To see that, suppose that MPCP is decidable; then, we have

a decider for ATM: on input ⟨M,w⟩, our decider computes x = f(⟨M,w⟩)
and runs the decider for MPCP on x. By (8.2) we know that a “yes” answer

means that M accepts w.

8.5.9 Undecidable properties of CFLs

We can now use the fact that PCP is undecidable to show that a number

of questions about CFLs are undecidable. Let (A,B) be an instance of the

PCP, where A = w1, w2, . . . , wk and B = x1, x2, . . . , xk. Let GA and GB

be related CFGs given by:

A −→ w1Aa1|w2Aa2| · · · |wkAak|w1a1|w2a2| · · · |wkak

B −→ x1Ba1|x2Ba2| · · · |xkBak|x1a1|x2a2| · · · |xkak,

where a1, a2, . . . , ak are new symbols not in the alphabet of (A,B).

Let LA = L(GA) and LB = L(GB), and so LA and LB consist of all

the strings of the form:

wi1wi2 . . . wimaim . . . ai2ai1

xi1xi2 . . . ximaim . . . ai2ai1 ,

respectively.

Theorem 8.76. It is undecidable whether a CFG is ambiguous.
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Proof. Let GAB be a CFG consisting of GA, GB , with the rule S −→ A|B
thrown in. Thus, GAB is ambiguous ⇐⇒ the PCP (A,B) has a solution.

Note that the purpose of the new symbols ai in GA and GB is to enforce

that the corresponding pairs be in the same positions.

Theorem 8.77. Suppose that G1, G2 are CFGs, and R is a regular expres-

sion, then the following are undecidable problems:

(1) L(G1) ∩ L(G2)
?
= ∅

(2) L(G1)
?
= L(G2)

(3) L(G1)
?
= L(R)

(4) L(G1)
?
= T ∗

(5) L(G1)
?
⊆ L(G2)

(6) L(R)
?
⊆ L(G2)

Proof. First we show that LA, where LA = L(GA) defined above, is also

a CFL; we show this by giving a PDA P . ΓP = ΣA ∪ {a1, a2, . . . , ak}. As

long as P sees a symbol in ΣA it stores it on the stack. As soon as P sees

ai, it pops the stack to see if top of string is wR
i . (i) if not, then accept no

matter what comes next. (ii) if yes, there are two subcases: (iia) if stack is

not yet empty, continue. (iib) if stack is empty, and the input is finished,

reject. If after an ai, P sees a symbol in ΣA, it accepts.

Now we are ready to show that the six problems listed in the theorem

are in fact undecidable:

(1) Let G1 = GA and G2 = GB , then L(G1) ∩ L(G2) ̸= ∅ iff PCP

(A,B) has a solution.

(2) Let G1 be the CFG for LA ∪ LB (CFGs are closed under union).

Let G2 be the CFG for the regular language (Σ∪{a1, a2, . . . , ak})∗.
Note L(G1) = LA ∪ LB = LA ∩ LB = everything but solutions to

PCP (A,B).

∴ L(G1) = L(G2) iff (A,B) has no solution.

(3) Shown in 2., because L(G2) is a regular language.

(4) Again, shown in 2.

(5) Note that A = B iff A ⊆ B and B ⊆ A, so it follows from 2.

(6) By 3. and 5.

This shows that important properties of CFLs are undecidable.
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8.6 Answers to selected problems

Problem 8.1. Σk
2 is the set of unique strings of length k which can be

constructed with Σ2, i.e. a generic alphabet containing two symbols. A

good example of Σ2 is the standard binary alphabet, {0, 1}. In a string

of length k on this alphabet, there are k symbols, each of which may be

either 1 or 0; in other words, to construct a string of length k, k “choices”

are made, each with two options. Thus there are 2k possibilities. It can

be shown very quickly that each of these possibilities is unique. Similarly,

there are lk unique words in Σk
l .

Next, we consider the set of strings over Σl, where no symbol can be

repeated in any string. Let n be the length of such a string. Clearly it

is simply a permutation of length n from the set Σl, without replacement,

where 0 ≤ n ≤ l. As such, the number of unique strings of length n

is l!
(l−n)! . Thus, the total string count for lengths n ∈ {0, 1, 2, . . . , l} is

W (l) =
∑l

n=0
l!

(l−n)! .

While this solution is correct, we can do better with a little analysis of

our result. We start by factoring out l!.

W (l) = l! ·
l∑

n=0

1

(l − n)!
= l! ·

l∑
n=0

1

n!

Recall that the Taylor expansion of ex is
∑∞

n=0
xn

n! , so we can rewrite:

W (l) = l! ·
(
e−

∞∑
n=(l+1)

1

n!

)
= l! ·

(
e−

( 1

(l + 1)!
+

1

(l + 2)!
+ · · ·

))
Next, we distribute:

W (n) = l! · e−
( 1

(l + 1)
+

1

(l + 1)(l + 2)
+ · · ·

)
Consider the portion in parenthesis; it is clearly less than ( 1

l + 1
l2 + · · · )—a

geometric series whose sum is 1
(l−1) . Note that if l > 2, this sum is less

than 1, so W (l) > l! · e− 1. The sum is also positive, so W (l) < l! · e. We

have l! · e− 1 < W (l) < l! · e; this, combined with the fact that W (l) is an

integer, is enough to show that W (l) = ⌊l! · e⌋.
Problem 8.2. Consider a string S of the form x01y. After the last element

of x has been “run”, we are in one of the states q0, q1, q2. Below we show

that regardless of the state after x, we will be in state q1 after the subsequent

01.

δ(q0, 0) = q2 and δ(q2, 1) = q1
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δ(q1, 0) = q1 and δ(q1, 1) = q1

δ(q2, 0) = q2 and δ(q2, 1) = q1

From here, each element a of y is either 0 or 1; in either case, δ(q1, a) = q1,

so after the 01 has been processed, we remain in state q1 until the end of

S. Since q1 is a final state, S is accepted by A.

It remains to be seen that any string without a substring 01 is rejected

by A. Consider such a string, S′. If it contains no 0’s, then it is entirely

composed of 1’s. Moreover, we start in state q0, and δ(q0, 1) = q0, so the

state is q0 for the entirety of the string, and since q0 is not a final state, S′

is rejected. Similarly, if S′ contains only one 0 and it is the final symbol,

then S′ looks like 1 . . . 10 with some arbitrary number of 1’s in the gap. In

this case we remain in state q0 until the 0 at the end, so the ending state

is q2—which is not a final state either. If, on the other hand, S′ contains

at least one 0, not at the end of the string, then consider the first 0. There

are no 1’s after this first 0, as the first such 1 would necessarily be the end

of a substring 01, which S′ does not have. Thus, S′ = xy where x is a

string of 1’s (or the empty string) and y is a string of 0’s. At the end of x,

we are still in state q0, as δ(q0, 1) = q0 is still a fixed point. Then the first

0 in y results in δ(q0, 0) = q2, and the remaining 0’s do nothing because

δ(q2, 0) = q2 is also a fixed point. Thus, at the end of S′, the state is q2,

which is not a final state; S′ is rejected by A.

A much more efficient proof can be given via induction over the string’s

length—this is left to the reader.

Problem 8.3.

// 0,1 // 0,1 //

1

��

0 //

0,1



0,1

QQ

Problem 8.4.

// 1 //

0

��

0,1

��

0,1

QQ
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Problem 8.5. For Bn, for each n, we want to build a (different) DFA Dn

such that L(Dn) = Bn. Let Dn consist of states Q = {q0, q1, . . . , qn−1} and

let the transition function δ be defined by δ(qi, 1) = q(i+1) (mod n), and let

F = {q0}.
Problem 8.6. Let Q = {q0, q1, . . . , q24}, and define δ as follows:

δ
(
qi, 1

)
= q(i+1) (mod 25)

δ
(
qi, 5

)
= q(i+5) (mod 25)

δ
(
qi, 10

)
= q(i+10) (mod 25)

δ
(
qi, 25

)
= qi

Finally, let F = {q0}. This DFA will only accept multiples of 25. Of course,

a vending machine needs to be able to deal with invalid inputs (say, arcade

tokens or coins with unsupported values). Denote any invalid input as I .

Clearly,

δ
(
qi, I

)
= qi

Moreover, on such an input, δ should call an additional action to “spit out”

the invalid coin.

Problem 8.7. Simply because ε could already be in L, and so if ε ∈ L

then ε ∈ L+. On the other hand, remember the assumption that ε ∈ Σ, for

any Σ.

Problem 8.9. The answer is O(2n). To see that note that the way to

construct the DFA is as follows: a tree starting at q0, branching on all the

possible strings of n elements. Each leaf is a state qw where w ∈ {0, 1}n.

The accepting leaves are those where w starts with 1. Suppose that we

have the leaf qax (i.e., w = ax), then, δ(qax, b) = qxb. Note that it is much

easier to design a DFA for L′n, where L′n is the set of strings where the n-th

symbols from the beginning is 1.

Problem 8.15. For concatenation connect all the accepting states of the

“first” DFA by ε-arrows to the starting state of the “second” DFA.

Problem 8.16. The base cases are as follows:

L(a) = {a}
L(ε) = {ε}
L(∅) = ∅

Next, the induction rules:

L(E + F ) = L(E) ∪ L(F )

L(EF ) = {xy|x ∈ L(E) ∧ y ∈ L(F )}
L(E∗) = {x0x1 . . . xn|∀i(xi ∈ L(E)) ∧ n ∈ N}
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Problem 8.17. The set of binary strings without a substring 101 can be

expressed:

0∗(1∗00(0∗))∗1∗0∗

The expression (1∗00(0∗))∗ denotes a concatenation of elements from the

set of strings consisting of an arbitrary number of leading 1’s, followed

at least two 0’s. The idea here is that every 1 (except for the last 1) is

immediately followed either by another 1 or by at least two 0’s, making the

substring 101 impossible. The rest of the expression is just padding; the 0∗

at the beginning denotes any leading 0’s, and the 1∗0∗ denotes any trailing

substring of the form 11 . . . 100 . . . 0.

Problem 8.19. We can intuitively construct a regular expression for all

binary strings with substring 00—(ε + 0 + 1)∗00(ε + 0 + 1)∗, for instance.

This method is useful in more complicated cases. Note that we need not

compute Rk
ij for all k, i, j. The only final state is q3, so R = R

(3)
13 .

R
(3)
13 = R

(2)
13 + R

(2)
13

(
R

(2)
33

)∗
R

(2)
33 (8.3)

So we need to find R
(2)
13 and R

(2)
33 .

R
(2)
13 = R

(1)
13 + R

(1)
12

(
R

(1)
22

)∗
R

(1)
23 (8.4)

R
(2)
33 = R

(1)
33 + R

(1)
32

(
R

(1)
22

)∗
R

(1)
23 (8.5)

So we must compute R
(1)
12 , R

(1)
13 , R

(1)
22 , R

(1)
23 , R

(1)
32 , and R

(1)
33 .

R
(1)
12 = R

(0)
12 + R

(0)
11

(
R

(0)
11

)∗
R

(0)
12

= 0 + (ε + 1)(ε + 1)∗0

= (ε + 1)∗0

Note that (ε + 1)(ε + 1)∗ = (ε + 1)∗, because ε ∈ L(ε + 1).

R
(1)
13 = R

(0)
13 + R

(0)
11

(
R

(0)
11

)∗
R

(0)
13

= ∅+ (ε + 1)(ε + 1)∗∅
= ∅
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This last step is true because for any regular expression R, R∅ = ∅R = ∅.

R
(1)
22 = R

(0)
22 + R

(0)
21

(
R

(0)
11

)∗
R

(0)
12

= ε + 1(ε + 1)∗0

R
(1)
23 = R

(0)
23 + R

(0)
21

(
R

(0)
11

)∗
R

(0)
13

= 0 + 1(ε + 1)∗∅
= 0

R
(1)
32 = R

(0)
32 + R

(0)
31

(
R

(0)
11

)∗
R

(0)
13

= ∅+ ∅(ε + 1)∗0

= ∅

There are many shortcuts which can be taken with the right observations.

For instance, δ(q3, a) = q3 for all a, so it is impossible to leave state q3. If

j ̸= 3 then R
(n)
3j = ∅.

R
(1)
33 = R

(0)
33 + R

(0)
31

(
R

(0)
11

)∗
R

(0)
13

= ε + 0 + 1 + ∅(. . .)∗ . . .
= ε + 0 + 1

We can now find R
(2)
13 and R

(2)
33 with equations 8.4 and 8.5.

R
(2)
13 = R

(1)
13 + R

(1)
12

(
R

(1)
22

)∗
R

(1)
23

= ∅+ (ε + 1)∗0(ε + 1(ε + 1)∗0)∗0

= (ε + 1)∗0(ε + 1(ε + 1)∗0)∗0

R
(2)
33 = R

(1)
33 + R

(1)
32

(
R

(1)
22

)∗
R

(1)
23

= ε + 0 + 1 + ∅(. . .)∗ . . .
= ε + 0 + 1

Finally, we can use equation 8.3 to find R
(3)
13 = R.

R
(3)
13 = R

(2)
13 + R

(2)
13

(
R

(2)
33

)∗
R

(2)
33

= (ε + 1)∗0(ε + 1(ε + 1)∗0)∗0

+ (ε + 1)∗0(ε + 1(ε + 1)∗0)∗0(ε + 0 + 1)∗(ε + 0 + 1)

= (ε + 1)∗0(ε + 1(ε + 1)∗0)∗0(ε + 0 + 1)∗
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Of course, this expression is not simplified; the laws in table 8.3.4 can

improve it. The result should not contain ε.

Problem 8.21. Union: L = L(R) and M = L(S), so L ∪M = L(R + S).

Complementation: L = L(A), so Lc = L(A′), where A′ is the DFA obtained

from A as follows: FA′ = Q−FA. Intersection: L∩M = L ∪M . Reversal:

Given a RE E, define ER by structural induction. The only trick is that

(E1E2)R = ER
2 ER

1 . Homomorphism: given a RE E, define h(E) suitably.

Problem 8.22. For i note that we require O(n3) steps for computing the

ε closures of all the states, and there are 2n states. For iii note that there

are n3 expressions R
(k)
ij , and at each stage the size quadruples (as we need

four stage (k − 1) expressions to build one for stage k). iv the trick here is

to use an efficient parsing method for the RE; O(n) methods exist

Problem 8.23. For i use the automaton representation: Compute the set

of reachable states from q0. If at least one accepting state is reachable,

then it is not empty. What if only the RE representation is given? For

ii translate any representation to a DFA, and run the string on the DFA.

For iii use equivalence and minimization of automata.

Problem 8.24. Here we present a generic proof for the “natural algorithm”

that you should have designed for filling out the table. We use an argument

by contradiction with the Least Number Principle (LPN). Let {p, q} be a

distinguishable pair, for which the algorithm left the corresponding square

empty, and furthermore, of all such “bad” pairs {p, q} has a shortest distin-

guishing string w. Let w = a1a2 . . . an, δ̂(p, w) is accepting while δ̂(q, w) is

not. First, w ̸= ε, as then p, q would have been found to be distinguishable

in the basis case of the algorithm. Let r = δ(p, a1) and s = δ(q, a1). Then,

{r, s} are distinguished by w′ = a2a3 . . . an, and since |w′| < |w|, they were

found out by the algorithm. But then {p, q} would have been found in the

next stage.

Problem 8.25. Consider a DFA A on which we run the above procedure to

obtain M . Suppose that there exists an N such that L(N) = L(M) = L(A),

and N has fewer states than M . Run the Table Filling Algorithm on M,N

together (renaming the states, so they don’t have states in common). Since

L(M) = L(N) their initial states are indistinguishable. Thus, each state in

M is indistinguishable from at least one state in N . But then, two states

of M are indistinguishable from the same state of N . . .

Problem 8.28. Suppose it is. By PL ∃p such that |w| ≥ p =⇒ w = xyz

where |xy| ≤ p and y ̸= ε. Consider s = 0p1p = xyz. Since |xy| ≤ p, y ̸= ε,

clearly y = 0j , j > 0. And xy2z = 0p+j1p ∈ L, which is a contradiction.
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Problem 8.29. Suppose it is. By PL ∃n. . . Consider some prime p ≥ n+2.

Let 1p = xyz, |y| = m > 0. So |xz| = p − m. Consider xy(p−m)z which

must be in L. But |xy(p−m)z| = |xz|+ |y|(p−m) = (p−m) +m(p−m) =

(p−m)(1 +m). Now 1 +m > 1 since y ̸= ε, and p−m > 1 since p ≥ n+ 2

and m = |y| ≤ |xy| ≤ n. So the length of xy(p−m)z is not prime, and hence

it cannot be in L—contradiction.

Problem 8.30. In order to show that ≡L is an equivalence relation, we

need to show that it is reflexive, symmetric and transitive. It is clearly

reflexive; xz ∈ L ⇐⇒ xz ∈ L is true regardless of the context, so x ≡L x.

Its symmetry and transitivity follow directly from symmetric and transitive

nature of ‘⇐⇒ ’.

Problem 8.32. We assign weights to the symbols in V; any predicate

symbol (i.e. function or relation symbol) of arity n has weight n− 1. The

weight of a string w = w1w2 . . . wn is equal to the sum of its symbols. We

make the following claims:

(1) Every term has weight −1

(2) Every proper initial segment weighs at least 0

Note: a proper initial segment is a string which is not a term, but can be

extended to a term by concatenating extra symbol(s) on the right.

Base case: for 0-ary symbols, this is clearly true; they weigh −1, and

the only proper initial segment is the empty string ε, which has weight 0.

This can be expanded, by structural induction, to include all terms.

Consider the term T = ft1 . . . tn, where f is an n-ary predicate symbol.

f has weight n − 1, and each term ti weighs −1, so T ’s net weight is

(n−1)+n · (−1), or −1. Moreover, any proper initial segment of T consists

of f (weight n − 1), the first i terms ti (net weight −i) with i < n, and

possibly a proper initial segment of ti+1, whose weight is non-negative.

Thus, the net weight of such a segment is at least (n− 1)− i ≥ 0.

Let T1 = f1t11 . . . t1n and T2 = f2t21 . . . t2m, and assume T1
syn
= T2 (A

syn
= B

denotes that A and B are identical strings). Obviously, f1 = f2 = f ; they

are identical, single symbols, so they must represent the same function or

relation. As such, n = m. Moreover, t11 and t21 start on the same index,

and neither can be an initial segment of the other, so they must also end

on the same index. This argument can be extended inductively over all of

the remaining input terms for f . T1 and T2 represent the result of identical

input terms in an identical order on the same function or relation.

Problem 8.33. Let t be ft1 . . . tn for some n-ary function symbol f and

terms ti. Then tA = fA(tA1 , . . . , t
A
n ).
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Similarly, (Rt1 . . . tn)A is identical to (tA1 , . . . , t
A
n ) ∈ RA. The differ-

ence is in the interpretation: a term with a leading relation symbol is either

True or False, depending on whether the corresponding ordered sequence of

terms is an element of the interpreted relation, while a term with a leading

function symbol is simply the resulting element of A.

Problem 8.34. Suppose automaton A in finite universe A accepts

L′ = {an . . .a2a1c : a1a2 . . . an ∈ L}. Clearly, (an . . .a1c)A =

aAn (aAn−1(· · · (aA1 (cA)) · · · )) ∈ A; in other words, L(A) ⊆ A. We de-

fine an NFA for L: the initial state is c = q0, and the remaining states

{q1, q2, . . . , qm} are the remaining elements of A—|A| is finite so this NFA

has finitely many states. We define the transition function as follows:

δ(qi, a) = aA(qi). Finally, the accepting states F are simply those accepted

by A. L is recognized by an NFA, so it must be regular.

Given a regular language L, let D be the smallest DFA for L. We

know index(L) and QD are finite and equal from theorem 8.31; let A =

QD. We assign to q0 the label c (i.e. cA = q0) and choose the following

interpretation: aA(tA) = δ(tA, a). Finally, we let RA = FD. We have

constructed an automaton which accepts L′.

Problem 8.35. The “method” of acceptance for automatons corresponds

directly with intersections, unions, and complementation. Given automa-

tons A and B with acceptance relations RA and RB and universes A and

B, an automaton which accepts L(A) ∪ L(B) is easily given with universe

A∪B and relation RA ∪RB. The only nuance is that some symbols in VA

or VB may need to be replaced with new symbols (with the same meaning

as the symbols they are replacing) in order to avoid a double interpretation

of a given symbol. Intersections can be handled in much the same way. Clo-

sure under complementation comes from the finite nature of A; RA must

contain finitely many elements of P(A), and it can simply be replaced with

P(A)−RA to create an automaton for the complement of L(A).

Problem 8.38. P = {Q,Σ,Γ, δ, q0, F} where:

Q = {q0, q1, q2}
Σ = Γ = {1, 0}

F = {q2}

and the transition function δ is defined below. Note that ε as an element

of Σ∗ denotes ε-padding, while ε as an output of the stack (i.e. δ(qn, x, ε))
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denotes that the stack is empty.

δ(q0, 0, ε) = {(q0, 0)}
δ(q0, 1, ε) = {(q0, 1)}
δ(q0, ε, ε) = {(q2, ε)}
δ(q0, 0, 1) = {(q0, 01)}
δ(q0, 1, 0) = {q0, 10)}
δ(q0, 0, 0) = {(q0, 00), (q1, ε)}
δ(q0, 1, 1) = {(q0, 11), (q1, ε)}

δ(q1, 1, 1) = δ(q1, 0, 0) = {(q1, ε)}
δ(q1, ε, ε) = {q2, ε}

Note that any undefined transitions are mapped to the implied “trash

state”. In the diagram below, an arrow from qi to qj with the label a, b→ c

means that (qj , c) ∈ δ(qi, a, b).

// 1,1→ε

0,0→ε
//

ε,ε→ε

��

(1,ε→1),(0,ε→0),(1,0→10),(0,1→01),(0,0→00),(1,1→11)

11 ε,ε→ε //

(1,1→ε),(0,0→ε)

QQ

Problem 8.40. Assume (q, x, α)
∗⇒ (p, y, β). We prove that (q, x, αγ)

∗⇒
(p, y, βγ) by induction on the number of steps.

Proof. Base case: (q, x, α)→ (p, y, β). Then x = ay for some a such that

(p, b) ∈ δ(q, a, α1) and bα2α3 · · · = β. As such, xw = ayw for any w, and

bα1α3 . . . γ = βγ. Thus, (q, xw, αγ)→ (q, xw, βγ).

Induction step: If (q, x, α)
∗⇒ (p, y, β) in n steps, than there is some

tuple (o, z, σ) such that (q, x, α)
∗⇒ (o, z, σ) in n − 1 steps and (o, z, σ) →

(p, y, β). The induction hypothesis grants that (q, x, αγ)
∗⇒ (o, z, σγ), and

another application of the base case grants that (o, z, σγ) → (p, y, βγ).

Thus, (q, x, αγ)
∗⇒ (p, y, βγ).

Problem 8.42. Let P be a PDA which accepts by final state. We will

modify P to accept the same language by empty stack. Let q1 be P ’s

initial state. For every a such that δ(q1, a, ε) = {(qi1 , βi1), . . . } replace

this transition with with δ(q1, a, ε) = {(qi1 , βi1$) . . . }. For every accepting

state qf in P and every s ∈ ΓP ∪ {$} such that δ(qf , ε, s) is empty, let

δ(qf , ε, s) = {(qf , ε)}. Clearly, if we run out of inputs on an accepting

state, this modification allows P to “empty the stack” without leaving,
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resulting in acceptance by empty stack. For every rejecting state qr and

every a ∈ Σ, if δ(qr, a, ε) = {(qj1 , βj1), . . . } is defined, replace this definition

with δ(qr, a, $) = {(qj1 , βj1$)}; otherwise, leave δ(qr, a, $) undefined, so the

stack cannot empty on a rejecting state. This altered PDA accepts L(P )

by empty stack.

