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Preface

Complexity theory asks what makes certain problems computationally difficult.
It also investigates the relationship between computability and provability; indeed,
the famous P versus NP question can be seen in this light: if all solutions to the
instances of a given problem can be verified efficiently, then can those solutions be
also computed efficiently? The quest of complexity is to assess the computational
difficulty of a given problem; for example, how hard is it to determine if a graph can
be colored with three colors so that no two adjacent nodes are of the same color?

Complexity upper bounds provide an algorithm that solves the problem in the
most efficient way—with respect to resources such as time or space or circuit size.
The lower bounds claim that the problem cannot be solved within some quantity
of those resources. It is not surprising that upper bounds are easier—we are adept
at finding quick algorithms—while good lower bounds are usually very difficult to
achieve. Simply put, we are not very proficient at showing that all algorithms in a
given complexity class are not up to a certain task. After all, lower bounds require
a lot of ingenuity in order to show that no ingenuity whatsoever can solve a problem
within a given bound on resources. Expressed in another way, existential statements
seem more amenable to proofs than universal ones.

The intended audience for this book are graduate students in computer science
and mathematics who want to quickly familiarize themselves with computational
complexity. As such, this book aims more at depth than breadth. There are many
excellent comprehensive guides to computational complexity (in particular classics
such as [Pap94] and [Sip06]). Here, on the other hand, the reader will find major
results of complexity presented with a minimum of background.

The highlights are as follows. In chapter 1 we present two applications of the
crossing sequences method: we show that a single tape Turing machine requires Ω(n2)
many steps to decide the language of palindromes (which can also be seen as an
application of rudimentary Kolmogorov complexity), and that languages decidable
with o(log log n) space are in fact regular.

In chapter 2 we use the self-reducibility of Sat to show that tally sets cannot be
NP-complete unless P = NP, and we prove the Karp-Lipton theorem (if NP ⊆ P/poly,
then PH collapses to its second level). We also introduce the so called “padding
technique,” and use it to prove Ladner’s theorem (if P 6= NP, then there are languages
in NP− P which are not NP-complete).

In chapter 3 we deal with space complexity, and present Savitch’s theorem as well
as the inductive counting technique, and prove the Immerman-Szelepcsényi theorem
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(i.e., NL is closed under complementation). Chapter 3 ends with interactive proof
systems and a proof of IP = PSPACE.

In chapter 4 the Hierarchy theorems are presented, and we prove the somewhat
technical result stating that “PA 6= NPA with probability 1” (with respect to a random
oracle A). The Polytime Hierarchy is examined in detail, and we prove some properties
of Alternating Turing machines. We end chapter 4 with an application of the so called
“Bennett’s trick”: Nepomnjascij’s theorem.

In chapter 5 we have Shannon’s (easy) lower bound for circuits, and we introduce
the probabilistic method in order to give two different proofs showing that Parity is
not in AC0. We end the chapter with a characterization of nonuniform computation
via Turing machines with advice tapes.

In chapter 6 we prove Haken’s lower bound for the size of resolution refutations of
the pigeonhole principle. We also give a lower bound for resolution based on the idea of
interpolation and Razborov’s lower bound for monotone circuits computing Clique.

The last chapter, chapter 7, starts with three examples of randomized algorithms,
we introduce the notion of amplification, and present Sipser’s theorem (BPP ⊆ Σp2)
and finish with Toda’s theorem (PH ⊆ PPP).

In the Appendix (chapter 8) we collect miscellanea: a section with different NP-
complete problems; some number theory (mostly background for the Rabin-Miller
algorithm—algorithm 7.2); a section on the RSA public key encryption; the Isolation
Lemma (used in the proof of Toda’s theorem); and a section on Berkowitz’s algorithm
(an NC2 algorithm for computing the determinant of a matrix).

Many standard results, not mentioned in the above outline, are sprinkled through-
out the text. On the other hand, there are many complexity classes that do not make
an appearance. The tapestry of complexity classes is truly overwhelming; “But the
man who sets himself the task of singling out the thread of order from the tapestry
will by the decision alone have taken charge of the world”.1

This book contains one semester worth of material, that is, it is intended for a
ten to twelve week course, that meets for two to three lecture hours a week.

Notation

The symbol Σ will have several (but all standard) meanings. It will denote a
finite alphabet of symbols, such as the binary alphabet Σ = {0, 1}, and Σ∗ denotes
the set of all finite strings over the alphabet Σ (i.e., Kleene’s2 star of Σ). We shall use
Σi to denote alternations; for example, Σpi denotes the set of relations expressible by
a polytime predicate with i alternations of quantifiers in front of it, where the first
quantifier is ∃ (see §4.3).