Next, let P be a PDA which accepts by empty stack, and let q1 be

the initial state. For all a such that δ(q1, a, ε) is defined to be some set

of configurations {(qj1 , βj1) . . . }, remove this transition and in its place let

δ(q1, a, ε) = {(qj1 , βj1$) . . . }. Add a singular accepting state qf , and for

every state qn, let δ(qn, ε, $) = {(qf , ε)}. Any input which would have been

accepted by empty stack in the original P “lands” on qf by construction,

and moreover there is no other way to reach qf (we just defined every

transition to it) so no inputs are accepted which would have been rejected by

P ’s initial definition. Thus, this modified PDA accepts the same language

as P by final state.

Problem 8.44. Assume that A[qXp]
∗⇒ w. Then, by definition, w takes

the PDA from state p to state q and pops X off of the stack. As such, if w

is the entire remaining input, X is the entire stack, and the PDA is in state

q, then the PDA will halt on state p with an empty stack after processing

w; that is, (q, w,X)
∗⇒ (p, ε, ε).

Next, assume that (q, w,X)
∗⇒ (p, ε, ε). Then w takes the PDA from

state p to state q, and in the process it pops the entirety of X off of the

stack; by definition, A[qXp]
∗⇒ w. Thus,

(
A[qXp]

∗⇒ w
)
⇐⇒

(
(q, w,X)

∗⇒
(p, ε, ε)

)
.

Problem 8.51. Let G be a CFG in CNF, and assume w ∈ L(G), where

w = a1a2 . . . an. Clearly, for every terminal al ̸= ε in w, there must be a

variable Xil such that Xil → αalβ. Since G is in CNF and al ̸= ε, it must

be true that α = β = ε, so Xil → al is a rule. Therefore, for all i ∈ [1, n],

(i, i) will be populated with a variable in the first for-loop.

But more can be gained from CNF; every rule is either of the form

A→ BC or A→ a; that is, every rule maps a variable either to a terminal

or to two concatenated variables. Thus, if S
∗⇒ a1a2 . . . an, then clearly

S
∗⇒ Xi1Xi2 . . . Xin , where Xil → al is a rule for all l.

Let us more closely examine the statement S
∗⇒ Xi1Xi2 . . . Xin ; we

know that, in terms of variable introduction, the only available rules

are of the form S → AB, so the first ‘→’ from S in the derivation of

Xi1Xi2 . . . Xin must be in this form. Clearly, there is an integer o such

that A
∗⇒ Xi1Xi2 . . . Xio and B

∗⇒ Xio+1Xio+2 . . . Xin . As such, if (1, o)

and (o + 1, n) are populated with A and B then (1, n) will subsequently
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be given S. We can continue this analysis recursively to show that A and

B will be put in their correct places, and so S will eventually be in (1, n)

and w will be accepted. The only nuance here is the order in which the

i, j pairs are checked; as figure 8.13 states, we start with the main diagonal

and work toward the “top right”, one diagonal at a time.

How do we know that no new words are accepted? That is, how can

we be sure that there is no w /∈ L(G) which will be accepted by the CYK

algorithm?

Problem 8.54. Let L be a CFL with grammar G for L − {ε}. Assume

that G is in CNF, and furthermore that it has no nullable variables (see

claim 8.49). Let G have n variables. Consider s ∈ L(G) such that |s| ≥ 2n.

Then s must have a path in the parse tree of length at least n+2—a path of

length n+ 1 is necessary to reach a string of 2n variables due to CNF, and

an additional step is required to map these variables to terminals. As such,

there is a path in the parse tree containing n + 1 variables; there are only

n variables so at least one is repeated. That is, there is a variable R such

that R
∗⇒ vRy for v, y ∈ Σ∗; moreover, there is necessarily such a variable

that this happens in at most n steps, so the result has length of at most

2n. Due to the nature of variable to variable production in CNF and the

absence of nullable variables, |vy| > 0. Since R
∗⇒ vRy, it is also true that

R
∗⇒ vvRyy; we can keep “expanding” R in this way to get any (equal)

number of repeated vs and ys. Finally, R
∗⇒ x for some string of terminals

x, finishing the proof. Note that u and z in the lemma are the (possibly

empty) strings from the initial S
∗⇒ uRz to reach the first R, where S is

the starting variable. Thus, we have S
∗⇒ uvixyiz where |vy| > 0 and

|vxy| ≤ 2n.

Problem 8.55. Assume, for contradiction, that L = {0n1n2n|n ≥ 1} is

a CFL. Let p be the pumping length for L. Consider s = 0p1p2p. By

lemma 8.53, s must be uvxyz. . . If v or y contains more than one unique

terminal, concatenating it more than once creates a string which cannot be

a substring of any element of L; for instance, if v = 01, then v2 = 0101

which cannot appear in any w ∈ L. But if v and y are each concatenations

of a single terminal, then only two of the three terminals gain an increase

in length in their respective substrings. For instance, if v = 11 and y = 22,

then uv2xy2z = 0p1p+22p+2 /∈ L. So, regardless of the composition of v

and y, they fail to meet the conditions of the pumping lemma.

Problem 8.56. Let L be a CFL and R a regular language, both on al-

phabet Σ. There is a PDA P for L, and a DFA D for R, both accepting

by final state. We denote with di indexed states in D, and with pj indexed



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 233

Computational Foundations 233

states in P . For each state di in D, we create a PDA Pi which is a copy

of P with two key differences: the final states in Pi are only final if di is

a final state in D, and there are no transitions yet (so we’ve only really

copied the states). We denote with qij the state in Pj which corresponds

to di in D. Finally we define the transitions as follows: (qkl, t) ∈ δ(qij , a, s)

iff δD(di, a) = dk and (pl, t) ∈ δP (pj , a, s). Note that by construction, qij
is an accepting state iff di is in FD and pj is in FP . This PDA, as such,

accepts w iff w ∈ L∧w ∈ R. Thus, L∩R is accepted by a PDA, so it must

be a CFL.

Problem 8.57. Let L be a CFL on Σ, represented by CFG G with ter-

minals T . Note that T = Σ, assuming every element of Σ is reachable,

and otherwise we can simply remove those that are unreachable. For each

a ∈ T , we have a CFL La and a corresponding CFG Ga = {Va, Ta, Pa, Sa}.
We can assume without loss of generality that Va ∩ Vb = ∅ for all a, b ∈ T

such that a ̸= b, because new variables can be introduced at will. In G, we

can simply replace each terminal a in all productions with Sa, and add all

productions in Pa. We have created a CFG for s(L), so it must be a CFL.

Problem 8.58. We will design a TM M such that L(M) is

the language of binary palindromes. We have 8 states: Q =

{q0, q1, q2, q3, q4, q5, qaccept, qreject}, where q0 is the initial state. We define

δ as follows:

δ(q0, 1) = (q1,□,→) δ(q0, 0) = (q2,□,→) δ(q0,□) = qaccept

δ(q1, 1) = (q1, 1,→) δ(q1, 0) = (q1, 0,→) δ(q1,□) = (q3,□,←)

δ(q2, 1) = (q2, 1,→) δ(q2, 0) = (q2, 0,→) δ(q2,□) = (q4,□,←)

δ(q3, 1) = (q5,□,←) δ(q3, 0) = qreject δ(q3,□) = qaccept

δ(q4, 1) = qreject δ(q4, 0) = (q5,□,←) δ(q4,□) = qaccept

δ(q5, 1) = (q5, 1,←) δ(q5, 0) = (q5, 0,←) δ(q5,□) = (q0,□,→)

Assume the input starts with 1. Then M will transition from q0 to q1
while rewriting this 1 as a blank space, and remain in q1 going right until

it hits the first blank space (just past the end of the input). At this space,

it will go left (to the current right-most non-blank space) and into q3. If

this right-most input is a 1 (i.e., if it matches the 1 on the left), it will

replace this 1 with a □, transition to q5 and keep going left until hitting

the blank, at which point it will restart this process. If, on the other hand,

it encounters a 0 here, then the input starts with 1 and ends with 0, so

it is not a palindrome, and is rejected. Finally, if this value is □, then

every input has been written over with □, indicating that the input was a
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palindrome and causing it to be accepted.

8.7 Notes

Regarding Babbages Difference Engine presented in the introduction of this

chapter, students of business informatics might be interested to know that

the ultimate failure of Babbage’s undertaking was due to his lack of business

acumen; see pp. 563–570, [Johnson (1991)].

The material in this chapter draws on the magnificent introduction to

the theory of computation by [Sipser (2006)]. In particular, the proof of

Theorem 8.70 can be founds in the solution to exercise 5.28 on page 215

of [Sipser (2006)], and Theorem 8.69 is Theorem 3.21 in [Sipser (2006)].

For further readings the reader is also directed to [Kozen (2006)]. In

particular, section 8.3.9 is based on pg. 109 in [Kozen (2006)].

Eventually Chomsky abandoned the project of producing a complete

grammar for the English language, concluding that it was not possible.

However, his PhD students continued to work in this area, and the differ-

ent approaches to linguistics correspond to different stages of Chomsky’s

thinking and the students he had at the given time. Chomsky wanted to

use grammars for generating speech; until his day, grammar was used only

to analyze text. His approach is called structural linguistics, a trend to sep-

arate grammar from meaning (reminiscent of Carnap’s logical positivism4).

In computer science, grammar (computer) and meaning (human) are al-

ways separated; the interplay between syntax and semantics is one of the

richest concepts in computer science.

The material in the above paragraph from Andrzej Ehrenfeucht’s lec-

tures at the University of Colorado at Boulder, in the Winter 2008. In 1971,

Ehrenfeucht was a founding member of the Department of Computer Sci-

ence at the University of Colorado. He formulated the Ehrenfeucht-Fräıssé

game, using the back-and-forth method given by Roland Fräıssé in his the-

sis. The Ehrenfeucht-Mycielski sequence is also named after him. Two of

his students, Eugene Myers and David Haussler, were prominent contribu-

tors to the sequencing of the human genome.

The regular language operations ix and x in section 8.3.5 come from

Problem 1.40 in [Sipser (2006)]. The material on the Myhill-Nerode Theo-

rem, section 8.3.8.2, is inspired by [Sipser (2006)][Exr. 1.51 & 1.52].

Context free grammars are the foundations of parsers. There are many

4See [John W. Dawson (1997)].
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tools that implement the ideas mentioned in this section; for example, Lex,

Yacc, Flex, Bison, and others. you may read more about them here:

http://dinosaur.compilertools.net.

Section 8.4.3 is based on §7.1 in [Hopcroft et al. (2007)].

In section 8.2 we discuss ur-concepts such as symbols and words. An

intriguing field that examines such objects is Semiotics, the study of signs

and symbols and their use or interpretation. Since long ago “markings”

have been used to store and process information. About 8,000 years ago,

humans were using symbols to represent words and concepts. True forms

of writing developed over the next few thousand years, and of special im-

portance are cylinder seals. These were rolled across wet clay tablets to

produce raised designs. Many museums have cylinder seals in lapis lazuli5,

belonging to the Assyrian culture, found in Babylon, Iraq, estimated to

be 4,100–3,600 years old. The raised designs were cuneiform symbols that

stood for concepts and later for sounds and syllables.

The reader is encouraged to visit, if only online, artifacts on display at

the Smithsonian Museum of Natural History, Washington D.C. There one

can find an engraved ocher6 plaque with primitive markings, from Blombos

Cave, South Africa, estimated to be 77,000–75,000 years old. Also, the

Ishango bone, from the Congo, estimated to be 25,000–20,000 years old,

which is a leg bone from a baboon, with three rows of tally marks, to add

or multiply (archaeologists are not certain which). And finally, a reindeer

antler with tally marks, from La Madeleine, France, estimated to be 17,000–

11,500 years old.

In typesetting, the different shape styles of the English alphabet are

called fonts. PostScript fonts are outline font specifications developed by

Adobe Systems for professional digital typesetting, which uses PostScript

file format to encode font information. Outline fonts (or vector fonts) are

collections of vector images, i.e., a set of lines and curves to define the

border of glyphs.

For more details on Unicode and UTF-8, and other encodings, discussed

in section 8.5.2 see https://en.wikipedia.org/wiki/Unicode.

Algebraically, we can say that Σ∗, together with the concatenation oper-

ator ·, is a monoid, where · is an associative operation, and ε is the identity

element. This is one of many points of contact between strings, and the

5Lapis lazuli is a rare semi-precious stone that has been prized since antiquity for its
intense blue color.
6Ocher is an earthy pigment containing ferric oxide, typically with clay, varying from

light yellow to brown or red.
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beautiful area of Algebra known as Group Theory (see section 9.2.3).
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Chapter 9

Mathematical Foundations

And out of mathematical
reasoning there arises the true
philosophical question, the
question that no amount of
biology could ever solve:
namely, what is mathematics
about? What in the world are
numbers, sets, and transfinite
cardinals?

Sir Roger Scruton [Scruton
(2014)], pg. 6

9.1 Induction and Invariance

9.1.1 Induction

Let N = {0, 1, 2, . . .} be the set of natural numbers. Suppose that S is

a subset of N with the following two properties: first 0 ∈ S, and second,

whenever n ∈ S, then n + 1 ∈ S as well. Then, invoking the Induction

Principle (IP) we can conclude that S = N.

We shall use the IP with a more convenient notation; let P be a property

of natural numbers, in other words, P is a unary relation such that P(i)

is either true or false. The relation P may be identified with a set SP

in the obvious way, i.e., i ∈ SP iff P(i) is true. For example, if P is the

property of being prime, then P(2) and P(3) are true, but P(6) is false, and

SP = {2, 3, 5, 7, 11, . . .}. Using this notation the IP may be stated as:

[P(0) ∧ ∀n(P(n)→ P(n + 1))]→ ∀mP(m), (9.1)

237
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for any (unary) relation P over N. In practice, we use (9.1) as follows:

first we prove that P(0) holds (this is the basis case). Then we show that

∀n(P(n) → P(n + 1)) (this is the induction step). Finally, using (9.1) and

modus ponens, we conclude that ∀mP(m).

As an example, let P be the assertion “the sum of the first i odd numbers

equals i2.” We follow the convention that the sum of an empty set of

numbers is zero; thus P(0) holds as the set of the first zero odd numbers is an

empty set. P(1) is true as 1 = 12, and P(3) is also true as 1+3+5 = 9 = 32.

We want to show that in fact ∀mP(m) i.e., P is always true, and so SP = N.

Notice that SP = N does not mean that all numbers are odd—an ob-

viously false assertion. We are using the natural numbers to index odd

numbers, i.e., o1 = 1, o2 = 3, o3 = 5, o4 = 7, . . ., and our induction is over

this indexing (where oi is the i-th odd number, i.e., oi = 2i − 1). That is,

we are proving that for all i ∈ N, o1 + o2 + o3 + · · ·+ oi = i2; our assertion

P(i) is precisely the statement “o1 + o2 + o3 + · · ·+ oi = i2.”

We now use induction: the basis case is P(0) and we already showed

that it holds. Suppose now that the assertion holds for n, i.e., the sum of

the first n odd numbers is n2, i.e., 1 + 3 + 5 + · · · + (2n − 1) = n2 (this is

our inductive hypothesis or inductive assumption). Consider the sum of the

first (n + 1) odd numbers,

1 + 3 + 5 + · · ·+ (2n− 1) + (2n + 1) = n2 + (2n + 1) = (n + 1)2,

and so we just proved the induction step, and by IP we have ∀mP(m).

Problem 9.1. Prove that 1 +
∑i

j=0 2j = 2i+1.

Sometimes it is convenient to start our induction higher than at 0. We

have the following generalized induction principle:

[P(k) ∧ (∀n ≥ k)(P(n)→ P(n + 1))]→ (∀m ≥ k)P(m), (9.2)

for any predicate P and any number k. Note that (9.2) follows easily

from (9.1) if we simply let P′(i) be P(i+ k), and do the usual induction on

the predicate P′(i).

Problem 9.2. Use induction to prove that for n ≥ 1,

13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2.

Problem 9.3. For every n ≥ 1, consider a square of size 2n×2n where one

square is missing. Show that the resulting square can be filled with “L”

shapes—that is, with clusters of three squares, where the three squares do

not form a line.
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Problem 9.4. Suppose that we restate the generalized IP (9.2) as

[P(k) ∧ ∀n(P(n)→ P(n + 1))]→ (∀m ≥ k)P(m). (9.2′)

What is the relationship between (9.2) and (9.2′)?

Problem 9.5. The Fibonacci sequence is defined as follows: f0 = 0 and

f1 = 1 and fi+2 = fi+1 + fi, i ≥ 0. Prove that for all n ≥ 1 we have:(
1 1

1 0

)n

=

(
fn+1 fn
fn fn−1

)
,

where the left-hand side is the n-th power of a 2× 2 matrix.

Problem 9.6. Write a program that computes the n-th Fibonacci number

using the matrix multiplication trick of problem 9.5.

Problem 9.7. Prove the following: if m divides n, then fm divides fn, i.e.,

m|n⇒ fm|fn.

The Complete Induction Principle (CIP) is just like IP except that in

the induction step we show that if P(i) holds for all i ≤ n, then P(n + 1)

also holds, i.e., the induction step is now ∀n((∀i ≤ n)P(i)→ P(n + 1)).

Problem 9.8. Use the CIP to prove that every number (in N) greater

than 1 may be written as a product of one or more prime numbers.

Problem 9.9. Suppose that we have a (Swiss) chocolate bar consisting

of a number of squares arranged in a rectangular pattern. Our task is to

split the bar into small squares (always breaking along the lines between

the squares) with a minimum number of breaks. How many breaks will it

take? Make an educated guess, and prove it by induction.

The Least Number Principle (LNP) says that every non-empty subset

of the natural numbers must have a least element. A direct consequence

of the LNP is that every decreasing non-negative sequence of integers must

terminate; that is, if R = {r1, r2, r3, . . .} ⊆ N where ri > ri+1 for all i,

then R is a finite subset of N. We are going to be using the LNP to show

termination of algorithms.

Problem 9.10. Show that IP, CIP, and LNP are equivalent principles.

There are three standard ways to list the nodes of a binary tree. We

present them below, together with a recursive procedure that lists the nodes

according to each scheme.
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Infix: left sub-tree, root, right sub-tree.

Prefix: root, left sub-tree, right sub-tree.

Postfix: left sub-tree, right sub-tree, root.

See the example in figure 9.1.

1

2 3

4 5

6 7

infix: 2,1,6,4,7,3,5

prefix: 1,2,3,4,6,7,5

postfix: 2,6,7,4,5,3,1

Fig. 9.1 A binary tree with the corresponding representations.

Note that some authors use a different name for infix, prefix, and postfix;

they call it inorder, preorder, and postorder, respectively.

Problem 9.11. Show that given any two representations we can obtain

from them the third one, or, put another way, from any two representa-

tions we can reconstruct the tree. Show, using induction, that your recon-

struction is correct. Then show that having just one representation is not

enough.

Problem 9.12. Write a program that takes as input two of the three de-

scriptions, and outputs the third. One way to present the input is as a text

file, consisting of two rows, for example

infix: 2,1,6,4,7,3,5

postfix: 2,6,7,4,5,3,1

and the corresponding output would be: prefix: 1,2,3,4,6,7,5. Note

that each row of the input has to specify the “scheme” of the description.

9.1.2 Invariance

The Invariance Technique (IT) is a method for proving assertions about

the outcomes of procedures. The IT identifies some property that remains

true throughout the execution of a procedure. Then, once the procedure

terminates, we use this property to prove assertions about the output.

As an example, consider an 8 × 8 board from which two squares from

opposing corners have been removed (see figure 9.2). The area of the board



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 241

Mathematical Foundations 241

Fig. 9.2 An 8× 8 board.

is 64−2 = 62 squares. Now suppose that we have 31 dominoes of size 1×2.

We want to show that the board cannot be covered by them.

Verifying this by brute force (that is, examining all possible coverings)

is an extremely laborious job. However, using IT we argue as follows: color

the squares as a chess board. Each domino, covering two adjacent squares,

covers 1 white and 1 black square, and, hence, each placement covers as

many white squares as it covers black squares. Note that the number of

white squares and the number of black squares differ by 2—opposite corners

lying on the same diagonal have the same color—and, hence, no placement

of dominoes yields a cover; done!

More formally, we place the dominoes one by one on the board, any way

we want. The invariant is that after placing each new domino, the number

of covered white squares is the same as the number of covered black squares.

We prove that this is an invariant by induction on the number of placed

dominoes. The basis case is when zero dominoes have been placed (so zero

black and zero white squares are covered). In the induction step, we add

one more domino which, no matter how we place it, covers one white and

one black square, thus maintaining the property. At the end, when we

are done placing dominoes, we would have to have as many white squares

as black squares covered, which is not possible due to the nature of the

coloring of the board (i.e., the number of black and whites squares is not

the same). Note that this argument extends easily to the n× n board.

Problem 9.13. Let n be an odd number, and suppose that we have the

set {1, 2, . . . , 2n}. We pick any two numbers a, b in the set, delete them

from the set, and replace them with |a − b|. Continue repeating this until

just one number remains in the set; show that this remaining number must

be odd.

The next three problems have the common theme of social gatherings.
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We always assume that relations of likes and dislikes, of being an enemy or

a friend, are symmetric relations: that is, if a likes b, then b also likes a,

etc. See section 9.3 for background on relations—symmetric relations are

defined on page 248.

Problem 9.14. At a country club, each member dislikes at most three

other members, where dislike is always mutual. There are two tennis courts;

show that each member can be assigned to one of the two courts in such a

way that at most one person they dislike is also playing on the same court.

We use the vocabulary of “country clubs” and “tennis courts,” but it is

clear that Problem 9.14 is a typical situation that one might encounter in

computer science: for example, a multi-threaded program which is run on

two processors, where a pair of threads “dislike each other” when they use

many of the same resources. Threads that require the same resources ought

to be scheduled on different processors, to the extent that it is possible. In a

sense, these seemingly innocent problems are parables of computer science.

Problem 9.15. You are hosting a dinner party where 2n people are going

to be sitting at a round table. As it happens in any social clique, animosities

are rife, but you know that everyone sitting at the table dislikes at most

(n−1) people; show that you can make sitting arrangements so that nobody

sits next to someone they dislike.

Problem 9.16. Handshakes are exchanged at a meeting. We call a person

an odd person if he has exchanged an odd number of handshakes. Show

that, at any moment, there is an even number of odd persons.

9.2 Number Theory

In this section we work with the set of integers and natural numbers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, N = {0, 1, 2, . . .}.

9.2.1 Prime numbers

We say that x divides y, and write x|y if y = qx. If x|y we say that x is

divisor (also factor) of y. Using the terminology introduced in section 1.1.2,

x|y if and only if y = div(x, y) · x. We say that a number p is prime if its

only divisors are itself and 1.

Claim 9.17. If p is a prime, and p|a1a2 . . . an, then p|ai for some i.
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Proof. It is enough to show that if p|ab then p|a or p|b. Let g = gcd(a, p).

Then g|p, and since p is a prime, there are two cases. Case 1, g = p, then

since g|a, p|a. Case 2, g = 1, so there exist u, v such that au + pv = 1

(see algorithm 8), so abu + pbv = b. Since p|ab, and p|p, it follows that

p|(abu + pbv), so p|b.

Theorem 9.18 (Fundamental Theorem of Arithmetic). Given an

a ≥ 2, a can be written as a = pe11 pe22 · · · perr , where pi are prime numbers,

and other than rearranging primes, this factorization is unique.

Proof. We first show the existence of the factorization, and then its unique-

ness. The proof of existence is by complete induction; the basis case is a = 2,

where 2 is a prime. Consider an integer a > 2; if a is prime then it is its

own factorization (just as in the basis case). Otherwise, if a is composite,

then a = b · c, where 1 < b, c < a; apply the induction hypothesis to b and

c.