~x = x1, x2, . . . , xn, i.e., a vector of variables, while x̄ denotes the same as ¬x, i.e.,
a negation of a Boolean variable. We use [n] to denote the subset of natural numbers
(N) consisting of {1, 2, . . . , n}. We use “:=” to make definitions.

1Cormac McCarthy, “Blood Meridian Or the Evening Redness in the West”, Vintage Books,
first Vintage edition, May 1992, pg. 199.

2After Stephen Cole Kleene. Σi often denotes the set of all strings of length i over the alphabet
Σ, so Σ∗ can be defined as

⋃∞
i=0 Σi, where Σ0 = {ε}, and where ε is the (unique) string of length 0.
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We use A ⊆ B to denote that A is a subset of B, and possibly A = B. We
use A ⊂ B to denote that A is a proper subset of B, i.e., A ⊂ B iff A ⊆ B and
A 6= B. Also, A − B will denote set difference: all those elements in A which are
not in B. We use ∧,∨,¬,⊕,→,↔ to denote Boolean and, or, not, xor (exclusive
or), implies, equivalent, respectively. Sometime we use the more expressive names,
And, Or, Not, Xor. We use T, F (as well as 1, 0) to denote the Boolean constants true
and false, respectively, and we use Γ � α to denote that the set of formulas Γ logically
implies the formula α. We sometimes use t � α to say that the truth assignment t
satisfies the formula α; thus “�” has a dual meaning.

We use the standard big-Oh notation, g(n) ∈ O(f(n)) if there exist constants c, n0

such that for all n ≥ n0, g(n) ≤ cf(n), and the little-oh notation, g(n) ∈ o(f(n)),
which denotes that limn→∞ g(n)/f(n) = 0. We also say that g(n) ∈ Ω(f(n)) if there
exist constants c, n0 such that for all n ≥ n0, g(n) ≥ cf(n). This is so called strong
definition of Ω; see page 18 for the weak definition. Finally, we say that g(n) ∈ Θ(f(n))
if it is the case that both g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n)).

We shall need a little bit of number theory: let Zn := {0, 1, 2, . . . , (n−1)}, the set
of numbers modulo n, and let Z∗n denote the subset of Zn consisting of those numbers
co-prime with n. We shall write x ≡n y and x ≡ y (mod n) to denote that n|(x− y),
i.e., that n divides (x− y). Let (n)b be the binary representation of the integer n; for
example (5)b = 101.

Our logarithm function, log x, is assumed to be in base 2, i.e., log x := log2 x.
Using standard notation, we let lnx := loge x.
Sans-serif fonts will be used to denote complexity classes, for example NP, and

small caps fonts will be used to denote languages (i.e., problems), for example
MinFormula.
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1

Turing machines

1.1. Definition

A Turing machine1 (TM) is a tuple (Q,Σ,Γ, δ) where Q is a finite set of states
(always including the three special states qinit, qaccept and qreject), Σ is a finite input
alphabet (and unless it is otherwise specified it is {0, 1}), Γ is a finite tape alphabet,
and it is always the case that Σ ⊆ Γ (it is convenient to have symbols on the tape
which are never part of the input),

δ : Q× Γ→ Q× Γ× {Left,Right}
is the transition function which says that when the TM is in state q and the head
is reading a symbol σ, it changes to a new state q′, overwrites σ with a new symbol
σ′, and then the head moves left or right. Note that neither q′ nor σ′ have to be
different from q and σ, respectively. The definition of a TM can be adapted to suit
any occasion: there can be more than one tape, and the tape(s) can be infinite in
one or two directions, etc. From a computational point of view, all these models are
equivalent.

A configuration is a tuple (q, w, u) where q ∈ Q is a state, and where w, u ∈ Γ∗, the
cursor is on the last symbol of w, and u is the string to the right of w. A configuration
(q, w, u) yields (q′, w′, u′) in one step, denoted as (q, w, u)

M→ (q′, w′, u′) if one step

of M on (q, w, u) results in (q′, w′, u′). Analogously, we define Mk

→ , yields in k steps,

and M∗→ , yields in any number of steps, including zero steps. The initial configuration,
Cinit, is (qinit, ., x) where qinit is the initial state, x is the input, and . is the left-most
tape symbol, which is always there to indicate the left-end of the tape.2 For a TM
with k tapes, a configuration is given by (q, w1, u1, . . . , wk, uk).