To show uniqueness suppose that a = p1p2 . . . ps = q1q2 . . . qt where

we have written out all the primes, that is, instead of writing pe we write

p ·p · · · p, e times. Since p1|a, it follows that p1|q1q2 . . . qt. So p1|qj for some

j, by claim 9.17, but then p1 = qj since they are both primes. Now delete

p1 from the first list and qj from the second list, and continue. Obviously

we cannot end up with a product of primes equal to 1, so the two list must

be identical.

9.2.2 Modular arithmetic

Let m ≥ 1 be an integer. We say that a and b are congruent modulo m, and

write a ≡ b (mod m) (or sometimes a ≡m b) if m|(a− b). Another way to

say this is that a and b have the same remainder when divided by m; using

the terminology of section 1.1, we can say that a ≡ b (mod m) if and only

if rem(a,m) = rem(b,m).

Problem 9.19. Show that if a1 ≡m a2 and b1 ≡m b2, then a1 ± b1 ≡m

a2 ± b2 and a1 · b1 ≡m a2 · b2.

Proposition 9.20. If m ≥ 1, then a · b ≡m 1 for some b if and only if

gcd(a,m) = 1.

Proof. (⇒) If there exists a b such that a ·b ≡m 1, then we have m|(ab−1)

and so there exists a c such that ab− 1 = cm, i.e., ab− cm = 1. And since
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gcd(a,m) divides both a and m, it also divides ab− cm, and so gcd(a,m)|1
and so it must be equal to 1.

(⇐) Suppose that gcd(a,m) = 1. By the extended Euclid’s algorithm

(see algorithm 8) there exist u, v such that au+mv = 1, so au− 1 = −mv,

so m|(au− 1), so au ≡m 1. So let b = u.

Let Zm = {0, 1, 2, . . . ,m−1}. We call Zm the set of integers modulo m.

To add or multiply in the set Zm, we add and multiply the corresponding

integers, and then take the remainder of the division by m as the result.

Let Z∗m = {a ∈ Zm| gcd(a,m) = 1}. By proposition 9.20 we know that Z∗m
is the subset of Zm consisting of those elements which have multiplicative

inverses in Zm.

The function ϕ(n) is called the Euler totient function, and it is the

number of elements less than n that are co-prime to n, i.e., ϕ(n) = |Z∗n|.

Problem 9.21. If we are able to factor, we are also able to compute ϕ(n).

Show that if n = pk1
1 pk2

2 · · · p
kl

l , then ϕ(n) =
∏l

i=1 p
ki−1
i (pi − 1).

Theorem 9.22 (Fermat’s Little Theorem). Let p be a prime number

and gcd(a, p) = 1. Then ap−1 ≡ 1 (mod p).

Proof. For any a such that gcd(a, p) = 1 the following products

1a, 2a, 3a, . . . , (p− 1)a, (9.3)

all taken mod p, are pairwise distinct. To see this suppose that ja ≡ ka

(mod p). Then (j − k)a ≡ 0 (mod p), and so p|(j − k)a. But since by

assumption gcd(a, p) = 1, it follows that p ̸ |a, and so by claim 9.17 it must

be the case that p|(j − k). But since j, k ∈ {1, 2, . . . , p− 1}, it follows that

−(p− 2) ≤ j − k ≤ (p− 2), so j − k = 0, i.e., j = k.

Thus the numbers in the list (9.3) are just a reordering of the list

{1, 2, . . . , p− 1}. Therefore

ap−1(p− 1)! ≡p

p−1∏
j=1

j · a ≡p

p−1∏
j=1

j ≡p (p− 1)!. (9.4)

Since all the numbers in {1, 2, . . . , p−1} have inverses in Zp, as gcd(i, p) = 1

for 1 ≤ i ≤ p − 1, their product also has an inverse. That is, (p − 1)! has

an inverse, and so multiplying both sides of (9.4) by ((p− 1)!)−1 we obtain

the result.

Problem 9.23. Give a second proof of Fermat’s Little theorem using the

binomial expansion, i.e., (x + y)n =
∑n

j=0

(
n
j

)
xjyn−j applied to (a + 1)p.
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9.2.3 Group theory

We say that (G, ∗) is a group if G is a set and ∗ is an operation, such that

if a, b ∈ G, then a ∗ b ∈ G (this property is called closure). Furthermore,

the operation ∗ has to satisfy the following three properties:

(1) identity law: There exists an e ∈ G such that e ∗ a = a ∗ e = a for

all a ∈ G.

(2) inverse law: For every a ∈ G there exists an element b ∈ G such

that a ∗ b = b ∗ a = e. This element b is called an inverse and it

can be shown that it is unique; hence it is often denoted as a−1.

(3) associative law: For all a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

If (G, ∗) also satisfies the commutative law, that is, if for all a, b ∈ G,

a ∗ b = b ∗ a, then it is called a commutative or Abelian group.

Typical examples of groups are (Zn,+) (integers mod n under addition)

and (Z∗n, ·) (integers mod n under multiplication). Note that both these

groups are Abelian. These are, of course, the two groups of concern for

us; but there are many others: (Q,+) is an infinite group (rationals under

addition), GL(n,F) (which is the group of n × n invertible matrices over

a field F), and Sn (the symmetric group over n elements, consisting of

permutations of [n] where ∗ is function composition).

Problem 9.24. Show that (Zn,+) and (Z∗n, ·) are groups, by checking that

the corresponding operation satisfies the three axioms of a group.

We let |G| denote the number of elements in G (note that G may be

infinite, but we are concerned mainly with finite groups). If g ∈ G and

x ∈ N, then gx = g ∗ g ∗ · · · ∗ g, x times. If it is clear from the context that

the operation is ∗, we use juxtaposition ab instead of a ∗ b.
Suppose that G is a finite group and a ∈ G; then the smallest d ∈ N

such that ad = e is called the order of a, and it is denoted as ordG(a) (or

just ord(a) if the group G is clear from the context).

Proposition 9.25. If G is a finite group, then for all a ∈ G there exists a

d ∈ N such that ad = e. If d = ordG(a), and ak = e, then d|k.

Proof. Consider the list a1, a2, a3, . . .. If G is finite there must exist i < j

such that ai = aj . Then, (a−1)i applied to both sides yields aj−i = e.

Let d = ord(a) (by the LNP we know that it must exist!). Suppose that

k ≥ d, ak = e; let q, r be the divisor and remainder, respectively. Then
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e = ak = adq+r = (ad)qar = ar. Since ad = e it follows that ar = e,

contradicting the minimality of d = ord(a), unless r = 0.

If (G, ∗) is a group we say that H is a subgroup of G, and write H ≤ G,

if H ⊆ G and H is closed under ∗. That is, H is a subset of G, and H is

itself a group. Note that for any G it is always the case that {e} ≤ G and

G ≤ G; these two are called the trivial subgroups of G. If H ≤ G and g ∈ G,

then gH is called a left coset of G, and it is simply the set {gh|h ∈ H}.
Note that gH is not necessarily a subgroup of G.

Theorem 9.26 (Lagrange). If G is a finite group and H ≤ G, then |H|
divides |G|, i.e., the order of H divides the order of G.

Proof. If g1, g2 ∈ G, then the two cosets g1H and g2H are either identical

or g1H ∩ g2H = ∅. To see this, suppose that g ∈ g1H ∩ g2H, so g = g1h1 =

g2h2. In particular, g1 = g2h2h
−1
1 . Thus, g1H = (g2h2h

−1
1 )H, and since

it can be easily checked that (ab)H = a(bH) and that hH = H for any

h ∈ H, it follows that g1H = g2H.

Therefore, for a finite G = {g1, g2, . . . , gn}, the collection of sets

{g1H, g2H, . . . , gnH} is a partition of G into subsets that are either dis-

joint or identical; from among all subcollections of identical cosets we pick

a representative, so that G = gi1H ∪ gi2H ∪ · · ·∪ gimH, and so |G| = m|H|,
and we are done.

Problem 9.27. Let H ≤ G. Show that if h ∈ H, then hH = H, and that

in general for any g ∈ G, |gH| = |H|. Finally, show that (ab)H = a(bH).

Problem 9.28. If G is a group, and {g1, g2, . . . , gk} ⊆ G, then the set

⟨g1, g2, . . . , gk⟩ is defined as follows

{x1x2 · · ·xp|p ∈ N, xi ∈ {g1, g2, . . . , gk, g−11 , g−12 , . . . , g−1k }}.
Show that ⟨g1, g2, . . . , gk⟩ (called the subgroup generated by {g1, g2, . . . , gk})
is a subgroup of G. Also show that when G is finite |⟨g⟩| = ordG(g).

9.2.4 Applications of group theory to number theory

Theorem 9.29 (Euler). For every n and every a ∈ Z∗n, that is, for every
pair a, n such that gcd(a, n) = 1, we have aϕ(n) ≡ 1 (mod n).

Proof. First it is easy to check that (Z∗n, ·) is a group. Then by definition

ϕ(n) = |Z∗n|, and since ⟨a⟩ ≤ Z∗n, it follows by Lagrange’s theorem that

ord(a) = |⟨a⟩| divides ϕ(n).
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Note that Fermat’s Little theorem (already presented as theorem 9.22)

is an immediate consequence of Euler’s theorem, since when p is a prime,

Z∗p = Zp − {0}, and ϕ(p) = (p− 1).

Theorem 9.30 (Chinese Remainder). Given two sets of numbers of

equal size, r0, r1, . . . , rn and m0,m1, . . . ,mn, such that

0 ≤ ri < mi 0 ≤ i ≤ n (9.5)

and gcd(mi,mj) = 1 for i ̸= j, then there exists an r such that r ≡ ri
(mod mi) for 0 ≤ i ≤ n.

Proof. The proof we give is by counting; we show that the distinct values

of r, 0 ≤ r < Πmi, represent distinct sequences. To see this, note that if

r ≡ r′ (mod mi) for all i, then mi|(r − r′) for all i, and so (Πmi)|(r − r′),

since the mi’s are pairwise co-prime. So r ≡ r′ (mod (Πmi)), and so r = r′

since both r, r′ ∈ {0, 1, . . . , (Πmi)− 1}.
But the total number of sequences r0, . . . , rn such that (9.5) holds is

precisely Πmi. Hence every such sequence must be a sequence of remainders

of some r, 0 ≤ r < Πmi.

Problem 9.31. The proof of theorem 9.30 (CRT) is non-constructive.

Show how to obtain efficiently the r that meets the requirement of the the-

orem, i.e., in polytime in n—so in particular not using brute force search.

Given two groups (G1, ∗1) and (G2, ∗2), a mapping h : G1 −→ G2

is a homomorphism if it respects the operation of the groups; formally,

for all g1, g
′
1 ∈ G1, h(g1 ∗1 g′1) = h(g1) ∗2 h(g′1). If the homomorphism

h is also a bijection, then it is called an isomorphism. If there exists an

isomorphism between two groups G1 and G2, we call them isomorphic, and

write G1
∼= G2.

If (G1, ∗1) and (G2, ∗2) are two groups, then their product, denoted

(G1 ×G2, ∗) is simply {(g1, g2) : g1 ∈ G1, g2 ∈ G2}, where (g1, g2) ∗ (g′1, g
′
2)

is (g1 ∗1 g′1, g2 ∗2 g′2). The product of n groups, G1 × G2 × · · · × Gn can

be defined analogously; using this notation, the CRT can be stated in the

language of group theory as follows.

Theorem 9.32 (Chinese Remainder Version II). If m0,m1, . . . ,mn

are pairwise co-prime integers, then

Zm0·m1·...·mn
∼= Zm0

× Zm1
× · · · × Zmn

.

Problem 9.33. Prove theorem 9.32
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9.3 Relations

In this section we present the basics of relations. Given two sets X,Y ,

X × Y denotes the set of (ordered) pairs {(x, y)|x ∈ X ∧ y ∈ Y }, and a

relation R is just a subset of X × Y , i.e., R ⊆ X × Y . Thus, the elements

of R are of the form (x, y) and we write (x, y) ∈ R (we can also write xRy,

Rxy or R(x, y)). In what follows we assume that we quantify over the set

X and that R ⊆ X ×X; we say that

(1) R is reflexive if ∀x, (x, x) ∈ R,

(2) R is symmetric if ∀x∀y, (x, y) ∈ R if and only if (y, x) ∈ R,

(3) R is antisymmetric if ∀x∀y, if (x, y) ∈ R and (y, x) ∈ R then x = y,

(4) R is transitive if ∀x∀y∀z, if (x, y) ∈ R and (y, z) ∈ R then it is also

the case that (x, z) ∈ R.

Suppose that R ⊆ X × Y and S ⊆ Y ×Z. The composition of R and S

is defined as follows:

R ◦ S = {(x, y)|∃z, xRz ∧ zSy}. (9.6)

Let R ⊆ X ×X; we can define Rn := R ◦R ◦ · · · ◦R recursively as follows:

R0 = idX := {(x, x)|x ∈ X}, (9.7)

and Ri+1 = Ri ◦ R. Note that there are two different equalities in (9.7);

“=” is the usual equality, and “:=” is a definition.

Theorem 9.34. The following three are equivalent:

(1) R is transitive,

(2) R2 ⊆ R,

(3) ∀n ≥ 1, Rn ⊆ R.

Problem 9.35. Prove theorem 9.34.

There are two standard ways of representing finite relations, that is,

relations on X × Y where X and Y are finite sets. Let X = {a1, . . . , an}
and Y = {b1, . . . , bm}, then we can represent a relation R ⊆ X × Y :

(1) as a matrix MR = (mij) where:

mij =

{
1 (ai, bj) ∈ R

0 (ai, bj) /∈ R
,

(2) and as a directed graph GR = (VR, ER), where VR = X ∪ Y and

ai
• −→ •bj is an edge in ER iff (ai, bj) ∈ R.
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9.3.1 Closure

Let P be a property1 of relations, for example transitivity or symmetry.

Let R ⊆ X×X be a relation, with or without the property P. The relation

S satisfying the following three conditions:

(1) S has the property P

(2) R ⊆ S

(3) ∀Q ⊆ X ×X, “Q has P” and R ⊆ Q implies that S ⊆ Q

(9.8)

is called the closure of R with respect to P. Note that in some instances the

closure may not exist. Also note that condition 3 may be replaced by

S ⊆
⋂

Q has P, R ⊆ Q

Q. (9.9)

See figure 9.3 for an example of reflexive closure.

◦MM // ◦xx 

◦

??

MM

Fig. 9.3 Example of reflexive closure: without the dotted lines, this diagram represents

a relation that is not reflexive; with the dotted lines it is reflexive, and it is in fact the
smallest reflexive relation containing the three points and four solid lines.

Theorem 9.36. For R ⊆ X ×X, R ∪ idX is the reflexive closure of R.

Problem 9.37. Prove theorem 9.36.

See figure 9.4 for an example of symmetric closure.

Theorem 9.38. Given a relation R ⊆ X×Y , the relation R−1 ⊆ Y ×X is

defined as {(x, y)|(y, x) ∈ R}. For R ⊆ X ×X, R ∪ R−1 is the symmetric

closure of R.

Problem 9.39. Prove theorem 9.38.

See figure 9.5 for an example of transitive closure.

1We have seen the concept of an abstract property in section 9.1.1. The only difference
is that in section 9.1.1 the property P(i) was over i ∈ N, whereas here, given a set X,

the property is over Q ∈ P(X × X), that is, P(Q) where Q ⊆ X × X. In this section,

instead of writing P(Q) we say “Q has property P.”
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◦MM // ◦xx

qq◦

??

Fig. 9.4 Example of symmetric closure: without the dotted line, this diagram represents

a relation that is not symmetric; with the dotted lines it is symmetric.

◦ // 88 <<◦ // ��
◦ // ◦

Fig. 9.5 Example of transitive closure: without the dotted line, this diagram represents

a relation that is not transitive; with the dotted lines it is transitive.

Theorem 9.40. R+ :=
⋃∞

i=1 R
i is the transitive closure of R.

Proof. We check that R+ has the three conditions given in (9.8). First,

we check whether R+ has the given property, i.e., whether it is transitive:

xR+y ∧ yR+z ⇐⇒ ∃m,n ≥ 1, xRmy ∧ yRnz

=⇒ ∃m,n ≥ 1, x(Rm ◦Rn)z (†)

⇐⇒ ∃m,n ≥ 1, xRm+nz

⇐⇒ xR+z

so R+ is transitive.

Second we check that R ⊆ R+—this follows from the definition of R+.

We check now the last condition. Suppose S is transitive and R ⊆ S.

Since S is transitive, by theorem 9.34, Sn ⊆ S, for n ≥ 1, i.e., S+ ⊆ S, and

since R ⊆ S, R+ ⊆ S+, so R+ ⊆ S.

Problem 9.41. Note that in the proof of theorem 9.40, when we show that

R+ itself is transitive, the second line, labeled with (†), is an implication,

rather than an equivalence like the other lines. Why is it not an equivalence?

Theorem 9.42. R∗ =
⋃∞

i=0 R
i is the reflexive and transitive closure of R.

Proof. R∗ = R+ ∪ idX .

9.3.2 Equivalence relation

Let X be a set, and let I be an index set. The family of sets {Ai|i ∈ I} is

called a partition of X iff
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(1) ∀i, Ai ̸= ∅,
(2) ∀i ̸= j, Ai ∩Aj = ∅,
(3) X =

⋃
i∈I Ai.

Note that X =
⋃

x∈X{x} is the finest partition possible, i.e., the set of all

singletons. A relation R ⊆ X ×X is called an equivalence relation iff

(1) R is reflexive,

(2) R is symmetric,

(3) R is transitive.

For example, if x, y are strings over {0, 1}∗, then the relation given by

R = {(x, y)|length(x) = length(y)} is an equivalence relation. Another

example is xRy ⇐⇒ x = y, i.e., the equality relation is the equivalence

relation par excellence. Yet another example: R = {(a, b)|a ≡ b (mod m)}
is an equivalence relation (where “≡” is the congruence relation defined on

page 243).

Theorem 9.43. Consider an equivalence relation. Then the following hold:

(1) a ∈ [a]

(2) a ≡ b ⇐⇒ [a] = [b]

(3) a ̸≡ b then [a] ∩ [b] = ∅
(4) any two equivalence classes are either equal or disjoint.

Theorem 9.44. Let F : X −→ X be any total function (i.e., a function

defined on all its inputs). Then the relation R on X defined as: xRy ⇐⇒
F (x) = F (y), is an equivalence relation.

Problem 9.45. Prove theorem 9.44.

Let R be an equivalence relation on X. For every x ∈ X, the set

[x]R = {y|xRy} is the equivalence class of x with respect to R.

Theorem 9.46. Let R ⊆ X ×X be an equivalence relation. The following

are equivalent:

(1) aRb

(2) [a] = [b]

(3) [a] ∩ [b] ̸= ∅

Proof. (1)⇒ (2) Suppose that aRb, and let c ∈ [a]. Then aRc, so cRa

(by symmetry). Since cRa ∧ aRb, cRb (transitivity), so bRc (symmetry),

so c ∈ [b]. Hence [a] ⊆ [b], and similarly [b] ⊆ [a].
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(2)⇒ (3) Obvious, since [a] is non-empty as a ∈ [a].

(3)⇒ (1) Let c ∈ [a] ∩ [b], so aRc and bRc, so by symmetry aRc ∧ cRb,

so by transitivity aRb.

Corollary 9.47. If R is an equivalence relation, then (a, b) /∈ R iff [a]∩[b] =

∅.

For every equivalence relation R ⊆ X × X, let X/R denote the set of

all equivalence classes of R.

Theorem 9.48. X/R is a partition of X.

Proof. Given theorem 9.46, the only thing that remains to be proven is

that X =
⋃

A∈X/R A. Since every A = [a] for some a ∈ X, it follows that⋃
A∈X/R A =

⋃
a∈X [a] = X.

Let R1, R2 be equivalence relations. If R1 ⊆ R2, then we say that R1 is

a refinement of R2.

Lemma 9.49. If R1 is a refinement of R2, then [a]R1 ⊆ [a]R2 , for all

a ∈ X.

If X/R is finite then index(R) := |X/R|, i.e., the index of R (in X) is

the size of X/R.

Theorem 9.50. If R1 ⊆ R2, then index(R1) ≥ index(R2).

Problem 9.51. Prove theorem 9.50.

9.3.3 Partial orders

In this section, instead of using R to represent a relation over a set X, we

are going to use the different variants of inequality: (X,⪯), (X,⊑), (X,≤).

A relation ⪯ over X, where ⪯⊆ X×X, is called a partial order, a poset

for short, if it is:

(1) reflexive

(2) antisymmetric

(3) transitive

A relation “≺” (where ≺⊆ X ×X) is a sharp partial order if:

(1) x ≺ y ⇒ ¬(y ≺ x)

(2) transitive
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These two standard relations, “⪯” and “≺”, are linked in a natural

manner by the following theorem.

Theorem 9.52. A relation ⪯ defined as x ⪯ y ⇐⇒ x ≺ y ∨ x = y is a

partial order. That is, given a sharp partial order “≺”, we can extend it to

a poset “⪯” with the standard equality symbol “=”.

Let (X,⪯) be a poset. We say that x, y are comparable if x ⪯ y or

y ⪯ x. Otherwise, they are incomparable. Let x ∼ y be short for x, y are

incomparable, i.e., x ∼ y ⇐⇒ ¬(x ⪯ y) ∧ ¬(y ⪯ x). In general, for every

pair x, y exactly one of the following is true

x ≺ y, y ≺ x, x = y, x ∼ y

Of course, in the context of posets represented by “⪯” the meaning of “≺”

is as follows: x ≺ y ⇐⇒ x ⪯ y ∧ x ̸= y.

A poset (X,⪯) is total or linear if all x, y are comparable, i.e., ∼= ∅.
Some examples of posets: if X is a set, then (P(X),⊆) is a poset. For

example, if X = {1, 2, 3}, then a Hasse diagram representation of this poset

would be as given in figure 9.6.

{1, 2, 3}

{1, 2}

::

{1, 3}

OO

{2, 3}

dd

{1}

OO ::

{2}

::dd

{3}

dd OO

∅

dd OO ::

Fig. 9.6 Hasse diagram representation of the poset ({1, 2, 3},⊆). Hasse diagams are

transitive reductions—relations implied by transitivity are not included.

Let Z+ be the set of positive integers, and let a|b be the “a divides b”

relation (that we define on page 242). Then, (Z+, |) is a poset.

If (X1,⪯1), (X2,⪯2) are two posets, then the component-wise order is

(X1 ×X2,⪯C) defined as follows:

(x1, x2) ⪯ (y1, y2) ⇐⇒ x1 ⪯1 y1 ∧ x2 ⪯2 y2,

and it is also a poset.
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The lexicographic order (X1 ×X2,⪯L) is defined as follows:

(x1, x2) ⪯L (y1, y2) ⇐⇒ (x1 ⪯1 y1) ∨ (x1 = y1 ∧ x2 ⪯2 y2).

Finally, (X,⪯) is a stratified order iff (X,⪯) is a poset, and furthermore

(x ∼ y ∧ y ∼ z)⇒ (x ∼ z ∨ x = z). Define a ≈ b ⇐⇒ a ∼ b ∨ a = b.

Theorem 9.53. A poset (X,⪯) is a stratified order iff ≈=∼ ∪ idX is an

equivalence relation.

In mathematics nomenclature can be the readers greatest scourge. The

string of symbols “≈=∼ ∪ idX” is a great example of obfuscation; how to

make sense of it? Yes, it is very succinct, but it takes practice to be able to

read it. What we are saying here is that the order we called “≈” is actually

equal to the order that we obtain by taking the union of the order “∼” and

“idX”.

Problem 9.54. Prove theorem 9.53.