Given a string w as input, we “turn on” the TM in the initial configuration Cinit,
and the machine moves from configuration to configuration. The computation ends
when either the state qaccept is entered, in which case we say that the TM accepts
w, or the state qreject is entered, in which case we say that the TM rejects w. It is

1Alan Turing in 1936 ([Tur37]) was the first to use imaginary computers (which came to be
known as Turing machines) for characterizing the class of algorithmic functions.

2Note that . is not part of the alphabet Σ, but is part of the tape alphabet Γ which always
contains Σ. The symbol . is convenient for denoting the left-end of the tape—and it can be moved to
the right, when it is useful to ignore some initial segment of the tape; we follow [Pap94, definition 2.1],
where, besides the left-end of tape symbol ., the blank square t is also introduced as part of Γ and
not part of Σ. The point is that we can define Turing machines in a convenient way, with small
alterations at will.
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possible for the TM to never enter qaccept or qreject, in which case the computation
does not halt.

Given a TM M we define L(M) to be the set of strings accepted by M , i.e.,
L(M) = {x|M accepts x}, or, put another way, L(M) is the set of precisely those
strings x for which (qinit, ., x) yields an accepting configuration.

Exercise 1.1. Give a formal definition of L(M) using Mk

→ and one using M∗→ .

Alan Turing showed the existence of a so called Universal Turing machine (UTM);
a UTM is capable of simulating any TM from its description. A UTM is what we
mean by a computer, capable of running any algorithm. The proof is not difficult,
but it requires care in defining a consistent way of presenting TMs and inputs.

Exercise 1.2. Convince yourself that one can construct a UTM.

There are many definitions of computation other than the one given by Alan
Turing; for example the so called Unlimited Register Ideal Machine (URIM). A URIM
program P is a sequence of commands 〈c1, c2, . . . , cn〉, operating on a finite (but
arbitrarily large) set of registers R1, R2, . . . , Rm (which contain natural numbers in,
say, unary notation), and each command is one of the following three types:

Ri ← 0,

Ri ← Ri + 1,

goto ci if Rj = Rk.

In the last command, if Rj 6= Rk, then the next command on the list is run. If we run
out of commands (or are sent to an i > n by a goto) then the program terminates.
We can always assume that the input is given in R1 at the beginning, and the output
is given in Rm at the end (with 0 being “no” and 1 being “yes,” if we are computing
a decision problem and a number if we are computing a function). Note that the
subscripts i, j, k are part of the instruction, i.e., they are not variable, but rather
“hard-coded” into the program.

Yet another model of computation is given by recursive functions. A function
f (f(~x), where ~x = x1, x2, . . . , xn) is defined by composition from g, h1, . . . , hm if
f(~x) = g(h1(~x), . . . , hm(~x)), and f is defined by primitive recursion from g, h if

f(~x, 0) = g(~x),

f(~x, y + 1) = h(~x, y, f(~x, y)).

There are three initial functions Z, S, In,i, where Z is the constant function equal to 0,
S(x) = x+ 1 (the successor function), and In,i(~x) = xi (the projection function). We
say that a function is primitive recursive if it can be obtained from the initial functions
by finitely many applications of primitive recursion and composition. Finally, we say
that a function f is defined by minimization from g if f(~x) = µy[g(~x, y) = 0], where
µy[g(~x, y) = 0] is the smallest b such that g(~x, b) = 0, and a function is recursive if it
can be obtained from the initial functions by finitely many applications of primitive
recursion, composition, and minimization.3 Note that primitive recursive functions

3It turns out that only one application of minimization is sufficient.
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are always total, but recursive functions are not necessarily so—there may be an ~x
for which there is no b such that g(~x, b) = 0.

Exercise 1.3. Convince yourself that TMs, URIMs, and recursive functions, are
all equivalent models of computation.

1.2. Basic properties

We define TIME(f(n)) to be the class of languages decidable by TMs running in
time O(f(n)) (i.e., TMs that take at most O(f(n)) many steps, on any input of size
n, before making a decision). SPACE(f(n)) requires a little bit more care because
we want to make sense of sub-linear space (i.e., less working space than the actual
input size; for example, logarithmic space). So for space we assume that we have a
read-only input tape on which the input string is presented, and a work tape on which
we bound how much tape we are allowed to use. Thus, we say that SPACE(f(n)) is
the class of languages decidable by TMs that use at most O(f(n)) squares of the work
tape.