Theorem 9.55. A poset (X,⪯) is a stratified order iff there exists a total

order (T,⪯T ) and an function f : X −→ T such that f is onto and f is an

“order homomorphism,” i.e., a ⪯ b ⇐⇒ f(a) ⪯T f(b).

Problem 9.56. Prove theorem 9.55.

9.3.4 Lattices

Let (X,⪯) be a poset, and let A ⊆ X be a subset, and a ∈ X. Then:

(1) a is minimal in X if ∀x ∈ X,¬(x ≺ a).

(2) a is maximal in X if ∀x ∈ X,¬(a ≺ x).

(3) a is the least element in X if ∀x ∈ X, a ⪯ x.

(4) a is the greatest element in X if ∀x ∈ X,x ⪯ a.

(5) a is an upper bound of A if ∀x ∈ A, x ⪯ a.

(6) a is a lower bound if A if ∀x ∈ A, a ⪯ x.

(7) a is the least upper bound (supremum) of A, denoted sup(A) if

(a) ∀x ∈ A, x ⪯ a

(b) ∀b ∈ X, (∀x ∈ A, x ⪯ b)⇒ a ⪯ b

(8) a is the greatest lower bound (infimum) of A, denoted inf(A) if

(a) ∀x ∈ A, a ⪯ x

(b) ∀b ∈ X, (∀x ∈ A, b ⪯ x)⇒ b ⪯ a
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Problem 9.57. Note that in the definitions 1–8 we sometimes use the

definite article “the” and sometimes the indefinite article “a”. In the former

case this implies uniqueness; in the latter case this implies that there may

be several candidates. Convince yourself of uniqueness where it applies,

and provide an example of a poset where there are several candidates for

a given element in the other cases. Finally, it is important to note that

sup(A), inf(A) may or may not exist; provide examples where they do not

exist.

A poset (X,⪯) is a well-ordered set if it is a total order and for every

A ⊆ X, such that A ̸= ∅, A has a least element.

A poset is dense if ∀x, y if x < y, then ∃z, x < z < y. For example,

(R,≤), with a standard definition of “≤”, is a total dense order, but it is

not a well ordered set; for example, the interval (2, 3], which equals the

subset of R consisting of those x such that 2 < x ≤ 3, does not have a least

element.

A poset (X,⪯) is a lattice if ∀a, b ∈ X, inf({a, b}) and sup({a, b}) both

exist in X. For example, every total order is a lattice, and (P(X),⊆) is

a lattice for every X. This last example inspires the following notation:

a ⊔ b := sup({a, b}) and a ⊓ b := inf({a, b}).

Problem 9.58. Prove that for the lattice (P(X),⊆) we have:

A ⊔B = A ∪B

A ⊓B = A ∩B

Not every poset is a lattice; figure 9.7 gives an easy example.

a

�� ��
b

�� ''

c

��ww
d

��

e

��
f

Fig. 9.7 An example of a poset that is not a lattice. While inf({b, c}) = a and

sup({d, e}) = f , the supremum of {b, c} does not exist.
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Theorem 9.59. Let (X,⪯) be a lattice. Then, ∀a, b ∈ X,

a ⪯ b ⇐⇒ a ⊓ b = a ⇐⇒ a ⊔ b = b.

Problem 9.60. Prove theorem 9.59.

Theorem 9.61. Let (X,⪯) be a lattice. Then, the following hold for all

a, b, c ∈ X:

(1) a ⊔ b = b ⊔ a and a ⊓ b = b ⊓ a (commutativity)

(2) a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c and a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c (associativity)

(3) a ⊔ a = a and a ⊓ a = a (idempotence)

(4) a = a ⊔ (a ⊓ b) and a = a ⊓ (a ⊔ b) (absorption)

Problem 9.62. Prove the properties listed as theorem 9.61.

A lattice (X,⪯) is complete iff ∀A ⊆ X, sup(A), inf(A) both exist. We

denote ⊥ = inf(X) and ⊤ = sup(X).

Theorem 9.63. (P(X),⊆) is a complete lattice, and the following hold

∀A ⊆ P(X), sup(A) =
⋃

A∈AA and inf(A) =
⋂

A∈AA, and ⊥ = ∅ and

⊤ = X.

Problem 9.64. Prove theorem 9.63.

Theorem 9.65. Every finite lattice is complete.

Proof. Let A = {a1, . . . , an}. Define b = a1 ⊓ . . . ⊓ an (with parenthesis

associated to the right). Then b = inf(A). Same idea for the supremum.

9.3.5 Fixed point theory

Suppose that F is a function, and consider the equation x⃗ = F (x⃗). A

solution a⃗ of this equation is a fixed point of F .

Let (X,⪯) and (Y,⊑) be two posets. A function f : X −→ Y

is monotone iff ∀x, y ∈ X, x ⪯ y ⇒ f(x) ⊑ f(y). For example,

fB : P(X) −→ P(X), where B ⊆ X, defined ∀x ⊆ X by fB(x) = B − x, is

not monotone. On the other hand, gB(x) = B ∪ x and hB(x) = B ∩ x are

both monotone.

Let (X,⪯) be a poset, and let f : X −→ X. A value x0 ∈ X such that

x0 = f(x0) is, as we saw, a fixed point of f . A fixed point may not exist;

for example, fB in the above paragraph does not have a fixed point when

B ̸= ∅, since the set equation x = B − x does not have a solution in that
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case. There may also be many fixed points; for example, f(x) = x has |X|
many fixed points.

Theorem 9.66 (Knaster-Tarski (1)). Let (X,⪯) be a complete lattice,

and let f : X −→ X be a monotone function. Then the least fixed point of

f exists and it is equal to inf({x|f(x) ⪯ x}).

Proof. Let x0 = inf({x|f(x) ⪯ x}). First we show that x0 = f(x0). Let

B = {x|f(x) ⪯ x}, and note that B ̸= ∅ because ⊤ = sup(X) ∈ B. Let

x ∈ B, so we have x0 ⪯ x, hence since f is monotone, f(x0) ⪯ f(x), i.e.,

f(x0) ⪯ f(x) ⪯ x.

This is true for each x in B, so f(x0) is a lower bound for B, and since x0

is the greatest lower bound of B, it follows that f(x0) ⪯ x0.

Since f is monotone it follows that f(f(x0)) ⪯ f(x0), which means that

f(x0) is in B. But then x0 ⪯ f(x0), which means that x0 = f(x0).

It remains to show that x0 is the least fixed point. Let x′ = f(x′). This

means that f(x′) ⪯ x′, i.e., x′ ∈ B. But then x0 ⪯ x′.

Theorem 9.67 (Knaster-Tarski (2)). Let (X,⪯) be a complete lattice,

and let f : X −→ X be a monotone function. Then the greatest fixed point

of the equation x = f(x) exists and it is equal to sup({x|f(x) ⪯ x}).

Note that these theorems are not constructive, but in the case of finite

X, there is a constructive way of finding the least and greatest fixed points.

Theorem 9.68 (Knaster-Tarski: finite sets). Let (X,⪯) be a lattice,

|X| = m, f : X −→ X a monotone function. Then fm(⊥) is the least fixed

point, and fm(⊤) is the greatest fixed point.

Proof. Since |X| = m, (X,⪯) is a complete lattice, ⊥ = inf(X) and

⊤ = sup(X) both exist. Since f is monotone, and ⊥ ⪯ f(⊥), we have

f(⊥) ⪯ f(f(⊥)), i.e., f(⊥) ⪯ f2(⊥). Continuing to apply monotonicity we

obtain:

f0(⊥) = ⊥ ⪯ f(⊥) ⪯ f2(⊥) ⪯ f3(⊥) ⪯ · · · ⪯ f i(⊥) ⪯ f i+1(⊥) ⪯ · · · .
Consider the above sequence up to fm(⊥). It has length (m + 1), but X

has only m elements, so there are i < j, such that f i(⊥) = f j(⊥). Since ⪯
is an order, it follows that

f i(⊥) = f i+1(⊥) = · · · = f j(⊥),

so x0 = f i(⊥) is a fixed point as

f(x0) = f(f i(⊥)) = f i+1(⊥) = f i(⊥) = x0.
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Clearly f j+1(⊥) = f(f j(⊥)) = f(x0) = x0, so in fact ∀k ≥ i, x0 = fk(⊥),

and so fm(⊥) = x0, so fm(⊥) is a fixed point.

We now suppose that x is another fixed point of f , i.e., x = f(x). Since

⊥ ⪯ x, and f is monotone, we conclude f(⊥) ⪯ f(x) = x, i.e., f(⊥) ⪯ x.

Again, since f is monotone, f(f(⊥)) ⪯ f(x) = x, so f2(⊥) ⪯ x. Hence,

repeating this procedure sufficiently many times, we obtain f i(⊥) ⪯ x for

each i, so we get x0 = fm(⊥) ⪯ x.

We do a similar argument for “greatest.”

The situation is even better for the standard lattice (P(X),⊆), if X is

finite.

Theorem 9.69. Let X be a finite set, |X| = n, f : P(X) −→ P(X)

is monotone. Then fn+1(∅) is the least fixed point, and fn+1(X) is the

greatest fixed point.

Proof. Note that the previous theorem says that f2n(∅) is the least fixed

point, and f2n(X) is the greatest fixed point, since |P(X)| = 2n, ⊥ = ∅
and ⊤ = X, for the lattice (P(X),⊆). But this theorem claims (n + 1)

instead of 2n. The reason is that ∅ ⊆ f(∅) ⊆ f2(∅) ⊆ · · · ⊆ fn+1(∅) must

have two repeating sets (because |X| = n).

Problem 9.70. Consider the lattice (P({a, b, c}),⊆) and the functions

f(x) = x ∪ {a, b} and g(x) = x ∩ {a, b}. Compute their respective

least/greatest fixed points.

Let (X,⪯) be a complete lattice. A function f : X −→ X is called

(1) upward continuous iff ∀A ⊆ X, f(sup(A)) = sup(f(A)),

(2) downward continuous iff ∀A ⊆ X, f(inf(A)) = inf(f(A)),

(3) continuous if it is both upward and downward continuous.

Lemma 9.71. If f : X −→ X is upward (downward) continuous, then it

is monotone.

Proof. Let f be upward continuous and x ⪯ y, so x = inf({x, y}) and

y = sup({x, y}), and

f(x) ⪯ sup({f(x), f(y)}) = sup(f({x, y})) = f(sup({x, y})) = f(y).

A similar argument for downward continuous.
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⊥
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�� ��
a
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00
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⊤ 55 ⊤

Fig. 9.8 An example of an ordering over X = {a, b,⊥,⊤}, with a function f : X −→ X,
indicated by the dotted lines. That is, f(⊥) = ⊥ and f(a) = f(b) = f(⊤) = ⊤. It can

be checked by inspection that f is monotone, but it is not downward continuous.

Problem 9.72. Show that the function f in figure 9.8 is not upward con-

tinuous. Give an example of a monotone function g that is neither upward

nor downward continuous.

Theorem 9.73 (Kleene). If (X,⪯) is a complete lattice, f : X −→ X

is an upward continuous function, then x0 = sup({fn(⊥)|n = 1, 2, . . .}) is

the least fixed point of f .

Proof. Note that ⊥ ⪯ f(⊥), so by monotonicity of f , we have that

⊥ ⪯ f(⊥) ⪯ f2(⊥) ⪯ f3(⊥) ⪯ · · · (9.10)

and,

f(x0) = f(sup({fn(⊥)|n = 1, 2, . . .}))

and since f is upward continuous

= sup(f({fn(⊥)|n = 1, 2, . . .}))
= sup({fn+1(⊥)|n = 1, 2, . . .})

and by (9.10),

= sup({fn(⊥)|n = 1, 2, . . .}) = x0

so f(x0) = x0, i.e., x0 is a fixed point.

Let x = f(x). We have ⊥ ⪯ x and f is monotone, so f(⊥) ⪯ f(x) = x,

i.e., f(⊥) ⪯ x, f2(⊥) ⪯ f(x) = x, etc., i.e., fn(⊥) ⪯ x, for all n, so by the

definition of sup,

x0 = sup({fn(⊥)|n = 1, 2, . . .}) ⪯ x,

so x0 is the least fixed point.
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9.3.6 Recursion and fixed points

So far we have proved the correctness of while-loops and for-loops, but there

is another way of “looping” using recursive procedures, i.e., algorithms that

“call themselves.” We are going to see examples of such algorithms in the

chapter on the divide and conquer method.

There is a robust theory of correctness of recursive algorithms based on

fixed point theory, and in particular on Kleene’s theorem (theorem 9.73).

We briefly illustrate this approach with an example. Consider the recursive

algorithm 35.

Algorithm 35 F (x, y)

1: if x = y then

2: return y + 1

3: else

4: F (x, F (x− 1, y + 1))

5: end if

To see how this algorithm works consider computing F (4, 2). First in

line 1 it is established that 4 ̸= 2 and so we must compute F (4, F (3, 3)).

We first compute F (3, 3), recursively, so in line 1 it is now established that

3 = 3, and so in line 2 y is set to 4 and that is the value returned, i.e.,

F (3, 3) = 4, so now we can go back and compute F (4, F (3, 3)) = F (4, 4),

so again, recursively, we establish in line 1 that 4 = 4, and so in line 2 y is

set to 5 and this is the value returned, i.e., F (4, 2) = 5. On the other hand

it is easy to see that

F (3, 5) = F (3, F (2, 6)) = F (3, F (2, F (1, 7))) = · · · ,
and this procedure never ends as x will never equal y. Thus F is not a total

function, i.e., not defined on all (x, y) ∈ Z× Z.

Problem 9.74. What is the domain of definition of F as computed by

algorithm 35? That is, the domain of F is Z × Z, while the domain of

definition is the largest subset S ⊆ Z × Z such that F is defined for all

(x, y) ∈ S. We have seen already that (4, 2) ∈ S while (3, 5) ̸∈ S.

We now consider three different functions, all given by algorithms that

are not recursive: algorithms 36, 37 and 38, computing functions f1, f2 and

f3, respectively.

Functions f1 has an interesting property: if we were to replace F in algo-

rithm 35 with f1 we would get back F . In other words, given algorithm 35,
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Algorithm 36 f1(x, y)

if x = y then

return y + 1

else

return x + 1

end if

if we were to replace line 4 with f1(x, f1(x−1, y+1)), and compute f1 with

the (non-recursive) algorithm 36 for f1, then algorithm 35 thus modified

would now be computing F (x, y). Therefore, we say that the function f1
is a fixed point of the recursive algorithm 35.

For example, recall the we have already shown that F (4, 2) = 5, using

the recursive algorithm 35 for computing F . Replace line 4 in algorithm 35

with f1(x, f1(x − 1, y + 1)) and compute F (4, 2) anew; since 4 ̸= 2 we go

directly to line 4 where we compute f1(4, f1(3, 3)) = f1(4, 4) = 5. Notice

that this last computation was not recursive, as we computed f1 directly

with algorithm 36, and that we have obtained the same value.

Consider now f2, f3, computed by algorithms 37, 38, respectively.

Algorithm 37 f2(x, y)

if x ≥ y then

return x + 1

else

return y − 1

end if

Algorithm 38 f3(x, y)

if x ≥ y ∧ (x− y is even) then

return x + 1

end if

Notice that in algorithm 38, if it is not the case that x ≥ y and x − y

is even, then the output is undefined. Thus f3 is a partial function, and if

x < y or x− y is odd, then (x, y) is not in its domain of definition.

Problem 9.75. Prove that f1, f2, f3 are all fixed points of algorithm 35.

The function f3 has one additional property. For every pair of integers
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x, y such that f3(x, y) is defined, that is x ≥ y and x−y is even, both f1(x, y)

and f2(x, y) are also defined and have the same value as f3(x, y). We say

that f3 is less defined than or equal to f1 and f2, and write f3 ⊑ f1 and

f3 ⊑ f2; that is, we have defined (informally) a partial order on functions

f : Z× Z −→ Z× Z.

Problem 9.76. Show that f3 ⊑ f1 and f3 ⊑ f2. Recall the notion of

a domain of definition introduced in problem 9.74. Let S1, S2, S3 be the

domains of definition of f1, f2, f3, respectively. You must show that S3 ⊆ S1

and S3 ⊆ S2.

It can be shown that f3 has this property, not only with respect to f1
and f2, but also with respect to all fixed points of algorithm 35. Moreover,

f3(x, y) is the only function having this property, and therefore f3 is said to

be the least (defined) fixed point of algorithm 35. It is an important appli-

cation of Kleene’s theorem (theorem 9.73) that every recursive algorithm

has a unique fixed point.

9.4 Logic

We present the foundations of propositional and predicate logic with the

aim of defining Peano Arithmetic (PA). PA is the standard formalization of

number theory, and it is the logical background for section 9.4.4—Formal

Verification. Our treatment of logic is limited to providing this background,

but the reader can find more resources in the Notes section.

9.4.1 Propositional Logic

Propositional (Boolean) formulas are built from propositional (Boolean)

variables2 p1, p2, p3, . . ., and the logical connectives ¬,∧,∨, listed in the

preface on page 2.

We often use different labels for our variables (e.g., a, b, c, . . ., x, y, z, . . .,

p, q, r, . . ., etc.) as “metavariables” that stand for variables, and we define

propositional formulas by structural induction: any variable p is a formula,

and if α, β are formulas, then so are ¬α,(α∧ β), and (α∨ β). For example,

p, (p ∨ q), (¬(p ∧ q) ∧ (¬p ∨ ¬q)). Recall also from the preface, that → and

↔ are the implication and equivalence connectives, respectively.

2Propositional variables are sometimes called atoms. A very thorough, and perhaps now

considered a little bit old fashioned, discussion of “names” in logic (what is a “variable,”
what is a “constant,” etc.), can be found in [Church (1996)], sections 01 and 02.
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Problem 9.77. Define propositional formulas with a context-free gram-

mar.

symbol weight

¬ 0

∧,∨, ( 1

), p, for each variable p −1

Fig. 9.9 Assignments of “weights” to symbols.

Lemma 9.78. Assign weights to all symbols as in figure 9.9. The weight

of any formula α is −1, but the weight of any proper initial segment is ≥ 0.

Hence no proper initial segment of a formula is a formula.

Proof. By structural induction on the length of α. The basis case is:

w(p) = −1, for any variable p. The induction step has three cases: ¬α,

(α ∧ β) and (α ∨ β). This shows that any well-formed formula has weight

−1. We now show that any proper initial segment has weight ≥ 0. In the

basis case (a single variable p) there are no initial segments; in the induction

step, suppose that the claim holds for α and β (that is, any initial segment

of α, and any initial segment of β, has weight ≥ 0). Then the same holds

for ¬α, as any initial segment of ¬α contains ¬ (and w(¬) = 0) and some

(perhaps empty) initial segment of α.

Problem 9.79. Finish the details of the proof of lemma 9.78.

Let α
syn
= α′ emphasize that α and α′ are equal as string of symbols, i.e.,

we have a syntactic identity, rather than a semantic identity.

Theorem 9.80 (Unique Readability Theorem). Suppose α, β, α′, β′

are formulas, c, c′ are binary connectives, and (αcβ)
syn
= (α′c′β′). Then

α
syn
= α′ and β

syn
= β′ and c

syn
= c′.

Note that this theorem says that the grammar for generating formulas is

unambiguous. Or, put another way, it says that there is only one candidate

for the main connective, which means that the parse tree of any formula

is unique. Recall that in problem 9.11 we compared infix, prefix, postfix

notations; Boolean formulas are given in infix notation in the sense that

the binary operators (∧,∨) are placed in between the operands, and yet

it is unambiguous (whereas problem 9.11 says that we need two out of
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three representations, from among {infix,prefix,postfix}, to represent a tree

unambiguously). The difference is that in the case of Boolean formulas we

have parentheses to delimit subformulas.

Problem 9.81. Show that theorem 9.80 is a consequence of lemma 9.78.

(Hint: define the weight of a formula to be the sum of the weights of all

the symbols in it.)

A truth assignment is a map τ : {variables} −→ {T, F}. Here {T, F}
represents “true” and “false,” sometimes denoted 0,1, respectively. The

truth assignment τ can be extended to assign either T of F to every formula

as follows:

(1) (¬α)τ = T iff ατ = F

(2) (α ∧ β)τ = T iff ατ = T and βτ = T

(3) (α ∨ β)τ = T iff ατ = T or βτ = T

The following are standard definitions: we say that the truth assignment

τ satisfies the formula α if ατ = T , and τ satisfies a set of formulas Φ

if τ satisfies all α ∈ Φ. In turn, the set of formulas Φ is satisfiable if

some τ satisfies it; otherwise, Φ is unsatisfiable. We say that α is a logical

consequence of Φ, written Φ ⊨ α, if τ satisfies α for every τ such that τ

satisfies Φ. A formula α is valid if ⊨ α, i.e., ατ = T for all τ . A valid

propositional formula is called a tautology. α and β are equivalent formulas

(written α ⇐⇒ β) if α ⊨ β and β ⊨ α. Note that ‘ ⇐⇒ ’ and ‘↔’ have

different meanings: one is a semantic assertion, and the other is a syntactic

assertion. Yet, one holds if and only if the other holds.

For example, the following are tautologies: p∨¬p, p→ p,¬(p∧¬p). An

instance of logical consequence: (p ∧ q) ⊨ (p ∨ q). Finally, an example of

equivalence: ¬(p∨ q) ⇐⇒ (¬p∧¬q). This last statement is known as the

“De Morgan Law.”

Problem 9.82. Show that if Φ ⊨ α and Φ ∪ {α} ⊨ β, then Φ ⊨ β.

Problem 9.83. Prove the following Duality Theorem: Let α′ be the result

of interchanging ∨ and ∧ in α, and replacing p by ¬p for each variable p.

Then ¬α ⇐⇒ α′.

Problem 9.84. Prove the Craig Interpolation Theorem: Let α and β be

any two propositional formulas. Let Var(α) be the set of variables that

occur in α. Let S = Var(α) ∩ Var(β). Assume S is not empty. If A → B
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is valid, then there exists a formula C such that Var(C) = S, called an

“interpolant” such that A→ C and C → B are both valid.

One way to establish that a formula α with n variables is a tautology

is to verify that ατ = T for all 2n truth assignments τ to the variables of

α. A similar exhaustive method can be used to verify that Φ ⊨ α (if Φ is

finite). Another way, is to use the notion of a formal proof; here we present

the PK proof system, due to the German logician Gentzen (PK abbreviates

“Propositional Kalkül”).

In the propositional sequent calculus system PK, each line in a proof is

a sequent of the form:

S = α1, . . . , αk → β1, . . . , βl

where → is a new symbol, and α1, . . . , αk and β1, . . . , βl are sequences of

formulas (k, l ≥ 0) called cedents (antecedent and succedent, respectively).

A truth assignment τ satisfies the sequent S iff τ falsifies some αi or τ

satisfies some βi, i.e., iff τ satisfies the formula:

αS = (α1 ∧ · · · ∧ αk)→ (β1 ∨ · · · ∨ βl)

If the antecedent is empty, → α is equivalent to α, and if the succedent

is empty, α → is equivalent to ¬α. If both antecedent and succedent are

empty, then → is false (unsatisfiable).

We have the analogous definitions of validity and logical consequence for

sequents. For example, the following are valid sequents: α → α, → α,¬α,

α ∧ ¬α→.

A formal proof in PK is a finite rooted tree in which the nodes are

labeled with sequents. The sequent at the root (bottom) is what is being

proved: the endsequent. The sequents at the leaves (top) are logical axioms,

and must be of the form α→ α, where α is a formula. Each sequent other

than the logical axioms must follow from its parent sequent(s) by one of

the rules of inference listed in figure 9.10.

Problem 9.85. Give PK proofs for each of the following valid sequents:

¬p ∨ ¬q → ¬(p ∨ q), ¬(p ∨ q)→ ¬p ∧ ¬q, and ¬p ∧ ¬q → ¬(p ∨ q), as well

as (p1 ∧ (p2 ∧ (p3 ∧ p4)))→ (((p1 ∧ p2) ∧ p3) ∧ p4).