Theorem 1.4. Given a k-tape TM M operating within time f(n), we can con-
struct a single-tape TM M ′ operating within time O(f(n)2), such that L(M) =
L(M ′).

Exercise 1.5. Prove theorem 1.4.

Theorem 1.6 (Speed-Up). Suppose that a TM decides a language L in time
bounded by f(n). For any ε > 0, there exists a TM that decides L in time f ′(n) =
ε · f(n) + n+ 2.

Exercise 1.7. Prove theorem 1.6.

Exercise 1.8. What does theorem 1.6 say about languages decidable in time
O(n)? In general, what does this theorem say about the “big-Oh” notation?

Exercise 1.9. Suppose that we insist that the tape alphabet be {.,t, 0, 1}. Can
the speed-up theorem be still applied?

In a nondeterministic TM the transition function δ becomes a transition relation
∆, so “yields” is now a relation as well. A nondeterministic computation can be
viewed as a tree, where the nodes are configurations, and we branch on all the possible
choices allowed by ∆. The machine accepts if at least one branch ends in an accepting
configuration. Given a TM M , let d be its degree of nondeterminism, meaning that
d bounds the number of choices of ∆ (this number is a constant, independent of the
input, and d = 1 for deterministic machines). Formally, d := maxq∈Q,σ∈Γ |∆(q, σ)|.

We define NTIME(f(n)) to be the class of languages decidable by nondeterministic
TMs where each branch is of length bounded by f(n). We define NSPACE(f(n)) to
be the class of languages decidable by nondeterministic TMs where the space used on
the work-tapes is bounded by f(n) and where the length of each branch is bounded
by the number of configurations possible with space f(n).

Theorem 1.10. NTIME(f(n)) ⊆
⋃
c>1 TIME(cf(n)).



16 1. TURING MACHINES

Proof. Let L ∈ NTIME(f(n)), so L = L(M) for some nondeterministic TM that
runs in time f(n). Let d be the degree of nondeterminism of M . The computation
tree has size at most df(n), and the tree can be traversed (in a breadth-first manner)
with a pointer to a location in the tree. This pointer can be encoded with a number
in base d of length f(n). The traversal takes time O(df(n)). �

1.3. Crossing sequences

1.3.1. A lower bound for palindromes. If x = x1x2 . . . xn ∈ Σ∗ is a string,
then the reverse of x, denoted xR, is just xn . . . x2x1. We say that a string is a
palindrome if x = xR, and we define the language of palindromes to be the set
Lpal = {x ∈ {0, 1}∗|x = xR}.

Theorem 1.11. Suppose that M is a one-tape TM that decides the language
Lpal. Then, M requires Ω(n2) many steps.

Proof. We first define the i-th crossing sequence of M on x to be

{(q1, σ1), (q2, σ2), . . . , (qm, σm)},

and it means that the first time M crosses from square i to square i+ 1, M leaves σ1

on the i-th square, and finds itself in state q1, and then the first time it crosses from
square i + 1 to square i, it arrives at square i in state q2 and encounters σ2 on the
i-th square, etc.

Note that the odd pairs denote crossings left-to-right, and even pairs denote
crossings right-to-left, and that σ2i = σ2i−1.

Now consider inputs of the form x0nxR, where |x| = n. Let TM (x) be the number
of steps that M takes to decide (and accept) x0nxR.

There must be some i, n < i ≤ 2n, i.e., some square in 0n, for which the i-th
crossing sequence has length m ≤ TM (x)

n . The reason is that the sum of the length of
the crossing sequences corresponding to each square in 0n has to be bounded above
by TM (x), and therefore not all squares can have crossing sequences that are “long”
(> TM (x)

n ). Let S be this “short” (≤ TM (x)
n ) crossing sequence. (Note that we assumed

in this analysis that the TM never stays put; it always either moves right or left. But
this is not a crucial restriction as we can always “speed-up” a TM, combining several
moves into one, so that it never stays put. Besides, in our official definition, TMs
always move right or left.)

Claim 1.12. M,n, i, S describe x uniquely.

Proof. To see this, we show how to uniquely “extract” x from M,n, i, S. For
each x ∈ {0, 1}n, we simulate M on x0i. The first time M wants to cross from square
i to square i+ 1, we check that it would have done so with the pair (q1, σ1), and we
immediately reset the state to q2 and put the head back on square i and continue.
The second time M crosses from square i to square i+ 1 we again check that it does
so with (q3, σ3), and again we immediately reset the state to q4 and put the head
back on square i and continue. If all the odd-numbered crossing pairs are correct
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(i.e., correspond to those in S), we know that we have found x. Otherwise, we move
on to examine the next x.