Problem 9.86. Show that the contraction rules can be derived from the

cut rule (with exchanges and weakenings).

Problem 9.87. Suppose that we allowed ↔ as a primitive connective,

rather than one introduced by definition. Give the appropriate left and

right introduction rules for ↔.
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Weak structural rules

exchange-left:
Γ1, α, β,Γ2 → ∆

Γ1, β, α,Γ2 → ∆
exchange-right:

Γ→ ∆1, α, β,∆2

Γ→ ∆1, β, α,∆2

contraction-left:
Γ, α, α→ ∆

Γ, α→ ∆
contraction-right:

Γ→ ∆, α, α

Γ→ ∆, α

weakening-left:
Γ→ ∆

α,Γ→ ∆
weakening-right:

Γ→ ∆

Γ→ ∆, α

Cut rule

Γ→ ∆, α α,Γ→ ∆

Γ→ ∆

Rules for introducing connectives

¬-left:
Γ→ ∆, α

¬α,Γ→ ∆
¬-right:

α,Γ→ ∆

Γ→ ∆,¬α

∧-left:
α, β,Γ→ ∆

(α ∧ β),Γ→ ∆
∧-right:

Γ→ ∆, α Γ→ ∆, β

Γ→ ∆, (α ∧ β)

∨-left:
α,Γ→ ∆ β,Γ→ ∆

(α ∨ β),Γ→ ∆
∨-right:

Γ→ ∆, α, β

Γ→ ∆, (α ∨ β)

Fig. 9.10 PK rules. Note that Γ,∆ denote finite sequences of formulas.

For each PK rule, the sequent on the bottom is a logical consequence

of the sequent(s) on the top; call this the Rule Soundness Principle. For

example, in the case of ∨-right it can be shown as follows: suppose that

τ satisfies the top sequent; suppose now that it satisfies Γ. Then, since τ

satisfies the top, it has to satisfy one of ∆, α or β. If it satisfies ∆ we are

done; if it satisfies one of α, β then it satisfies α ∨ β and we are also done.

Problem 9.88. Check the Rule Soundness Principle: check that each rule

is sound, i.e., the bottom of each rule is a logical consequence of the top.
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Theorem 9.89 (PK Soundness). Each sequent provable in PK is valid.

Proof. We show that the endsequent in every PK proof is valid, by induc-

tion on the number of sequents in the proof. For the basis case, the proof

is a single line; an axiom α → α, and it is obviously valid. For the induc-

tion step, one need only verify for each rule, if all top sequents are valid,

then the bottom sequent is valid. This follows from the Rule Soundness

Principle.

The following is known as the Inversion Principle: for each PK rule,

except weakening, if the bottom sequent is valid, then all top sequents are

valid.

Problem 9.90. Inspect each rule, and prove the Inversion Principle. Give

an example, with the weakening rule, for which this principle fails.

Theorem 9.91 (PK Completeness). Every valid propositional sequent

is provable in PK without using cut or contraction.

Proof. We show that every valid sequent Γ → ∆ has a PK proof, by

induction on the total number of connectives ∧,∨,¬, occurring in Γ→ ∆.

Basis case: zero connectives, so every formula in Γ → ∆ is a variable,

and since it is valid, some variable p must be in both Γ and ∆. Hence

Γ→ ∆ can be derived from p→ p by weakenings and exchanges.

Induction Step: suppose γ is not a variable, in Γ or ∆. Then it is of

the form ¬α, (α ∧ β), (α ∨ β). Then, Γ → ∆ can be derived by one of the

connective introduction rules, using exchanges.

The top sequent(s) will have one fewer connective than Γ → ∆, and

are valid by the Inversion Principle; hence they have PK proofs by the

induction hypothesis.

Problem 9.92. What are the five rules not used in the induction step in

the above proof?

Problem 9.93. Consider PK′, which is like PK, but where the axioms

must be of the form p→ p, i.e., α must be a variable in the logical axioms.

Is PK′ still complete?

Problem 9.94. Suppose that {→ β1, . . . ,→ βn} ⊨ Γ → ∆. Give a PK

proof of Γ → ∆ where all the leaves are either logical axioms α → α, or

one of the non-logical axioms → βi. (Hint: your proof will require the use

of the cut rule.) Now give a proof of the fact that given a finite Φ such
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that Φ ⊨ Γ→ ∆, there exists a PK proof of Γ→ ∆ where all the leaves are

logical axioms or sequents in Φ. This shows that PK is also Implicationally

Complete.

9.4.1.1 Extended PK

There is a natural extension of the PK system into what is called an Ex-

tended PK (EPK). A standard technique in mathematical proofs is to allow

abbreviations of complex formulas which can then be utilized in the rest

of the proof instead of rewriting the long formulas each time that they are

needed. This can be done at the level of propositional logic by allowing

axioms of the form:

p↔ α,

where p is a new variable that has not occurred in the proof yet, and α is

any formula. The power of this construction arises from the nesting of these

definitions, that is, α may employ some previously defined new variables.

Problem 9.95. Show that any EPK proof can be rewritten as a PK proof.

What happens, in general, to the size of the new PK proof?

It is an interesting observation, beyond the scope of this book, that while

PK corresponds to reasoning with Boolean formulas, EPK corresponds to

reasoning with Boolean circuits. See [Cook and Nguyen (2010)], [Kraj́ıček

(1995)] or [Cook and Soltys (1999)].

9.4.2 First Order Logic

First Order Logic is also known as Predicate Calculus. We start by defining

a language L = {f1, f2, f3, . . . , R1, R2, R3, . . .} to be a set of function and re-

lation symbols. Each function and relation symbol has an associated arity,

i.e., the number of arguments that it takes. L-terms are defined by struc-

tural induction as follows: every variable is a term: x, y, z, . . . , a, b, c, . . .;

if f is an n-ary function symbol and t1, t2, . . . , tn are terms, then so is

ft1t2 . . . tn. A 0-ary function symbol is a constant (we use c and e as a

metasymbols for constants). For example, if f is a binary (arity 2) function

symbol and g is a unary (arity 1) function symbol, then fgex, fxy, gfege

are terms.

Problem 9.96. Show the Unique Readability Theorem for terms. See

theorem 9.80 for a refresher of unique readability in the propositional case.
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For example, the language of arithmetic, so called Peano Arithmetic, is

given by LA = [0, s,+, ·; =]. We use infix notation (defined on page 240)

instead of the formal prefix notation for LA function symbols ·,+. That is,

we write (t1 · t2) instead of ·t1t2, and we write (t1 + t2) instead of +t1t2.

For example, the following are LA-terms: sss0, ((x+ sy) · (ssz + s0)). Note

that we use infix notation with parentheses, since otherwise the notation

would be ambiguous.

We construct L-formulas as follows:

(1) Rt1t2 . . . tn is an atomic formula, R is an n-ary predicate symbol,

t1, t2, . . . , tn are terms.

(2) If α, β are formulas, then so are ¬α, (α ∨ β), (α ∧ β).

(3) If α is a formula, and x a variable, then ∀xα and ∃xα are also

formulas.

For example, (¬∀xPx ∨ ∃x¬Px), (∀x¬Qxy ∧ ¬∀zQfyz) are first order

formulas.

Problem 9.97. Show that the set of L-formulas can be given by a context-

free grammar.

We also use the infix notation with the equality predicate; that is, we

write r = s instead of = rs and we write r ̸= s instead of ¬ = rs.

An occurrence of x in α is bound if it is in a subformula of α of the form

∀xβ or ∃xβ (i.e., in the scope of a quantifier). Otherwise, the occurrence is

free. For example, in ∃y(x = y+y), x is free, but y is bound. In Px∧∀xQx

the variable x occurs both as free and bound. A term t or formula α are

closed if they contain no free variables. A closed formula is called a sentence.

We now present a way of assigning meaning to first order formulas:

Tarski semantics; we are going to use the standard terminology and refer

to Tarski semantics as the basic semantic definitions (BSD).

A structure (or interpretation) gives meaning to terms and formulas.

An L structure M consists of:

(1) A nonempty set M , called the universe of discourse.

(2) For each n-ary f , fM : Mn −→M .

(3) For each n-ary P , PM ⊆Mn.

If L contains =, =M must be the usual =. Thus equality is special—

it must always be the true equality. On the other hand, <M could be

anything, not necessarily the order relation we are used to.
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Every L-sentence becomes either true or false when interpreted by an

L-structureM. If a sentence α becomes true underM, we sayM satisfies

α, or M is a model for α, and write M ⊨ α.

If α has free variables, then they must get values from M (the universe of

discourse), before α can get a truth value under M. An object assignment

σ for a structure M is a mapping from variables to the universe M . In

this context, tM[σ] is an element in M—given by the structureM and the

object assignment σ. M ⊨ α[σ] means that M satisfies α when its free

variables are assigned values by σ.

This has to be defined very carefully; we show how to compute tM[σ]

by structural induction:

(1) xM[σ] is σ(x)

(2) (ft1t2 . . . tn)M[σ] is fM(tM1 [σ], tM2 [σ], . . . , tMn [σ])

If x is a variable, and m is in the universe of discourse, i.e., m ∈ M ,

then σ(m/x) is the same object assignment as σ, except that x is mapped

to m. Now we present the definition of M ⊨ α[σ] by structural induction:

(1) M ⊨ (Pt1 . . . tn)[σ] iff (tM1 [σ], . . . , tMn [σ]) ∈ PM.

(2) M ⊨ ¬α[σ] iff M ⊭ α[σ].

(3) M ⊨ (α
(∨)
∧ β)[σ] iff M ⊨ α[σ]

(or)

and M ⊨ β[σ].

(4) M ⊨ (
(∃)
∀ xα)[σ] iff M ⊨ α[σ(m/x)] for

(some)

all m ∈M .

If t is closed, we write tM; if α is a sentence, we write M ⊨ α.

For example, let L = [;R,=] (R binary predicate) and let M be an

L-structure with universe N and such that (m,n) ∈ RM iff m ≤ n. Then,

M ⊨ ∃x∀yRxy, but, M ⊭ ∃y∀xRxy.

The standard structure N for the language LA has universe M = N,

sN(n) = n+1, and 0,+, ·,= get their usual meaning on the natural numbers.

For example, N ⊨ ∀x∀y∃z(x+ z = y∨ y + z = x), but N ⊭ ∀x∃y(y + y = x).

We say that a formula α is satisfiable iff M ⊨ α[σ] for some M & σ.

Let Φ denote a set of formulas; then, M ⊨ Φ[σ] iff M ⊨ α[σ] for all α ∈ Φ.

Φ ⊨ α iff (∀M, σ), (M ⊨ Φ[σ]→M ⊨ α[σ]), i.e., α is a logical consequence

of Φ. We say that a formula α is valid, and write ⊨ α, iff M ⊨ α[σ] for all

M & σ. We say that α and β are logically equivalent, and write α ⇐⇒ β,

iff for all M & σ, (M ⊨ α[σ] iff M ⊨ β[σ]).

Note that ⊨ is a symbol of the “meta language” (English), as opposed

to ∧,∨,∃, . . . which are symbols of first order logic. Also, if Φ is just one

formula, i.e., Φ = {β}, then we write β ⊨ α in place of {β} ⊨ α.
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Problem 9.98. Show that (∀xα∨∀xβ) ⊨ ∀x(α∨β), for all formulas α and

β.

Problem 9.99. Is it the case that ∀x(α ∨ β) ⊨ (∀xα ∨ ∀xβ)?

Suppose that t, u are terms. Then:

t(u/x) result of replacing all occurrences of x in t with u

α(u/x) result of replacing all free occurrences of x in α with u

Semantically, (u(t/x))M[σ] = uM[σ(m/x)] where m = tM[σ].

For example, let M be N (the standard structure) for LA. Suppose

σ(x) = 5 and σ(y) = 7. Let:

u be the term x + y

t be the term ss0

Then:

u(t/x) is ss0 + y and so (u(t/x))N[σ] = 2 + 7 = 9

Similarly, m = tN = 2, so uN[σ(m/x)] = 2 + 7 = 9.

Problem 9.100. Prove (u(t/x))M[σ] = uM[σ(m/x)] where m = tM[σ],

using structural induction on u.

Problem 9.101. Does the result in problem 9.100 apply to formulas α?

That is, is it true thatM ⊨ α(t/x)[σ] iffM ⊨ α[σ(m/x)], where m = tM[σ]?

For example, suppose α is ∀y¬(x = y + y). This says “x is odd”. But

α(x + y/x) is ∀y¬(x + y = y + y) which is always false, regardless of the

value of σ(x). The problem is that y in the term x+ y got “caught” by the

quantifier ∀y.

A term t is freely substitutable for x in α iff no free occurrence of x in

α is in a subformula of α of the form ∀yβ or ∃yβ, where y occurs in t.

Theorem 9.102 (Substitution Theorem). If t is freely substitutable for

x in α then for all structuresM and all object assignments σ, it is the case

thatM ⊨ α(t/x)[σ] iffM ⊨ α[σ(m/x)], where m = tM[σ].

Problem 9.103. Prove the Substitution Theorem. (Hint. Use structural

induction on α and the BSDs.)
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If a term t is not freely substitutable for x in α, it is because some

variable y in t gets caught by a quantifier ∀y or ∃y in α. One way to fix

this is simply rename the bound variable y in α to some new variable z.

This renaming does not change the meaning of α.

Let a, b, c, . . . denote free variables and let x, y, z, . . . to denote bound

variables. A first order formula α is called a proper formula if it satisfies

the restriction that it has no free occurrence of any “bound” variable and

no bound occurrence of any “free” variable. Similarly a proper term has

no “bound” variable. Notice that a subformula of a proper formula is not

necessarily proper, and a proper formula may contain terms which are not

proper.

The sequent system LK is an extension of the propositional system PK

where now all formulas in the sequent α1, . . . , αk → β1, . . . , βl must be

proper formulas. The system LK is PK together with the four rules for

introducing quantifiers given in figure 9.11.

∀ introduction:
α(t),Γ→ ∆

∀xα(x),Γ→ ∆

Γ→ ∆, α(b)

Γ→ ∆,∀xα(x)

∃ introduction:
α(b),Γ→ ∆

∃xα(x),Γ→ ∆

Γ→ ∆, α(t)

Γ→ ∆,∃xα(x)

Fig. 9.11 Extending PK to LK.

There are some restrictions in the use of the rules given in figure 9.11.

First, t is a proper term, and α(t) (respectively, α(b)) is the result of substi-

tuting t (respectively, b) for all free occurrences of x in α(x). Note that t, b

can be freely substituted for x in α(x) because ∀xα(x),∃xα(x) are proper

formulas. The free variable b must not occur in the conclusion in ∀ right

and ∃ left.

Problem 9.104. Show that the four new rules are sound.

Problem 9.105. Give a specific example of a sequent Γ → ∆, α(b) which

is valid, but the bottom sequent Γ → ∆,∀xα(x) is not valid, because the

restriction on b is violated (b occurs in Γ or ∆ or ∀xα(x)). Do the same for

∃ left.

An LK proof of a valid first order sequent can be obtained using the

same method as in the propositional case. Write the goal sequent at the
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bottom, and move up using the introduction rules in reverse. If there is

a choice about which quantifier to remove next, choose ∀ right or ∃ left

(working backward), since these rules carry a restriction.

9.4.3 Peano Arithmetic

Recall the language of arithmetic, LA = [0, s,+, ·; =]. The axioms for PA

are the following

P1 ∀x(sx ̸= 0)

P2 ∀x∀y(sx = sy → x = y)

P3 ∀x(x + 0 = x)

P4 ∀x∀y(x + sy = s(x + y))

P5 ∀x(x · 0 = 0)

P6 ∀x∀y(x · sy = x · y + x)

plus the Induction Scheme:

∀y1 . . . ∀yk[(α(0) ∧ ∀x(α(x)→ α(sx)))→ ∀xα(x)] (9.11)

where α is any LA-formula, and (9.11) is a sentence. Note that this is the

formal definition of induction given in section 9.1.1.

We also have a scheme of equality axioms.

E1 ∀x(x = x)

E2 ∀x∀y(x = y → y = x)

E3 ∀x∀y∀z((x = y ∧ y = z)→ x = z)

E4 ∀x1 . . . ∀xn∀y1 . . . ∀yn(x1 = y1 ∧ · · · ∧ xn = yn)→ fx1 . . . xn = fy1 . . . yn
E5 ∀x1 . . . ∀xn∀y1 . . . ∀yn(x1 = y1 ∧ · · · ∧ xn = yn)→ Px1 . . . xn → Py1 . . . yn

where E4 and E5 hold for all n-ary function and predicate symbols. In

LA, which is our language of interest, s is unary, +, · are binary, and = is

binary.

Let LK-PA be LK where the leaves are allowed to be P1-6 and E1-5,

besides the usual axioms α → α. For example, → ∀x(x = x) would be a

valid leaf.

Problem 9.106. Show that LK-PA proves that all nonzero elements have

predecessor.

Problem 9.107. Show that LK-PA proves the following: the associative

and commutative law of addition, the associative and commutative laws

of multiplication and that multiplication distributes over addition. Specify

carefully which axioms you are using.
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9.4.4 Formal verification

The proofs of correctness we have been giving thus far are considered to be

“informal” mathematical proofs. There is nothing wrong with an informal

proof, and in many cases such a proof is all that is necessary to convince

oneself of the validity of a small “code snippet.” However, there are many

circumstances where extensive formal code validation is necessary; in that

case, instead of an informal paper-and-pencil type of argument, we often

employ computer assisted software verification. For example, the US Food

and Drug Administration requires software certification in cases where med-

ical devices are dependent on software for their effective and safe operation.

When formal verification is required everything has to be stated explicitly,

in a formal language, and proven painstakingly line by line. In this section

we give an example of such a procedure.

Let {α}P{β} mean that if formula α is true before execution of P , P

is executed and terminates, then formula β will be true, i.e., α, β, are the

precondition and postcondition of the program P , respectively. They are

usually given as formulas in some formal theory, such as first order logic

over some language L. We assume that the language is Peano Arithmetic;

see section 9.4.

Using a finite set of rules for program verification, we want to show that

{α}P{β} holds, and conclude that the program is correct with respect to

the specification α, β. As our example is small, we are going to use a limited

set of rules for program verification, given in figure 9.12

The “If” rule is saying the following: suppose that it is the case that

{α ∧ β}P1{γ} and {α ∧ ¬β}P2{γ}. This means that P1 is (partially) cor-

rect with respect to precondition α ∧ β and postcondition γ, while P2 is

(partially) correct with respect to precondition α ∧ ¬β and postcondition

γ. Then the program “if β then P1 else P2” is (partially) correct with

respect to precondition α and postcondition γ because if α holds before it

executes, then either β or ¬β must be true, and so either P1 or P2 executes,

respectively, giving us γ in both cases.

The “While” rule is saying the following: suppose it is the case that

{α ∧ β}P{α}. This means that P is (partially) correct with respect to

precondition α ∧ β and postcondition α. Then the program “while β do

P” is (partially) correct with respect to precondition α and postcondition

α ∧ ¬β because if α holds before it executes, then either β holds in which

case the while-loop executes once again, with α ∧ β holding, and so α still

holds after P executes, or β is false, in which case ¬β is true and the loop
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Consequence left and right

{α}P{β} (β → γ)

{α}P{γ}
(γ → α) {α}P{β}

{γ}P{β}
Composition and assignment

{α}P1{β} {β}P2{γ}
{α}P1P2{γ}

x := t

{α(t)}x := t{α(x)}
If

{α ∧ β}P1{γ} {α ∧ ¬β}P2{γ}
{α} if β then P1 else P2 {γ}

While

{α ∧ β}P{α}
{α} while β do P {α ∧ ¬β}

Fig. 9.12 A small set of rules for program verification.

terminates with α ∧ ¬β.

As an example, we verify which computes y = A · B. Note that in

algorithm 39, which describes the program that computes y = A · B, we

use “=” instead of the usual “←” since we are now proving the correctness

of an actual program, rather than its representation in pseudo-code.

Algorithm 39 mult(A,B)

Pre-condition: B ≥ 0

a = A;

b = B;

y = 0;

while b > 0 do

y = y + a;

b = b− 1;

end while

Post-condition: y = A ·B

We want to show:

{B ≥ 0}mult(A,B){y = AB} (9.12)

Each pass through the while loop adds a to y, but a·b decreases by a because

b is decremented by 1. Let the loop invariant be: (y+(a ·b) = A ·B)∧b ≥ 0.
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To save space, write tu instead of t ·u. Let t ≥ u abbreviate the LA-formula

∃x(t = u + x), and let t ≤ u abbreviate u ≥ t.

1 {y + a(b− 1) = AB ∧ (b− 1) ≥ 0}b=b-1;{y + ab = AB ∧ b ≥ 0}
assignment

2 {(y+a)+a(b−1) = AB∧(b−1) ≥ 0}y=y+a;{y+a(b−1) = AB∧(b−1) ≥ 0}
assignment

3 (y + ab = AB ∧ b− 1 ≥ 0)→ ((y + a) + a(b− 1) = AB ∧ b− 1 ≥ 0)

theorem

4 {y + ab = AB ∧ b− 1 ≥ 0}y=y+a;{y + a(b− 1) = AB ∧ b− 1 ≥ 0}
consequence left 2 and 3

5 {y + ab = AB ∧ b− 1 ≥ 0}y=y+a;b=b-1;{y + ab = AB ∧ b ≥ 0}
composition on 4 and 1

6 (y + ab = AB) ∧ b ≥ 0 ∧ b > 0→ (y + ab = AB) ∧ b− 1 ≥ 0

theorem

7 {(y + ab = AB) ∧ b ≥ 0 ∧ b > 0}y=y+a; b=b-1;{y + ab = AB ∧ b ≥ 0}
consequence left 5 and 6

8 {(y+ab = AB)∧b ≥ 0}
while (b>0)

y=y+a;

b=b-1;
{y+ab = AB∧b ≥ 0∧¬(b > 0)}

while on 7

9 {(0 + ab = AB) ∧ b ≥ 0} y=0; {(y + ab = AB) ∧ b ≥ 0}
assignment

10 {(0+ab = AB)∧b ≥ 0}

y=0;

while (b>0)

y=y+a;

b=b-1;

{y+ab = AB∧b ≥ 0∧¬(b > 0)}

composition on 9 and 8

11 {(0 + aB = AB) ∧B ≥ 0} b=B; {(0 + ab = AB) ∧ b ≥ 0}
assignment

12 {(0+aB = AB)∧B ≥ 0}

b=B;

y=0;

while (b>0)

y=y+a;

b=b-1;

{y+ab = AB∧b ≥ 0∧¬(b > 0)}

composition on 11 and 10
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13 {(0 + AB = AB) ∧B ≥ 0} a=A; {(0 + aB = AB) ∧B ≥ 0}
assignment

14 {(0 +AB = AB)∧B ≥ 0} mult(A,B) {y + ab = AB ∧ b ≥ 0∧¬(b > 0)}
composition on 13 and 12

15 B ≥ 0→ ((0 + AB = AB) ∧B ≥ 0)

theorem

16 (y + ab = AB ∧ b ≥ 0 ∧ ¬(b > 0))→ y = AB

theorem

17 {B ≥ 0} mult(A,B) {y + ab = AB ∧ b ≥ 0 ∧ ¬(b > 0)}
consequence left on 15 and 14

18 {B ≥ 0} mult(A,B) {y = AB}
consequence right on 16 and 17

Problem 9.108. The following is a project, rather than an exercise. Give

formal proofs of correctness of the division algorithm and Euclid’s algorithm

(algorithms 1 and 2). To give a complete proof you will need to use Peano

Arithmetic, which is a formalization of number theory—exactly what is

needed for these two algorithms. The details of Peano Arithmetic are given

in section 9.4.