Our procedure identifies x correctly: suppose that some y 6= x passed all the
tests. Then M would have accepted y0nxR which is not a palindrome. This would
contradict the correctness of M .

We must modify M to return to . before accepting, to ensure an even-length
crossing sequence, but this adds only a linear number of steps to the computation. �

So M,n, i, S describe x uniquely, and they can be encoded with

cM + log n+ log n+ c ·m ≤ cM + 2 log n+ c · TM (x)

n

many bits. However, for every n, no matter how we encode strings, there must be a
string x0 whose encoding requires at least n many bits (otherwise, we would have a
bijection from the set of strings of length n to the set of strings of length n−1, which
is not possible).

Therefore, we have that

n ≤ cM + 2 log n+ c · TM (x0)

n
, (1)

which gives us the result. �

Exercise 1.13. Theorem 1.11 says that any single tape TM M deciding Lpal

requires Ω(n2) steps. This means that there exist constants b, n0 ∈ N−{0} such that
for any n ≥ n0, there exists an x ∈ {0, 1}n such that M takes at least 1

bn
2 many steps

to decide x. Can we really make the step from the conclusion of the above proof to
the statement of theorem 1.11?

We say that a model of computation is robust if it is insensitive to “small” changes
in the definition. This is a vague notion, but there are good examples of robust
models: TMs with one or several tapes, infinite in one or two directions, etc., all
capture the set of recursive languages; if we restrict these TMs to be polytime, they
are still insensitive to these modifications, so polytime TMs are a robust model of
computation as well.

Let LT be the class of languages decidable in linear time, i.e., in time O(n).
Formally, LT = TIME(n); we are going to encounter this class again in §4.5. From
theorem 1.11 we know that LT is not robust because Lpal can be decided in O(n) steps
on a two-tape TM, while on a single-tape TM it requires Ω(n2) steps. However, NLT
(nondeterministic linear time) is quite robust, with respect to the number of tapes,
as the next lemma shows.

Lemma 1.14. If Mnlt
k is a nondeterministic linear time bounded TM with k tapes,

then Mnlt
k can be simulated by Mnlt

2 .

Proof. Let us assume that the input to Mnlt
2 is written on tape 1. Mnlt

2 starts
by guessing the entire computation of Mnlt

k , and writing the guess on tape 2. This
computation does not contain the tape configurations of Mnlt

k , but rather for each
step of Mnlt

k it writes down the (supposed) state and symbols scanned by each of the
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k heads. Note that this information (if correct) is enough to determine the next move
of Mnlt

k .
Now Mnlt

2 checks that the computation it has written is correct, as follows. First
it checks that the state sequence is consistent, by making one pass on tape 2, and
checking that at each step the next state is what it should be, given the information
from the previous step. Next, for each tape i of Mnlt

k , it makes a pass on tape 2 and
checks that the scanned symbol information it has written for tape i is consistent. It
does this by using tape 1 to simulate tape i, and using the information it has written
on tape 2 concerning what the other k − 1 tapes are scanning.

If all these consistency checks are passed, then the information on tape 2 is correct.
Hence Mnlt

2 can figure out what Mnlt
k did. �

Exercise 1.15. In the above proof, show formally by induction that the t-th step
is simulated correctly.

Exercise 1.16. Show that Lpal is in TIME(n) ∩ SPACE(log n).

1.3.2. Little space is no space at all. A language is regular if it can be
decided by a Deterministic Finite Automaton (DFA). A DFA is just a TM with
no tapes besides the input tape, where it scans the input from left-to-right, changing
states as it reads the input, but not writing anything—and in particular never turning
back, and it enters an accepting or rejecting state immediately after it scanned the
last symbol of the input. See [Sip06] for the background on DFAs.

In this section we show that if a language can be decided with o(log log n) space,4

then the language is in fact regular.

Theorem 1.17. If a language L can be decided by a TM M such that M has
a read-only input tape, and a work-tape where space is bounded by a function in
o(log log n), then L is regular.

The next exercise shows that log log n is an exact threshold.

Exercise 1.18. Consider the language L over {0, 1, #} given by

L = {#bk(0)#bk(1)#bk(2)# . . . #bk(2k − 1)#|k ≥ 0},
where bk(i) is the k-bit binary representation of i ≤ 2k − 1. Show that this language
is (i) not regular, and (ii) decidable in space O(log log n).