9.5 Answers to selected problems

Problem 9.1. Clearly, the basis case holds: 1 +
∑0

j=0 2j = 1 + 1 = 20+1

(i.e., P(0)). For induction, assume that it holds for some n ∈ N; that is,

1 +
∑n

j=0 2j = 2n+1. Then:

1 +

n+1∑
j=0

2j = 2n+1 + 1 +

n∑
j=0

2j

here we apply the induction hypothesis:

= 2n+1 + 2n+1 = 2n+2

We have shown that P(0) is true, and moreover that P(n) → P(n + 1).

Therefore, ∀mP(m).

Problem 9.2. Basis case: n = 1, then 13 = 12. For the induction step:

(1 + 2 + 3 + · · ·+ n + (n + 1))2

= (1 + 2 + 3 + · · ·+ n)2 + 2(1 + 2 + 3 + · · ·+ n)(n + 1) + (n + 1)2
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and by the induction hypothesis,

= (13 + 23 + 33 + · · ·+ n3) + 2(1 + 2 + 3 + · · ·+ n)(n + 1) + (n + 1)2

= (13 + 23 + 33 + · · ·+ n3) + 2
n(n + 1)

2
(n + 1) + (n + 1)2

= (13 + 23 + 33 + · · ·+ n3) + n(n + 1)2 + (n + 1)2

= (13 + 23 + 33 + · · ·+ n3) + (n + 1)3

Problem 9.3. It is important to interpret the statement of the problem

correctly: when it says that one square is missing, it means that any square

may be missing. So the basis case is: given a 2 × 2 square, there are four

possible ways for a square to be missing; but in each case, the remaining

squares form an “L.” These four possibilities are drawn in figure 9.13.

Fig. 9.13 The four different “L” shapes.

Suppose the claim holds for n, and consider a square of size 2n+1×2n+1.

Divide it into four quadrants of equal size. No matter which square we

choose to be missing, it will be in one of the four quadrants; that quadrant

can be filled with “L” shapes (i.e., shapes of the form given by figure 9.13)

by induction hypothesis. As to the remaining three quadrants, put an “L”

in them in such a way that it straddles all three of them (the “L” wraps

around the center staying in those three quadrants). The remaining squares

of each quadrant can now be filled with “L” shapes by induction hypothesis.

Problem 9.4. Since ∀n(P (n)→ P (n+1))→ (∀n ≥ k)(P (n)→ P (n+1)),

then (9.2)⇒ (9.2′). On the other hand, (9.2′) ̸⇒ (9.2).

Problem 9.5. The basis case is n = 1, and it is immediate. For the

induction step, assume the equality holds for exponent n, and show that it

holds for exponent n + 1:(
1 1

1 0

)n (
1 1

1 0

)
=

(
fn+1 fn
fn fn−1

)(
1 1

1 0

)
=

(
fn+1 + fn fn+1

fn + fn−1 fn

)
The right-most matrix can be simplified using the definition of Fibonacci

numbers to be as desired.

Problem 9.7. m|n iff n = km, so show that fm|fkm by induction on

k. If k = 1, there is nothing to prove. Otherwise, f(k+1)m = fkm+m.

Now, using a separate inductive argument, show that for y ≥ 1, fx+y =



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 279

Mathematical Foundations 279

fyfx+1 + fy−1fx, and finish the proof. To show this last statement, let

y = 1, and note that fyfx+1 + fy−1fx = f1fx+1 + f0fx = fx+1. Assume

now that fx+y = fyfx+1 + fy−1fx holds. Consider

fx+(y+1) = f(x+y)+1 = f(x+y) + f(x+y)−1 = f(x+y) + fx+(y−1)

= (fyfx+1 + fy−1fx) + (fy−1fx+1 + fy−2fx)

= fx+1(fy + fy−1) + fx(fy−1 + fy−2)

= fx+1fy+1 + fxfy.

Problem 9.8. Note that this is almost the Fundamental Theorem of Arith-

metic; what is missing is the fact that up to reordering of primes this

representation is unique. The proof of this can be found in section 9.2,

theorem 9.18.

Problem 9.9. Let our assertion P(n) be: the minimal number of breaks

to break up a chocolate bar of n squares is (n − 1). Note that this says

that (n− 1) breaks are sufficient, and (n− 2) are not. Basis case: only one

square requires no breaks. Induction step: Suppose that we have m + 1

squares. No matter how we break the bar into two smaller pieces of a and

b squares each, a + b = m + 1.

By induction hypothesis, the “a” piece requires a − 1 breaks, and the

“b” piece requires b− 1 breaks, so together the number of breaks is

(a− 1) + (b− 1) + 1 = a + b− 1 = m + 1− 1 = m,

and we are done. Note that the 1 in the box comes from the initial break

to divide the chocolate bar into the “a” and the “b” pieces.

So the “boring” way of breaking up the chocolate (first into rows, and

then each row separately into pieces) is in fact optimal.

Problem 9.10. Let IP be: [P(0) ∧ (∀n)(P(n) → P(n + 1))] → (∀m)P(m)

(where n,m range over natural numbers), and let LNP: Every non-empty

subset of the natural numbers has a least element. These two principles are

equivalent, in the sense that one can be shown from the other. Indeed:

LNP⇒IP: Suppose we have [P(0) ∧ (∀n)(P(n)→ P(n + 1))], but that

it is not the case that (∀m)P(m). Then, the set S of m’s for which P(m)

is false is non-empty. By the LNP we know that S has a least element.

We know this element is not 0, as P(0) was assumed. So this element can

be expressed as n + 1 for some natural number n. But since n + 1 is the

least such number, P(n) must hold. This is a contradiction as we assumed

that (∀n)(P(n)→ P(n+1)), and here we have an n such that P(n) but not

P(n + 1).
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IP⇒LNP: Suppose that S is a non-empty subset of the natural num-

bers. Suppose that it does not have a least element; let P(n) be the fol-

lowing assertion “all elements up to and including n are not in S.” We

know that P(0) must be true, for otherwise 0 would be in S, and it would

then be the least element (by definition of 0). Suppose P(n) is true (so

none of {0, 1, 2, . . . , n} is in S). Suppose P(n + 1) were false: then n + 1

would necessarily be in S (as we know that none of {0, 1, 2, . . . , n} is in S),

and thereby n + 1 would be the smallest element in S. So we have shown

[P(0) ∧ (∀n)(P(n) → P(n + 1))]. By IP we can therefore conclude that

(∀m)P(m). But this means that S is empty. Contradiction. Thus S must

have a least element.

IP⇒CIP: For this direction we use the LNP which we just showed

equivalent to the IP. Suppose that we have IP; assume that P (0) and

∀n((∀i ≤ n)P (i)→ P (n + 1)). We want to show that ∀nP (n), so we prove

this with the IP: the basis case, P (0), is given. To show ∀j(P (j)→ P (j+1))

suppose that it does not hold; then there exists a j such that P (j) and

¬P (j); let j be the smallest such j; one exists by the LNP, and j ̸= 0

by what is given. So P (0), P (1), P (2), . . . , P (j) but ¬P (j + 1). But this

contradicts ∀n((∀i ≤ n)P (i)→ P (n + 1)), and so it is not possible. Hence

∀j(P (j)→ P (j + 1)) and so by the IP we have ∀nP (n) and hence we have

the CIP.

The last direction, CIP⇒IP, follows directly from the fact that CIP has

a “stronger” induction step.

Problem 9.11. We use the example in figure 9.1. Suppose that we want

to obtain the tree from the infix (2164735) and prefix (1234675) encodings:

from the prefix encoding we know that 1 is the root, and thus from the

infix encoding we know that the left sub-tree has the infix encoding 2, and

so prefix encoding 2, and the right sub-tree has the infix encoding 64735

and so prefix encoding 34675, and we proceed recursively.

Problem 9.13. Consider the following invariant: the sum S of the numbers

currently in the set is odd. Now we prove that this invariant holds. Basis

case: S = 1+2+ · · ·+2n = n(2n+1) which is odd. Induction step: assume

S is odd, let S′ be the result of one more iteration, so

S′ = S + |a− b| − a− b = S − 2 min(a, b),

and since 2 min(a, b) is even, and S was odd by the induction hypothesis,

it follows that S′ must be odd as well. At the end, when there is just one

number left, say x, S = x, so x is odd.

Problem 9.14. To solve this problem we must provide both an algorithm

and an invariant for it. The algorithm works as follows: initially divide
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the club into any two groups. Let H be the total sum of enemies that

each member has in his own group. Now repeat the following loop: while

there is an m which has at least two enemies in his own group, move

m to the other group (where m must have at most one enemy). Thus,

when m switches houses, H decreases. Here the invariant is “H decreases

monotonically.” Now we know that a sequence of positive integers cannot

decrease for ever, so when H reaches its absolute minimum, we obtain the

required distribution.

Problem 9.15. At first, arrange the guests in any way; let H be the

number of neighboring hostile pairs. We find an algorithm that reduces H

whenever H > 0. Suppose H > 0, and let (A,B) be a hostile couple, sitting

side-by-side, in the clockwise order A,B. Traverse the table, clockwise,

until we find another couple (A′, B′) such that A,A′ and B,B′ are friends.

Such a couple must exist: there are 2n− 2− 1 = 2n− 3 candidates for A′

(these are all the people sitting clockwise after B, which have a neighbor

sitting next to them, again clockwise, and that neighbor is neither A nor

B). As A has at least n friends (among people other than itself), out of

these 2n− 3 candidates, at least n− 1 of them are friends of A. If each of

these friends had an enemy of B sitting next to it (again, going clockwise),

then B would have at least n enemies, which is not possible, so there must

be an A′ friends with A so that the neighbor of A′ (clockwise) is B′ and B′

is a friend of B; see figure 9.14.

Note that when n = 1 no one has enemies, and so this analysis is

applicable when n ≥ 2, in which case 2n− 3 ≥ 1.

A,B, c1, c2, . . . , c2n−3, c2n−2

Fig. 9.14 List of guests sitting around the table, in clockwise order, starting at A.
We are interested in friends of A among c1, c2, . . . , c2n−3, to make sure that there is

a neighbor to the right, and that neighbor is not A or B; of course, the table wraps

around at c2n−2, so the next neighbor, clockwise, of c2n−2 is A. As A has at most
n − 1 enemies, A has at least n friends (not counting itself; self-love does not count as

friendship). Those n friends of A are among the c’s, but if we exclude c2n−2 it follows
that A has at least n − 1 friends among c1, c2, . . . , c2n−3. If the clockwise neighbor of
ci, 1 ≤ i ≤ 2n− 3, i.e., ci+1 was in each case an enemy of B, then, as B already has an

enemy of A, it would follow that B has n enemies, which is not possible.

Now the situation around the table is . . . , A, B, . . . , A′ , B′, . . .. Reverse

everyone in the box (i.e., mirror image the box), to reduce H by 1. Keep

repeating this procedure while H > 0; eventually H = 0 (by the LNP), at

which point there are no neighbors that dislike each other.
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Problem 9.16. We partition the participants into the set E of even persons

and the set O of odd persons. We observe that, during the hand shaking

ceremony, the set O cannot change its parity. Indeed, if two odd persons

shake hands, |O| decreases by 2. If two even persons shake hands, |O|
increases by 2, and, if an even and an odd person shake hands, |O| does

not change. Since, initially, |O| = 0, the parity of the set is preserved.

Problem 9.19. If a1 ≡m a2, then there is some a ∈ {0, 1, 2, . . . ,m − 1}
such that a1 = α1m + a and a2 = α2m + a, where α1 and α2 are integers.

Similarly, we have b1 = β1m + b and b2 = β2m + b. Thus,

a1 ± b1 = (α1 ± β1)m + (a± b)

≡m a± b

≡m (α2 ± β2)m + (a± b)

= a± b2

and

a1 · b1 = (α1m + a) · (β1m + b)

= α1β1 ·m2 + (α1b + β1a) ·m + a · b
≡m a · b
≡m α2β2 ·m2 + (α2b + β2a) ·m + a · b
= a2 · b2

where every “≡m” is true because extra multiples of m are 0; that is,

∀k ∈ Z, k ·m ≡m 0.

Problem 9.21. Base case: let n be a prime number. Clearly, n = n1

is n’s prime factorization, and every element of Zn − {0} is co-prime to n

(that is, for every positive integer i < n, gcd(n, i) = 1 because n is prime).

Therefore, ϕ(n) = |Zn|−1 = n−1 = n1−1(n−1), concluding the base case.

Consider any composite n = pk1
1 · · · · · p

ki
i . Obviously we can divide out a

prime factor p to get n0 such that n = p · n0. We consider two cases:

Case 1 p|n0. Let m ∈ Z∗n0
. Clearly, gcd(m, p) = gcd(m,n0) = 1, as

otherwise m and n0 would share the common factor p and we know m ∈
Z∗n0

. Assume, for contradiction, that ∃i ∈ {0, 1, 2, . . . , p − 1} such that

gcd(m + in0, pn0) = o > 1. o|pn0, so o = p or o|n0, but o < p, so o|n0.

Therefore, o|in0, and we already know that o ∤ m, as gcd(m,n0) = 1, so

o ∤ (m + in0). We’ve found our contradiction, o cannot be a divisor of

m + in0 if it doesn’t divide m + in0 evenly, by definition. Thus, ∀i ∈ Zp,

gcd(m+in0, pn0) = 1. Moreover, m was an arbitrary element of Z∗n0
, so this

works for every such m—ϕ(n) ≥ p · ϕ(n0). Clearly, for any q ∈ Zn0
− Z∗n0

,
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q + in0 /∈ Z∗n, so Z∗n doesn’t have any “extra” elements; ϕ(n) = p · ϕ(n0).

This completes induction for this case.

Case 2 p ∤ n0. This case is very similar to the one before; the only difference

is that, at the end, we must remove every multiple of p, as these elements

share the factor p with n. There are exactly ϕ(n0) such multiples of p,

as every other multiple shared a different factor with n0 itself and as such

wasn’t included. Thus, ϕ(n) = p ·ϕ(n0)−ϕ(n0) = (p−1) ·ϕ(n0), completing

induction.

To clarify why these recurrences prove induction, consider what happens

to
∏l

i=1 p
ki−1
i (pi − 1) when either the power of a prime is increased by 1

(Case 1) or when a new prime is included (Case 2).

Problem 9.23. (a + 1)p ≡p

∑p
j=0

(
p
j

)
ap−j1j ≡p (ap + 1) +

∑p−1
j=1

(
p
j

)
ap−j .

Note that
(
p
j

)
is divisible by p for 1 ≤ j ≤ p − 1, and so we have that∑p−1

j=1

(
p
j

)
ap−j ≡p 0. Thus we can prove our claim by induction on a. The

case a = 1 is trivial, and for the induction step we use the above observation

to conclude that (a+1)p ≡p (ap+1) and we apply the induction hypothesis

to get ap ≡p a. Once we have proven ap ≡p a we are done since for a such

that gcd(a, p) = 1 we have an inverse a−1, so we multiply both sides by it

to obtain ap−1 ≡p 1.

Problem 9.24. First, we consider (Zn,+). Clearly, closure is met, as

addition in Zn is done modulus n, so the result of addition must be in Zn.

The identity is 0; 0 + i ≡n i for any i ∈ Zn. We can also find an inverse

easily: i−1 = n− i, because i+ (n− i) = n ≡n 0. Finally, addition modulus

n is associative for any n so all three axioms are met.

Next, consider (Z∗n, ·). Given a, b ∈ Z∗n, gcd(a · b, n) = 1 with regular

multiplication, so gcd(a ·b, n) = 1 with modular multiplication as well—the

only difference is the removal of any “extra” multiples of n. Thus, we have

closure. gcd(n, 1) = 1 regardless of n’s value, so 1 ∈ Z∗n. Clearly, 1 meets

the requirements of an identity element under multiplication. Given any

element a ∈ Z∗n, we know gcd(a, n) = 1, so we can find integers x, y such

that ax + ny = 1. Moreover, ny ≡n 0, so ax ≡n 1. If x /∈ Zn, there is

an x′ ∈ Zn such that x′ ≡n x. ax′ ≡n 1 as well; from ax we have only

removed a multiple of an, so the effect (mod n) is 0. Since ax′ ≡n 1, x′

must not share any factors with n, so x′ ∈ Z∗n. Thus, we have an inverse.

Again, associativity is trivial, as it is guaranteed by the chosen operation,

multiplication modulus n.

Problem 9.27. Let H ≤ G and assume h ∈ H. Since H is a group, we

know h−1 ∈ H as well. We also know that e ∈ H, where e is the identity



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 284

284 An introduction to the analysis of algorithms

element of G (and, of course, of H), again simply because H is a group.

Since H is closed, we know that for all a ∈ H, h−1a ∈ H as well, and as

such hh−1a = a ∈ hH. Thus, H ⊆ hH. Next, consider any a′ ∈ hH;

clearly a′ = ha for some a ∈ H. Since h ∈ H as well, and H is closed, a′

must be in H. Therefore hH ⊆ H, finishing our proof that hH = H.

Let g ∈ G, and consider gH; obviously |gH| ≤ |H|, as each element of

gH requires a unique h ∈ H. Assume that |gH| < |H|. Then there are two

unique elements of H, h1 and h2, such that gh1 = gh2. But G is a group,

so g has an inverse, g−1. So g−1gh1 = g−1gh2, or identically h1 = h2—a

contradiction. Thus, |gH| = |H|.
Assume h′ ∈ (ab)H. Then ∃h ∈ H such that (ab)h = h′. Groups are

associative, so h′ = a(bh), and as such h′ ∈ H. Proving that any element

of a(bH) is also in (ab)H is nearly identical.

Problem 9.28. We will use the term “product” to mean the result of

the given group’s operation. Notice that ⟨g1, g2, . . . , gk⟩ is simply the

collection of products of an arbitrary permutation of elements of G′ =

{g1, . . . , gk, g−11 , . . . , g−1k } with replacement. Clearly, if we multiply any

g ∈ G′ by itself, or another element of G, the result is in the generated

subgroup (which forces inclusion of the identity, given that inverses are in-

cluded in G′). Moreover, given any two generated elements x1x2 · · ·xp1
and

y1y2 · · · yp2
, the product x1 · · ·xp1

y1 · · · yp2
meets the requirements to be in-

cluded in ⟨g1, g2, . . . , gk⟩. Thus, the generated subgroup is closed. It clearly

includes inverses as well, as the inverse of a product x1 · · ·xk is simply the

product x−1k · · ·x
−1
1 . Associativity is provided by the encompassing group

G. Thus, the generated subgroup is, indeed, a group. As for |⟨g⟩|, note that

any element can be written as a product of g’s and g−1’s. In other words,

every element of |⟨g⟩| can be written in the form gn for some integer n.

But gord(G) = 1, so gn = g(n mod ord(G)). As there are only ord(G) distinct

elements in Zord(G), there are also only ord(G) distinct elements of ⟨g⟩.
Problem 9.31. Construct the r in stages, so that at stage i it meets the

first i congruences, that is, at stage i we have that r ≡ rj (mod mj) for

j ∈ {0, 1, . . . , i}. Stage 1 is simple: just set r ←− r0. Suppose that the first

i stages have been completed; let r ←− r + (Πi
j=0mj)x, where x satisfies

x ≡ (Πi
j=0mj)

−1(ri+1 − r) (mod mi+1).

We know that the inverse of (Πi
j=0mj) exists (in Zmi+1

) since

gcd(mi+1, (Π
i
j=0mi)) = 1, and furthermore, this inverse can be obtained

efficiently with the extended Euclid’s algorithm.

Problem 9.33. We will prove that if m0,m1, . . . ,mn are pairwise co-prime
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integers, then

Zm0·m1·...·mn
∼= Zm0

× Zm1
× · · · × Zmn

through induction over n. Let M = m0 ·m1 ·. . .·mn. Theorem 9.30 provides

a convenient bijection from ZM to Zm0
× · · · × Zmn

:

f(r) = (r mod m0, r mod m1, . . . , r mod mn)

for all r ∈ ZM . Note that the operations in these two groups is unspecified

because they are implied by the context; for ZM , the operation is addition

modulus M . We will denote this as “+M” (in fact for any natural number

n, we will denote addition modulus n as “+n” when convenient). For

Zm0
× · · ·×Zmn

, it is element-wise modular addition—that is, given x, y ∈
Zm0 × · · · × Zmn , “x ∗ y” will denote (x0 +m0 y0, . . . , xn +mn yn).

f(r +M r′) = (r0 +M r0 mod m0, . . . , rn +M r′n mod mn)

= (r + r′ mod m0, . . . , r + r′ mod mn)

= f(r) ∗ f(r′)

where we are able to use normal addition instead of modular addition be-

cause for all i, mi|M . We already knew f was a bijection; we now know it

is an isomorphism, so the two groups are isomorphic.

Problem 9.35. (1)⇒ (2) Suppose that R is transitive, and let (x, y) ∈ R2.

Then, by definition (9.6) we know that there exists a z such that xRz and

zRy. By transitivity we have that (x, y) ∈ R. (2) ⇒ (3) Suppose that

R2 ⊆ R. We show by induction on n that Rn ⊆ R. The basis case, n = 1,

is trivial. For the induction step, suppose that (x, y) ∈ Rn+1 = Rn ◦ R,

so by definition (9.6) there exists a z such that xRnz and zRy. By the

induction assumption this means that xRz and zRy, so (x, y) ∈ R2, and

since R2 ⊆ R, it follows that (x, y) ∈ R, and we are done. (3) ⇒ (1)

Suppose that for all n, Rn ⊆ R. If xRy and yRz then xRz ∈ R2, and so

xRz ∈ R, and so R is transitive.

Problem 9.37. Given R ⊆ X×X, let S = R∪ idX . Clearly S is reflexive,

as idX alone contains every pair necessary to ensure reflexiveness. Consider

any S′ for which there is a pair x, y such that xSy and ¬xS′y. If xRy, then

R ̸⊆ S′. Otherwise, (x, y) ∈ idX , so x = y; there is an element x such that

¬xS′x, so S′ is not reflexive. In either case, S′ is not the reflexive closure

of R. So R ⊆ S, S is reflexive, and any set that meets these two conditions

contains every element of S. Therefore, S is the reflexive closure of R.

Problem 9.39. Let S = R ∪ R−1. Obviously R ⊆ S, and S is clearly

symmetric. Consider S′ such that S ̸⊆ S′. There is a pair (x, y) ∈ S such
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that (x, y) /∈ S′. If (x, y) ∈ R, then R ̸⊆ S′. Otherwise, (y, x) ∈ R; if

(y, x) ∈ S′ then S′ is not symmetric, but if (y, x) /∈ S′, then R ̸⊆ S′. In

any case, S′ is either not closed or does not contain R. S, on the other

hand, contains R, is symmetric, and is a subset of any set which meets

these conditions. Therefore, it is the symmetric closure of R.

Problem 9.41. The reason is that in the first line we chose a particular y:

xR+y∧yR+z ⇐⇒ ∃m,n ≥ 1, xRmy∧yRnz. On the other hand, from the

statement ∃m,n ≥ 1, x(Rm ◦ Rn)z we can only conclude that there exists

some y′ such that ∃m,n ≥ 1, xRmy′ ∧ y′Rnz, and it is not necessarily the

case that y = y′.

Problem 9.45. R is reflexive since F (x) = F (x); R is symmetric since

F (x) = F (y) implies F (y) = F (x) (equality is a symmetric relation); R

is transitive because F (x) = F (y) and F (y) = F (z) implies F (x) = F (z)

(again by transitivity of equality).

Problem 9.51. We know from lemma 9.49 that ∀a ∈ X, [a]R1
⊆ [a]R2

.

Therefore the mapping f : X/R1 −→ X/R2 given by f([a]R1
) = [a]R2

is

surjective, and hence |X/R1| ≥ |X/R2|.
Problem 9.54. We show the left-to-right direction. Clearly ≈ is reflexive

as it contains idX . Now suppose that a ≈ b; then a ∼ b or a = b. If a = b,

then b = a (as equality is obviously a symmetric relation), and so b ≈ a. If

a ∼ b, then by definition of incomparability, ¬(a ⪯ b) ∧ ¬(b ⪯ a), which is

logically equivalent to ¬(b ⪯ a) ∧ ¬(a ⪯ b), and hence b ∼ a, and so b ≈ a

in this case as well. Finally, we want to prove transitivity: suppose that

a ≈ b ∧ b ≈ c; if a = b and b = c, then a = c and we have a ≈ c. Similarly,

if a = b and b ∼ c, then a ∼ c, and so a ≈ c, and if a ∼ b and b = c, and

a ∼ c, and also a ≈ c. The only case that remains is a ∼ b and b ∼ c, and

it is here where we use the fact that ⪯ is a stratified order, as this implies

that a ∼ c ∨ a = c, which gives us a ≈ c.

Problem 9.56. We show the left-to-right direction. The natural way to

proceed here is to let T be the set consisting of the different equivalence

classes of X under ∼. That is, T = {[a]∼ : a ∈ X}. Then T is totally

ordered under ⪯T defined as follows: for X,X ′ ∈ T , such that X ̸= X ′

and X = [x] and X ′ = [x′], we have that X ⪯T X ′ iff x ⪯ x′. Note also

that given two distinct X,X ′ in T , and any pair of representatives x, x′, it

is always the case that x ⪯ x′ or x′ ⪯ x, since if neither was the case, we

would have x ∼ x′, and hence [x] = [x′] and so X = X ′. Then the function

f : X −→ T given as f(x) = [x] satisfies the requirements.

Problem 9.57. Let X = {a, b, c, d, e}. Consider the poset given by the

ordered pairs {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e)} (where the
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reflexive pairs (i.e. (a, a), (b, b). . . ) have been omitted. Clearly a is minimal,

as there is no element x ̸= a such that x ⪯ a. Similarly, b is minimal, and

d, e are maximal. However, there is no least element or greatest element; our

minimal elements a, b are incomparable, as are the maximal d, e. Note that

in the case of a finite linear poset, this would not be possible, because every

element would be comparable. X also has no supremum or infimum, again

because no minimal or maximal element can be compared to the others.

There are easy examples of linear posets without an infimum or supremum

as well. Consider, for example, the poset (R+,⪯), where R+ is the positive

real numbers and x ⪯ y if and only if x, y ∈ R+ ∧ x ≤ y. It is obvious that

this poset has no supremum—there is always a larger real number. Less

obvious is that it has no infimum! There is an intuitive candidate for the

infimum: 0. However, ⪯ is only defined for pairs of elements in R+, so 0

is incomparable to everything. If, we use the poset (R,≤) instead, then

R+ ⊂ R does have an infimum: 0.

Let A ⊂ X be {b, c, d}. The portion of our poset on X which applies

to A: {(b, c), (b, d), (c, d)}. Unlike X, A has a clear infimum, supremum,

greatest element and least element, even though its encompassing X is not

linear.

Problem 9.58. Let X be a set, and consider the poset (P(X),⊆). Given

A,B ∈ P(X), we aim to prove that A⊔B = A∪B. Clearly, A,B ⊆ A∪B.

Moreover, any proper subset of A ∪ B is necessarily missing an element

of A or B, so for all C ∈ P(X), A,B ⊆ C =⇒ A ∪ B ⊆ C. Thus,

A∪B = inf({A,B}). The proof that A⊓B = A∩B follows approximately

the same process, but with subsets and supersets reversed.

Problem 9.60. We prove the following part: a ⪯ b ⇐⇒ a ⊓ b = a.

Suppose that a ⪯ b. As (X,⪯) is a lattice, it is a poset, and so a ⪯ a

(reflexivity), which means that a is a lower bound of the set {a, b}. Since

(X,⪯) is a lattice, inf{a, b} exists, and thus a ⪯ inf{a, b}. On the other

hand, inf{a, b} ⪯ a, and so, by the antisymmetry of a poset, we have

a = inf{a, b} = a ⊓ b. For the other direction, a ⊓ b = a means that

inf{a, b} = a, and so a ⪯ inf{a, b}, and so a ⪯ b.

Problem 9.62. (1) follows directly from the observation that {a, b}
and {b, a} are the same set. (2) follows from the observation that

inf{a, inf{b, c}} = inf{a, b, c} = inf{inf{a, b}, c}, and same for the supre-

mum. (3) follows directly from the observation that {a, a} = {a} (we are

dealing with sets, not with “multi-sets”). For (4), the absorption law, we

show that a = a⊔ (a⊓ b). First note that a ⪯ sup{a, ∗} (where “∗” denotes

anything, in particular a ⊓ b). On the other hand, a ⊓ b ⪯ a by definition,
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and a ⪯ a by reflexivity, and so a is upper bound for the set {a, a ⊓ b}.
Therefore, sup{a, a⊓b} ⪯ a and hence, by antisymmetry, a = sup{a, a⊓b},
i.e., a = a ⊔ (a ⊓ b). The other absorption law can be proven similarly.

Problem 9.64. To show that (P(X),⊆) is complete, it is enough to prove

the other properties listed in theorem 9.63, as a formula for the supre-

mum and infimum are stronger than their existence. We first prove that

∀A ⊆ P(X), sup(A) =
⋃

A∈AA. Clearly, it meets the requirement of be-

ing an upper bound. Moreover, any proper subset of
⋃

A∈AA is missing

at least one of the elements in an A ∈ A, so it is not an upper bound of

A. Thus,
⋃

A∈AA is the supremum of A. Note that this follows directly

from the results of problem 9.58. The proof that inf(A) =
⋂

A∈AA is very

similar (and also follows directly from problem 9.58). The remaining facts,

⊥ = ∅ and ⊤ = X, should be very intuitive; they are also immediate con-

clusions that can be drawn from the supremum and infimum formulas in

this problem.

Problem 9.70. For example, the least fixed point of f is given by f4(∅) =

f3({a, b}) = f2({a, b}) = f({a, b}) = {a, b}.
Problem 9.72. Note that sup{a, b} = ⊤, and so f(sup{a, b}) = f(⊤) = ⊤.

On the other hand, f({a, b}) = {⊥}, as f(a) = f(b) = ⊥. Therefore,

sup(f({a, b}) = sup({⊥}) = ⊥. See figure 9.15 for a function g that is

monotone, but is neither upward nor downward continuous.

Problem 9.74. Let S ⊆ Z×Z be the set consisting precisely of those pairs

of integers (x, y) such that x ≥ y and x− y is even. We are going to prove

that S is the domain of definition of F . First, if x < y then x ̸= y and

so we go on to compute F (x, F (x − 1, y + 1)), and now we must compute

F (x − 1, y + 1); but if x < y, then clearly x − 1 < y + 1; this condition is

preserved, and so we end up having to compute F (x− i, y+ i) for all i, and

so this recursion never “bottoms out.” Suppose that x − y is odd. Then

x ̸= y (as 0 is even!), so again we go on to F (x, F (x− 1, y + 1)); if x− y is

odd, so is (x−1)− (y+1) = x−y−2. Again we end up having to compute

F (x− i, y + i) for all i, and so the recursion never terminates. Clearly, all

the pairs in Sc are not in the domain of definition of F .

Suppose now that (x, y) ∈ S. Then x ≥ y and x − y is even; thus,

x− y = 2i for some i ≥ 0. We show, by induction on i, that the algorithm

terminates on such (x, y) and outputs x + 1. Basis case: i = 0, so x = y,

and so the algorithm returns y + 1 which is x + 1. Suppose now that

x − y = 2(i + 1). Then x ̸= y, and so we compute F (x, F (x − 1, y + 1)).

But

(x− 1)− (y + 1) = x− y − 2 = 2(i + 1)− 2 = 2i,
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Fig. 9.15 An example of an ordering over X = {a, b, c, d, e, f,⊥,⊤}, with a function

g : X −→ X, indicated by the dotted lines. While g is monotone, it is neither upward
now downward continuous.

for i ≥ 0, and so by induction F (x − 1, y + 1) terminates and outputs

(x− 1) + 1 = x. So now we must compute F (x, x) which is just x + 1, and

we are done.

Problem 9.75. We show that f1 is a fixed point of algorithm 35. Recall

that in problem 9.74 we showed that the domain of definition of F , the

function computed by algorithm 35, is S = {(x, y) : x−y = 2i, i ≥ 0}. Now

we show that if we replace F in algorithm 35 by f1, the new algorithm,

which is algorithm 40, still computes F albeit not recursively (as f1 is

defined by algorithm 36 which is not recursive).

Algorithm 40 Algorithm 35 with F replaced by f1.

1: if x = y then

2: return y + 1

3: else

4: f1(x, f1(x− 1, y + 1))

5: end if

We proceed as follows: if (x, y) ∈ S, then x − y = 2i with i ≥ 0. On

such (x, y) we know, from problem 9.74, that F (x, y) = x+1. Now consider
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the output of algorithm 40 on such a pair (x, y). If i = 0, then it returns

y + 1 = x + 1, so we are done. If i > 0, then it computes

f1(x, f1(x− 1, y + 1)) = f1(x, x) = x + 1,

and we are done. To see why f1(x − 1, y + 1) = x notice that there are

two cases: first, if x− 1 = y + 1, then the algorithm for f1 (algorithm 36)

returns (y + 1) + 1 = (x− 1) + 1 = x. Second, if x− 1 > y + 1 (and that is

the only other possibility), algorithm 36 returns (x− 1) + 1 = x as well.

Problem 9.76. We first show that f3 ⊑ f1. Assume (x, y) ∈ S3. Then

x ≥ y, and (x − y) is even. Clearly f3(x, y) = x + 1. If x ̸= y, then

f1(x, y) = (x + 1); otherwise, f1(x, y) = (y + 1) = (x + 1). In either case,

f1(x, y) is defined, and moreover is equal to f3(x, y). Therefore, f3 ⊑ f1.

Next, consider f2(x, y). x ≥ y, so f2 returns (x + 1) = f3(x, y). Thus,

f3 ⊑ f2.

Problem 9.77. Let the grammar Gprop have the alphabet

{p, 1,∧,∨,¬ (, )}, and of the set of rules given by

S −→ pX|¬S|(S ∧ S)|(S ∨ S)

X −→ 1|X1

The variables are {p1, p11, p111, p1111, . . .}, i.e., they are encoded in unary

notation.

Problem 9.79. By the induction hypothesis, w(α) = w(β) = 1, so

w(¬α) = 0 + (−1) = −1 and since the left and right parentheses bal-

ance each other out, in the sense that w((t)) = w(() + w(t) + w()) =

1 + w(t) + (−1) = w(t), the result quickly follows for (α ∧ β) and (α ∨ β).

To show that any proper initial segment of (α ◦ β) (where ◦ ∈ {∧,∨}) has

weight ≥ 0, we write it as follows:

(α ◦ β)
syn
= (α1α2 . . . αm ◦ β1β2 . . . βn)

where αi and βj are the symbols of α and β, respectively. Several cases

naturally present themselves: if the initial segment consists only of (, then

its weight is 1. If the initial segment ends in the αi’s, but does not end at

αm, then by induction it has weight ≥ 1. If it ends exactly at αm, then by

induction it has weight 0. If it ends at ◦, then it has weight 1. Similarly,

we deal with the initial segment ending in the middle of the βj ’s, at βn,

and at the last parenthesis ).

Problem 9.81. Suppose α
syn

̸= α′. Then, since αcβ
syn
= α′c′β′, α and α′ are

both initial segments of the same string. As such, one must be an initial

segment of the other; we assume without loss of generality that α is the first
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n elements of α′, and that α′ contains more than n elements. Clearly, α is

a proper initial segment, as α′ is a valid formula. Lemma 9.78 grants that

the weight of α is non-negative—but α is a formula, so its weight is −1.

The assumption that α
syn

̸= α′ leads to a contradiction, so α
syn
= α′. As such, c

and c′ share the same index in identical strings; they are the same binary

connective. Furthermore, β and β′ must then start on the same index of

αcβ
syn
= α′c′β′, and continue until the end, so β

syn
= β′.

Problem 9.82. Suppose that we have Φ ⊨ α and Φ ∪ {α} ⊨ β. And

suppose that τ is a truth assignment that satisfies Φ. Then, by the first

assumption it must satisfy α, and so τ satisfies Φ ∪ {α}, and hence by the

second assumption it must satisfy β.

Problem 9.83. By structural induction on α. Clearly, if α is just a variable

p, then α′ is ¬p, and ¬α ⇐⇒ α′. The induction step follows directly from

De Morgan Laws.

Problem 9.84. Let the variables of α be α(x̄, ȳ) and the variables of β

be β(ȳ, z̄). The notation x̄ denotes a set of Boolean variables; using this

convention, the set S = Var(α) ∩ Var(β) = {ȳ}. We define the Boolean

function f as follows:

f(ȳ) =

{
1 if ∃x̄ such that α(x̄, ȳ) = 1

0 otherwise

We are abusing notation slightly here, by mixing Boolean functions and

Boolean formulas; ȳ is working over-time: it is both an argument to f

and a truth assignment to α. But the meaning is clear. Let Cf (ȳ) be

the Boolean formula associated with f ; it can be obtained, for example,

by conjunctive normal form. The Cf is our formula: suppose that τ ⊨ α;

then τ clearly satisfies Cf (by its definition). If τ ⊨ C, then there must

be an x̄ such that α(x̄, τ) is true, and hence β(τ, z̄) is true by the original

assumption.

Note that we could have defined f dually with β; how?

Problem 9.85. We offer proof that ¬(p ∨ q) → ¬p ∧ ¬q. Justification of

each step is provided to the right. The “weaken” and “exchange” rules are

denoted “w” and “e” respectively. Similarly, “left” and “right” are denoted

“l” and “r”.
p→ p

w
p→ p, q

∨ r
p→ p ∨ q

¬ l,r
¬(p ∨ q)→ ¬p

q → q
w,e

q → p, q
∨ r

q → p ∨ q
¬ l,r

¬(p ∨ q)→ ¬q
∧ r

¬(p ∨ q)→ ¬q ∧ ¬q
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Problem 9.86. The following is a PK proof of the left contraction; as

such, we assume that Γ, α, α→ ∆ is true.

α→ α

Γ, α→ ∆, α

Γ, α, α→ ∆

α,Γ, α→ ∆

Γ, α→ ∆

Problem 9.87. A right-introduction rule for ↔:

α,Γ→ ∆, β β,Γ→ ∆, α

Γ→ ∆, (α↔ β)

Problem 9.88. Recall that each sequent is written in the form

antecedent → succedent, where the antecedent is a conjunction and the

succedent a disjunction. The exchange rules result directly from the com-

mutativity and associativity of the “and” and “or” operators. Similarly,

the weakening rules result from the properties of these operators. Consid-

ering an extra formula in the antecedent might make it evaluate to false

when it was otherwise true, but this cannot cause the sequent to become

false when it was otherwise true. Similarly, including a new formula in the

succedent may cause the resulting disjunction to newly evaluate to true,

but this again cannot cause an otherwise true sequent to be false.

Assume Γ→ ∆, α and α,Γ→ ∆. That is, Γ→ (∆∨α) and (α∧Γ)→ ∆.

Assume Γ is true, and assume for the sake of contradiction that ∆ is false.

Then true → (false ∨ α), so α is true. So (true ∧ true) → ∆, therefore

∆ must be true. Clearly we’ve found a contradiction; ∆ must be true

whenever Γ is true, proving the cut rule.

We show in problem 9.86 that the contraction rules can be proven correct

given use of the exchange, weakening and cut rules.

We now begin the introduction rules. For ¬-left, let Γ→ ∆∨α. Assume

that Γ and ¬α are true—and assume for contradiction that ∆ is false.

Then we have: true→ false∨ false; this assignment of values contradicts

the hypothesis. Thus, ¬α ∧ Γ → ∆. A similar argument can be given for

the ¬-right rule.

The ∧-left and ∨-right rules follow from the commutative and associative

natures of the antecedent and succedent. The ∧-right and ∨-left rules can

be proven by quickly via proof by contradiction, similar to the ¬ rules.

Problem 9.90. Each of the exchange rules is its own inverse, so each is

invertible as a result of its own correctness. Similarly, the ¬-introduction

rules are each other’s inverses. The contraction rules are proven directly by

the assertions that (Γ∧α∧α) ⇐⇒ (Γ∧α) and (∆∨α∨α) ⇐⇒ (∆∨α).
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Similarly, the cut rule results from two clearly true observations: (α∧Γ)→
Γ and ∆→ (∆ ∨ α).

The ∧-left and ∨-right rules clearly don’t change the meaning of the

sequent given that conjunctions and disjunctions are commutative and as-

sociative.

For ∧-right, let Γ→ ∆, (α∧β). If Γ is false, then both top sequents are

true regardless of the value of their succedents. Assume Γ is true. Again,

if ∆ is true then we’re done—assume ∆ is false. Then (α ∧ β) are both

true by the hypothesis so ∆ ∨ α and ∆ ∨ β are true. Thus, Γ→ ∆, α and

Γ→ ∆, β, and we’re done.

To prove that the ∨-left rule is invertible, let (α ∨ β),Γ → ∆) be true.

Assume α and Γ are both true. Then (α ∨ β) ∧ Γ is true, so ∆ must be

true. Thus, α,Γ→ ∆ is true. An identical argument can be made to prove

that β,Γ→ ∆, completing the argument.

Finally, we offer an example for which inversion of the weakening rule

fails. Let α,Γ → ∆ be true. Clearly, if α is false and Γ is true, then no

conclusion can be drawn about ∆—it may be either true or false. In the

case that ∆ is false, we find a contradiction to the assertion that Γ→ ∆.

Problem 9.92. Five rules are not needed: the contraction, weakening and

cut rules. We need the exchange rules to make the proofs match the exact

order of the given rules, and we need whichever connective introduction

rule is applicable.

Problem 9.93. Any non-trivial formula can be written in one of the

following forms: α ∧ β, α ∨ β, or ¬α. To prove that PK′ is complete, we

need only show that formulas in these forms can be introduced from their

component parts. We provide a constructions of them. First, ∧:

α→ α

α, β → α

β → β

α, β → β

α, β → α ∧ β

α ∧ β → α ∧ β

Next, ∨:

α→ α

α→ α, β

β → β

β → α, β

α ∨ β → α, β

α ∨ β → α ∨ β

And finally, ¬α→ ¬α results from two quick applications of ¬ introduction

rules to α→ α.



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 294

294 An introduction to the analysis of algorithms

Problem 9.96. We assign weight to each symbol in a fashion similar to

figure 9.9. Every n-ary predicate symbol has weight equal (n − 1). For

example, a 4-ary function symbol has weight 3. As an extension of this

rule, constants (which are really just 0-ary function symbols) have weight

-1. Variables, which (like constants) represent complete terms, also have

weight -1. We claim that every term weighs -1, and that every proper

initial segment weighs at least 0. First we consider the trivial case: a term

consisting of a single constant or variable. It’s weight is -1 and the only

proper initial segment is the empty segment, which has 0 weight.

Moreover, this property is clearly inductive. Any non-trivial term is an

n-ary predicate symbol, with weight (n−1), followed by n terms. If each of

these terms has weight -1, then the resulting term has weight (n− 1)−n =

−1. Any initial segment is composed of this n-ary symbol, less than n

complete terms and up to 1 incomplete term; this term weighs ≥ 0, and

clearly there aren’t enough complete terms to overwhelm the (n−1) weight

imposed by the initial predicate—any proper initial segment must have

weight ≥ 0. It follows that two identical strings cannot represent the same

predicate and series of terms, as this would imply that some included term

is a proper initial segment of another; for a more detailed explanation of

this last step, see the solution to problem 9.81.

Problem 9.98. We prove this using BSDs: LetM be any structure, and σ

any object assignment. Suppose M ⊨ (∀xα ∨ ∀xβ)[σ]. Then, M ⊨ ∀xα[σ]

or M ⊨ ∀xβ[σ].

Case (1): M ⊨ ∀xα[σ]. Then, M ⊨ α[σ(m/x)] for all m ∈ M . Then,

M ⊨ (α ∨ β)[σ(m/x)] for all m ∈M . So, M ⊨ ∀x(α ∨ β)[σ].

Case (2): M ⊨ ∀xβ[σ]; same idea as above.

Therefore, M ⊨ ∀x(α ∨ β)[σ]. By the definition of logical consequence,

(∀xα ∨ ∀xβ) ⊨ ∀x(α ∨ β)

Problem 9.99. No, not necessarily. We use the def of logical consequence

to prove this. To prove that the RHS is not a logical consequence of the

LHS, we must exhibit a model M, an object assignment σ and formulas

α, β such that: M ⊨ ∀x(α ∨ β)[σ], but M ⊭ (∀xα ∨ ∀xβ)[σ].

Let α and β be Px and Qx, respectively (P,Q unary predicates). Now

define M and σ. Since the formulas are sentences, no need to define σ.

M: let the universe of discourse be M = N. We still need to give meaning

in M to P,Q. Let PM = {0, 2, 4, . . .}, and QM = {1, 3, 5, . . .}. Then:

M ⊨ ∀x(Px ∨Qx) (because every number is even or odd).

But,M ⊭ (∀xPx∨∀xQx) (because it is not true that either all numbers

are even or all numbers are odd).
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Problem 9.100. Base case: let u = ft1t2 . . . tn, where some of f ’s input

terms ti may be x, but none of them otherwise include x. If none of the

terms are x, then clearly

(u(t/x))M[σ] = uM[σ] = uM[σ(m/x)]

for any m; x doesn’t occur in u so the substitutions do nothing when applied

to u. Otherwise, there are some i such that ti = x; below we assume x is

present once in the terms, but this detail is irrelevant.

(u(t/x))M[σ] = ((ft1 . . . x . . . tn)(t/x))M[σ]

= (ft1 . . . t . . . tn)M[σ]

= fM(tM1 [σ], . . . tM[σ], . . . tMn [σ])

Similarly,

uM[σ(m/x)] = (ft1 . . . x . . . tn)M[σ(m/x)]

= fM(tM1 [σ(m/x)], . . . , xM[σ(m/x)], . . . , tMn [σ(m/x)])

here we use the knowledge that the non-x terms don’t contain x.

= fM(tM1 [σ], . . . ,m, . . . tMn [σ])

= fM(tM1 [σ], . . . tM[σ], . . . tMn [σ])

So (u(t/x))M[σ] = uM[σ(m/x)] in this case.

Induction is very easy in comparison: if this applies to each term which

is input into a any given function, it then applies to the function’s output

as well due to the recursive nature of term evaluation.

Problem 9.101. For example, suppose α is ∀y¬(x = y + y). This says

“x is odd”. But α(x + y/x) is ∀y¬(x + y = y + y) which is always false,

regardless of the value of σ(x). The problem is that y in the term x+ y got

“caught” by the quantifier ∀y.

Problem 9.103. If α is an atomic formula, then it is of the form Pt1 . . . tn.

We show in problem 9.100 that if ti is a term, then (ti(t/x))M[σ] =

tMi [σ(m/x)], where m = tM[σ]. Thus, the following are equivalent:

M ⊨ α(t/x)[σ]

M ⊨ ((Pt1 . . . tn)(t/x))[σ]

(t1(t/x)M[σ], . . . , tn(t/x)M[σ]) ∈ PM

(tM1 [σ(m/x)], . . . , tMn [σ(m/x)]) ∈ PM

M ⊨ (Pt1 . . . tn)[σ(m/x)]

M ⊨ α[σ(m/x)]
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As such, for any atomic formula α, M ⊨ α(t/x)[σ] iff M ⊨ α[σ(m/x)].

Let α, β be any two formulas with this property. The following are

equivalent:

M ⊨ ((α ∧ β)(t/x))[σ]

M ⊨ (α(t/x))[σ] and M ⊨ (β(t/x))[σ]

M ⊨ α[σ(m/x)] and M ⊨ β[σ(m/x)]

M ⊨ (α ∧ β)[σ(m/x)]

Moreover, the same can be said of ∨ as ∧. Finally, we have the following

equivalences:

M ⊨ (∀y(α(t/x)))[σ]

M ⊨ α(t/x)[σ(n/y)] for all n ∈M

We apply that y does not occur in t to equate the two above and two below:

M ⊨ α[σ(m/x)(n/y)] for all n ∈M
M ⊨ (∀yα)[σ(m/x)]

Here the first two are identical to the second two because y does not occur

in t (otherwise t would not be freely substitutable for x), so the two substi-

tutions are disjoint (i.e. they do not affect any common terms). The same

argument can be applied to ∃ as ∀.
Problem 9.104. There are two rules which require no justification:

α(t),Γ→ ∆

∀xα(x),Γ→ ∆

and

Γ→ ∆, α(t)

Γ→ ∆,∃xα(x)

Clearly, ∀xα(x) =⇒ α(t), so if α(t) ∧ Γ implies that ∆ is true, then so

does ∀xα(x) ∧ Γ. Similarly, if Γ implies that ∆ ∨ α(t) is true, then it also

implies ∆ ∨ ∃xα(x), as α(t) =⇒ ∃xα(x).

The other two are less trivial; it is not immediately clear that they are

correct at first glance. The key insight comes from our previously defined

nomenclature; where t in the above is a specific term, b is a free variable,

so we can consider it to be an arbitrary element of M (or identically any

element of M). Let us first look at the right introduction rule for ∀:
Γ→ ∆, α(b)

Γ→ ∆,∀xα(x)
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Since b is arbitrary (i.e. no assignment σ is listed to further specify b’s

meaning), the top must be true with any applicable x assigned to b, hence

the result.

Next we look at the left introduction rule for ∃:
α(b),Γ→ ∆

∃xα(x),Γ→ ∆

Again, the key is that b is unassigned. The premise, then, is that for any

b, α(b) ∧ Γ =⇒ ∆. As such, the existence of an x meeting the condition

α(x) implies that said x can be “plugged into” b in the premise, so that

α(x) ∧ Γ =⇒ ∆.

Problem 9.105. Let M be the natural numbers. σ is irrelevant for our

purposes here, so we leave it undefined. Consider the following sequent:

(b = y + y) → α(b), where α(b) denotes “b is even”. Clearly, this sequent

is true. Consider, then, the result of ∀-right: (b = y + y) → ∀xα(x). This

sequent states, “if b is even then every x is even”, which is obviously false.

Next, consider the trivial sequent β(b) → (b > 2), where β(b) denotes

“b ≥ 3” It is obviously true, but if we apply ∃-left, we get: ∃xβ(x)→ (b >

2). In other words, the existence of a natural number x ≥ 3 implies that

b > 2; but b is a free variable, it could be 1 or 0 depending on σ.

Problem 9.106. Let α(x) be (x = 0 ∨ ∃y(x = sy)). We outline the proof

informally, but the proof can of course be formalized in LK-PA. Basis case:

x = 0, and LK-PK proves α(0) easily:

→ ∀x(x = x)
=============== weak & exch
→ 0 = 0,∀x(x = x)

0 = 0→ 0 = 0
∀-left

∀x(x = x)→ 0 = 0
Cut

→ 0 = 0
weak

→ 0 = 0,∃y(0 = sy)
∨-right

→ 0 = 0 ∨ ∃y(0 = sy)

Induction Step: Show that LK-PA proves ∀x(α(x)→ α(sx)), i.e., we must

give an LK-PA proof of the sequent:

→ ∀x(¬(x = 0 ∨ ∃y(x = sy)) ∨ (sx = 0 ∨ ∃y(sx = sy)))

This is not difficult, and it is left to the reader. From the formulas α(0)

and ∀x(α(x)→ α(sx)), and using the axiom:

→ (α(0) ∧ ∀x(α(x)→ α(sx)))→ ∀xα(x)

we can now conclude (in just a few steps): → ∀xα(x) which is what we

wanted to prove. Thus, LK-PA proves ∀xα(x).
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9.6 Notes

The epigraph for this chapter is a quote from the prolific philosopher writer

Sir Roger Scruton. Drinks in Helsinki, a chapter in [Scruton (2005)], is as

funny as it is possible in serious writing, and it reminds this author of his

own experience in Turku, Finland (presenting [Soltys (2004)]).

N (the set of natural numbers) and IP (the induction principle) are very

tightly related; the rigorous definition of N, as a set-theoretic object, is the

following: it is the unique set satisfying the following three properties: (i) it

contains 0, (ii) if n is in it, then so is n+1, and (iii) it satisfies the induction

principle (which in this context is stated as follows: if S is a subset of N,

and S satisfies (i) and (ii) above, then in fact S = N).

The references in this paragraph are with respect to Knuth’s seminal

The Art of Computer Programming, [Knuth (1997)]. For an extensive study

of Euclid’s algorithm see §1.1. Problem 9.2 comes from §1.2.1, problem #8,

pg. 19. See §2.3.1, pg. 318 for more background on tree traversals. For

the history of the concept of pre and post-condition, and loop invariants,

see pg. 17. In particular, for material related to the extended Euclid’s

algorithm , see page 13, algorithm E, in [Knuth (1997)], page 937 in [Cormen

et al. (2009)], and page 292, algorithm A.5, in [Delfs and Knebl (2007)].

We give a recursive version of the algorithm in section 3.4.

See [Zingaro (2008)] for a book dedicated to the idea of invariants in the

context of proving correctness of algorithms. A great source of problems on

the invariance principle, that is section 9.1.2, is chapter 1 in [Engel (1998)]

The example about the 8×8 board with two squares missing (figure 9.2)

comes from [Dijkstra (1989)].

For more algebraic background, see [Dummit and Foote (1991)]

or [Alperin and Bell (1995)]. For number theory, especially related to cryp-

tography, see [Hoffstein et al. (2008)]. A classical text in number theory

is [Hardy and Wright (1980)].

The section on relations is based on hand-written lecture slides of

Ryszard Janicki. A basic introduction to relations can be found in chap-

ter 8 of [Rosen (2007)], and for a very quick introduction to relations (up

to the definition of equivalence classes), the reader is invited to read the

delightful section 7 of [Halmos (1960)].

A different perspective on partial orders is offered in [Mendelson (1970)],

chapter 3. In this book the author approaches partial orders from the point

of view of Boolean algebras, which are defined as follows: a set B together

with two binary operations ⋏,⋎ (normally denoted ∧,∨, but we use these
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for “and”,“or”, and so here we use the “curly” version to emphasize that

“⋏” and “⋎” are not necessarily the standard Boolean connectives) on B,

a singularity operation ′ on B, and two specific elements 0 and 1 of B, and

satisfying a set of axioms: x ⋏ y = y ⋏ x and x ⋎ y = y ⋎ x, distributivity

of ⋏ over ⋎, and vice-versa, as well as x⋏ 1 = x and x⋎ 0 = x, x⋎ x′ = 1

and x⋏ x′ = 0, and finally 0 ̸= 1. A Boolean algebra is usually denoted by

the sextuple B = ⟨B,⋏,⋎, ′, 0, 1⟩, and it is assumed to satisfy the axioms

just listed.

Given a Boolean algebra B, we define a binary relation ⪯ as follows:

x ⪯ y ⇐⇒ x⋏ y = x.

This turns out to be equivalent to our notion of a lattice order. Mendel-

son then abstracts the three properties of reflexivity, antisymmetry and

transitivity, and says that any relation that satisfies all three is a partial

order—and not every partial order is a lattice.

There are many excellent introductions to logic; for example, [Buss

(1998)] and [Bell and Machover (1977)]. This section follows the logic

lectures given by Stephen Cook at the University of Toronto.

Problem 9.83 is of course an instance of the general Boolean “Duality

Principle.” A proof-theoretic version of this principle is given, for example,

as theorem 3.4 in [Mendelson (1970)], where the dual of a proposition con-

cerning a Boolean algebra B is the proposition obtained by substituting ⋎
for ⋏ and ⋏ for ⋎ (see page 298 where we defined these symbols). We also

substitute 0 for 1 and 1 for 0. Then, if a proposition is derivable from the

usual axioms of Boolean algebra, so is its dual.

Section 9.3.6 on the correctness of recursive algorithms is based on chap-

ter 5 of [Manna (1974)].
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J. Karhumäki, A. Lepistö, and D. Sannella (eds.), Automata, Languages
and Programming, 31st International Colloquium (ICALP), Lecture Notes
in Computer Science, Vol. 3142, European Association of Theoretical Com-
puter Science, University of Turku (Springer), pp. 1176–1187.

Soltys, M. (2005). Feasible proofs of matrix properties with Csanky’s algoritm, in
C.-H. L. Ong (ed.), Computer Science Logic, 19th International Workshop
(CSL), Lecture Notes in Computer Science, Vol. 3634, Oxford University
Computing Laboratory (Springer), pp. 493–508.

Soltys, M. (2009). An introduction to computational complexity (Jagiellonian Uni-
versity Press).

Soltys, M. (2013). Circuit complexity of shuffle, in T. Lecroq and L. Mouchard
(eds.), International Workshop on Combinatorial Algorithms 2013, Lecture
Notes in Computer Science, Vol. 8288 (Springer), pp. 402—411.

Soltys, M. and Cook, S. (2004). The proof complexity of linear algebra, Annals
of Pure and Applied Logic 130, 1–3, pp. 207–275.

Su, F. E. (2010). Teaching research: encouraging discoveries, American Mathe-
matical Monthly .

Thurstone, L. L. (1927). A law of comparative judgement, Psychological Review
34, 278–286.

Tolstoy, L. (2008). War and Peace (Vintage Classics).
van Vliet, H. (2000). Software Engineering: Principles and Practice, 2nd edn.

(Wiley).
Velleman, D. J. (2006). How To Prove It, 2nd edn. (Cambridge University Press).
von zur Gathen, J. (1993). Parallel linear algebra, in J. H. Reif (ed.), Synthesis

of Parallel Algorithms (Morgan and Kaufman), pp. 574–617.
von zur Gathen, J. and Gerhard, J. (1999). Modern computer algebra (Cambridge

University Press).
Warmuth, M. K. and Haussler, D. (1984). On the complexity of iterated shuffle,



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 307

Bibliography 307

Journal of Computer and System Sciences 28, 3, pp. 345–358.
Whitman, W. (1892). Song of myself, .
Younger, D. H. (1967). Recognition and parsing of context-free languages in time

n3, Information and Control 10, 2, pp. 189 – 208.
Zhai, Y. (2010). Pairwise comparisons based non-numerical ranking, Ph.D. thesis,

McMaster University.
Zingaro, D. (2008). Invariants: A generative approach to programming (College

Publications).



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 308



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 309

Index

V-algebra, 193
V-term, 193

activity selection, 82–84
activity, 82
feasibility, 82

adjacency matrix, 31
algorithm

F (x, y), 260
c-competitive, 102
f1(x, y), 261
f2(x, y), 261
f3(x, y), 261
Activity Selection, 93
approximation, 80
Bellman-Ford, 76
Berkowitz’s, 123, 174
Csanky’s, 174
CYK, 201
Dijkstra, 44–47, 56, 71
Dispersed Knapsack

Problem 4.16, 81
Solution to problem 4.16, 92

divide and conquer, 59–71
Division, 4, 4–5
dynamic, 73, 73–95

check CFG inclusion, 201
NFA to regexp, 185

Euclid’s, 6, 5–7
Extended, 6, 22, 135, 143,

244, 284, 298

Extended recursive, 67, 66–67
Floyd, 76
Gale-Shapley, 16
Gauss lattice reduction in

dimension 2, 161
Gaussian Elimination, 155
Gram-Schmidt, 159
greedy, 31–57
Hopcroft-Karp, 57
Huffman Code, 48, 47–49
Job Scheduling, 40
Karatsuba, 62, 71
Kruskal, 33
Las Vegas, 127
Longest Monotone Subsequence

(LMS), 74
Make Change, 43
marking, see marking algorithms
Merge Two Lists, 60
Mergesort, 61, 70
Merging Components, 33
Monte Carlo, 123
offline, 97

Longest Forward Distance
(LFD), 103, 112

online, 97, 97–120
First-In/First-Out (FIFO),

106
Flush When Full (FWF), 111
Least Recently Used (LRU),

107

309



April 10, 2024 8:15 ws-book9x6 An introduction to the analysis of algorithms soltys˙alg page 310

310 An introduction to the analysis of algorithms

Move To Front (MTF),
98–102

Palindromes, 7
parallelizable, 161
pattern matching, 127
Perfect Matching, 123
Powers of 2, 24
Problem 4.27, 87
Problem 1.14, 9
Problem 1.15, 9
Problem 9.75, 289
Quicksort, 67, 67
Rabin-Miller, 129

witness, 130
randomized, 121–149
ranking, 11–19
recursive, 260
Savitch, 66, 71
Schönhage–Strassen, 71
Shank’s Babystep-Giantstep, 134
Simple Knapsack (SKS), 79
Solution to problem 2.29, 55
table filling, 189
Toom-Cook, 71
Ulam’s, 10

algorithmically recognizable
language, 206

all pairs shortest path, 75–77
alphabet, 176
amortized cost, 99
amplification, 125
antecedent, 265
asymptotically tight bound, 3
atomic formula, 269
automaton

complexity of conversion, 188–189
equivalence and minimization,

189–190
language of, 178
on terms, 193–194
transition diagram, 178
transition table, 178

basic semantic definition, 269
basis, 151
Belady’s anomaly, 106, 108

Big O, 3
Boolean algebra, 298
Boolean connectives, 2
bound, 269
brute force, 241
BSD, see basic semantic definition
Bush, Vannevar, 11
Busy Beaver, 212

Carmichael number, 128
cedent, 265
CFG, see context-free grammar
CFL, see language, context-free
characteristic polynomial, 162
Charles Babbage’s Difference Engine,

175, 234
Chinese Remainder Theorem, see

theorem
Chomsky Normal Form, 199,

199–201
conversion to, 199–200

Church-Turing, 210–211
CIP, see Complete Induction

Principle
circuit

depth, 161
family, 161
size, 161

closed, 269
CNF, see Chomsky Normal Form
Collatz conjecture, see Ulam,

Stanis law—3x + 1 algorithm
competitive analysis, viii, 102, 120
competitive ratio, 102
Complete Induction Principle, 239
complexity

average-case, 120
distributional, 120
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Rice’s theorem, 214
union, 179
universal, 210

Las Vegas algorithms, see algorithm
lattice, 160, 255

absorption, 256
associativity, 256
commutativity, 256
complete, 256
idempotence, 256

Least Number Principle (LNP), 5,
239
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least recently used (LRU), 106–110
lemma

Exchange, 37
Schwarz-Zippel, 124

LFD, see Longest Forward Distance
(LFD)

linearly independent, 151
link-state database, 46
list accessing, 98–102
little o, 3
LMS, see Longest Monotone

Subsequence
LNP, see Least Number Principle
locally optimum, 31
logic, 262–277
logical axioms, 265
logical consequence, 264, 270
logically equivalent, 270
Longest Forward Distance (LFD),

112–116
Longest Monotone Subsequence,

73–75
loop invariant, 2
LRU, see least recently used (LRU)

man-in-the-middle attack, 133
Manhattan Project, 147
marking algorithms, 110–111

k-phase partition, 110
Markov Chains, 14
marriage problem, 14

blocking pair, 15
boy-optimal, 17
boy-pessimal, 17
feasible, 17
unstable, 15

matplotlib, 7
matrix

characteristic polynomial, 162
principal minor, 164
trace, 162

matroid, 57
MCPC, see Modified Post’s

Correspondence Problem
MCST, see graph, minimum cost

spanning tree

mergesort, 60–61
minimum cost spanning tree, 31–38
miss, 103
model, 270
Modified Post’s Correspondence

Problem, 215
modus ponens, 238
Monte Carlo, see algorithm
Move To Front (MTF), 98–102
MTF, see Move To Front (MTF)
multiplying numbers in binary,

61–64, 70
multiset, 42

Newton’s symmetric polynomials, 162
NFA, see nondeterministic finite

automaton
nondeterministic finite automaton,

180–182
ε-closure, 181
accept, 180
complexity of conversion, 188–189
conversion to DFA, 182
conversion to regexp, 185–186
equivalence to DFA, 181
extended transition relation (δ̂),

181
for decimal numbers, 181
generalized, 186
language of, 178
reject, 180
transition relation (δ), 180

Nondeterministic Turing Machine,
206, 206–207

norm, 151
NP-hard, 77

cryptography, 138
number theory, 242–247

object assignment, 270
one-way function, 134
Open Shortest Path First, 44
OpenSSL, 146
optimal, 80

chocolate breaking, 279
coins, 54
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job scheduling, 40
marriage, 17
matching, 26
offline algorithm, 117
offline page replacement algorithm,

112
string representation and Huffman

codes, 47
unique schedule, 42

optimal offline algorithm, 102, 120
optimization problems, viii
orthogonal, 151
Orthogonality, 159
OSPF, see Open Shortest Path First

page fault, 103
page fault model, 103
PageRank, 11–14
pages, 102
paging, 102–116
paid transposition, 98
pairwise comparison matrix, 18

consistent, 18
Pairwise Comparisons, 17–19
palindrome, 7
parse tree, 195
partial correctness, see correctness of

algorithms
partial order, 252

comparable, 253
component-wise, 253
dense, 255
function

continuous, 258
downward continuous, 258
fixed point, 256
monotone, 256
upward continuous, 258

greatest element, 254
greatest lower bound, 254
incomparable, 253
infimum, 254
least element, 254
least upper bound, 254
lexicographic, 254
linear, 253

lower bound, 254
maximal, 254
minimal, 254
sharp, 252
stratified, 254
supremum, 254
total, 253
upper bound, 254
well-ordered, 255

pattern matching, 126–127
PCP

seePost’s Correspondence Problem,
214

PDA, see pushdown automaton
Peano Arithmetic, 269, 277

language, 269
perfect matching, 122–125
phases, 110

k-phase partition, 110
pivot, 152
PK proof, 265
PKC, see public key cryptosystem

(PKC)
polylogarithmic, 161
poset, 252, see partial order
Post’s Correspondence Problem,

214–220
modified, 215

post-condition, see correctness of
algorithms

potential function, 99
pre-condition, see correctness of

algorithms
prefix, 269
prefix code, 47
primality testing, 128–131
prime number, 242
procrastination, 39
program refinement, 79
promise problem, 80
promising, 34
promising partial solution, viii
proper formula, 272
proper term, 272
propositional

atoms, 262
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formula, 262
variable, 262

pseudoprime, 128
public key cryptography, 131–149

Diffie-Hellman key exchange,
132–134

ElGamal, 134–137
ephemeral key, 134
RSA, 137–138

public key cryptosystem (PKC), 131
ciphertext, 131
decryption, 131
encryption, 131
keys, 131
private key, 131
public key, 131
secret key, 131
trapdoor, 132

Pumping Lemma
for CFLs, 202
for regular languages, 191

pushdown automaton, 196, 196–199
accept, 197
configuration, 197
deterministic, 198
equivalence to CFG, 197
language of, 178
reject, 197

Python
random library, 102
string

slice, 8

quotient, 4

Randomized Algorithms, see
algorithm

randomness, 123
Ranking Algorithms, see algorithm
RE, see recursively enumerable
recognizable language, 205
recurrence

Master method, 70
recursive language, 206
recursively enumerable, 205
reduction, 85, 125

regexp, see regular expression
regular

language, 179
operations, 179

regular expression, 183–188
algebraic laws, 187–188
complexity of conversion, 188–189
conversion from NFA, 185–186

regularity condition, 70
Reingold, Omer, 71
relation, 248, 248–262

antisymmetric, 248
closure, 249
composition, 248
directed graph representation, 248
equivalence, 251

class, 251
matrix representation, 248
partition, 250

finest, 251
refinement, 252
reflexive, 248
symmetric, 248
transitive, 248

remainder, 4
repeated squaring, 129, 133
Request for Comment, 44

1951,1952, 49
2328, 44
2338, 46

rewriting system, 204
RFC, see Request for Comment
routing daemon, 45
row-echelon form, 152
RSA, see public key cryptography,

cryptosystem
Rule Soundness Principle, 266

satisfiable, 264
satisfies, 264
Savitch’s algorithm, 64–66
Savitch, Walter, 64, 71

algorithm, see algorithm
schedule, 39

feasible, 39, 85
promising, 40
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scheduling
activities, see activity selection
jobs with deadlines, durations and

profits, see job scheduling
scope, 269
Secure Socket Layer, 146
Semi-Thue system, 204
sentence, 269
sentential form, 195
sequent, 265
shuffle, 87

square, 87
Shwarz-Zippel, see lemma
simple knapsack problem, 77–81

cryptography, 138
disbursed, 80–81
greedy attempt, 80, 91

simply closed
path, 32

SKS, see simple knapsack problem,
algorithm

span, 151
SSL, 146
stable marriage, 14–17
standard structure, 270
states

block, 190
distinguishable, 189
equivalent, 189

static list accessing model, 98
string, 176

concatenation, 176
empty, 176
juxtaposition, 176
length, 176
padding, 180
prefix, 176
subsequence, 176
subword, 176
suffix, 176
well-formed, 209

structural induction
L-terms definition, 268
proof of Duality theorem, 291
proof of lemma 9.78 (weights of

propositional formulas), 263

proof of Substitution theorem, 271
propositional formulas, 262
Tarski semantics of first order

formulas, 270
Tarski semantics of first order

terms, 270
structural linguistics, 234
structure, 269
subset construction, 181
succedent, 265
super-increasing sequence, 139
Syracuse Problem, see Ulam,

Stanis law—3x + 1 algorithm

Tarski semantics, 269
tautology, 264
Teller, Edward, 147
termination, 1
theorem

Chinese Remainder (CRT), 247
Chinese Remainder Version II, 247
Craig Interpolation, 264
Duality, 264
Euler, 145, 246
Euler’s, 247
Fermat’s Little, 128, 130, 145, 244,

244, 247
Fundamental of Algebra, 124
Fundamental of Arithmetic, 243,

279
Kleene, 259
Knaster-Tarski (1), 257
Knaster-Tarski (2), 257
Knaster-Tarski for finite sets, 257
Lagrange, 246
Myhill-Nerode, 192
PK Completeness, 267
PK Soundness, 267
Prime Number, 127, 132
Rice’s, 214
Substitution, 271
Unique Readability, 263

TLS, 146
TM, see Turing Machine
Toeplitz, 164
transition function, 177
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transition relation, 180, 206
Transport Layer Security, 146
truth assignment, 264
Turing Machine, 77, 205, 205–221

accept, 205
configuration, 205
decidable language, 206
encodings, 208–209
enumerable, 212
enumerator, 212
language of, 205
nondeterministic, 77, 206, 206–207
nondeterministic and deterministic

equivalence, 206
recognizable language, 205
recursive language, 206
reduction, 213
reject, 205
robustness, 205
transition function, 205
universal, 210
yield, 205

Ulam, Stanis law
3x + 1 algorithm, 10
Monte Carlo method, 147

undecidability, 211

universal language, 210
universal Turing Machine, 210
universe of discourse, 269
unsatisfiable, 264
UTM, see universal Turing Machine

valid, 264, 270
virtual memory system, 102
von Neumann, John, 147

web page, 65
well-formed, 2
well-formed string, 209
WFS, see well-formed string
word, 176

contatentation, 176
empty, 176
juxtaposition, 176
length, 176
padding, 180
prefix, 176
subsequence, 176
subword, 176
suffix, 176

World Wide Web, 65
connectivity problem, 65

WWW, see World Wide Web