We show first that if a language is decidable by a TM with work-tape space
bounded by a constant, then the language is regular. Next, we show that if a language
is not regular, then the work-tape requires Ωweak(log log n) space. Note that, as the
notation indicates, Ωweak is the “weak” version of Ω, which means that for some
constant c, c log log n is a lower bound for infinitely many n’s. On the other hand, the
standard version of Ω would assure a lower bound for all n (sufficiently big), rather
than infinitely many. Confer with exercise 1.13.

We assume that our TMs have a read-only input tape, and a work-tape that is
read & write, and we bound the space on the work-tape.

4Recall that o(f(n)) is “little-oh” of f(n), and g(n) ∈ o(f(n)) if limn→∞ g(n)/f(n) = 0.



1.3. CROSSING SEQUENCES 19

Claim 1.19. If L can be decided in space bounded by a constant (i.e., there is
a constant k bounding the number of work-tape-squares that the TM is allowed to
visit during any computation), then L is in fact regular.

Proof. Note that we can get rid of constant space by keeping a record of all the
possible k · |Γ|k configurations (constantly many) by encoding them as states: there
are k positions for the work-tape head, and the size of the alphabet is |Γ|, so |Γ|k
are the possible contents of the work-tape. But this is not enough, because the head
on the input-tape may move back-and-forth, so we cannot conclude directly that the
machine can be simulated by a finite automaton.

We need to show that the machine can be transformed so that the head on the
input-tape moves only from left-to-right. This can be accomplished as follows: for
any string s ∈ Γ∗, define two functions fs, gs : Q −→ Q, where fs(q1) = q2 if when
the machine is started on s in state q1, with the head on the first symbol of s, then
the first time the machine leaves s (by moving from the last symbol of s to the empty
square t) or halts, it does so in state q2. Let gs be defined similarly, but instead of
the head starting on the first symbol of s, it starts on the last symbol of s. Note that
there are |Q||Q| many functions from Q to Q, so they can all be hard-wired into the
machine. We can now make the machine move only from left-to-right, and accept or
reject after reading the last symbol of s, by doing the following: when we leave the
i-th symbol of s, we know the values of fs1s2...si and gs1s2...si . We want to compute
fs1s2...si+1 and gs1s2...si+1 . This is easy using the transition function of the original
machine.

It is crucial that the two functions fs1s2...si+1
and gs1s2...si+1

depend only on the
following: (i) the TM M , (ii) the two functions fs1s2...si and gs1s2...si , and (iii) the
single bit si+1. In particular, the two new functions do not depend on remembering
the string s1s2 . . . si, and this is very fortunate as arbitrarily long strings cannot be
stored by a finite automaton.

At the end, when we have scanned the entire input string, we have fs1s2...sn . We
check that fs1s2...sn(q0) = qaccept, and accept iff that is the case.5 �

Exercise 1.20. Explain precisely how to compute fs1s2...si+1
and gs1s2...si+1

.

Claim 1.21. If a language L is not regular, then it requires Ωweak(log log n) space.
In other words, for any TM deciding L, there exists a constant c so that for infinitely
many n’s, there exists an input x of length n on which the machine will take at least
c · log log n many steps.

Proof. Suppose that L is not regular. Then, by claim 1.19, we know that it
cannot be decided in constant space. Let M be any machine deciding L.

We want to show that there exists an infinite sequence {ni} (and a constant c
which depends only on M) such that ∀ni, ∃xi such that |xi| = ni, and M requires at
least c · log log ni space to decide xi.

To accomplish this, we use the fact that for any k we choose, we can always find
an input x, such that M requires more than k squares of space to decide x. Pick a k1

5The original proof showing that a “one-way-automaton” can simulate a “two-way-automaton”
can be found in [She59].
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(e.g., k1 = 100—it does not matter what it is) and find an x1 of minimal length n1,
such that M requires s1 ≥ k1 space to decide x1. We show now that c · log log n1 ≤ s1;
the c will be fixed, and its value will transpire later in the proof.

For each j = 1, 2, . . . , (n1 − 1), let Sj be the sequence of configurations that M
is in whenever its head on the input tape crosses from square j to square j + 1 or
vice-versa. We can think of Sj as a sequence of “snapshots” of M taken at the time
when the head on the input tape crosses between squares j and j + 1. Thus Sj is the
crossing sequence associated with square j, but Sj contains more information than
the crossing sequence S defined in theorem 1.11: it contains the state, the contents of
the entire work-tape (to be more precise, it contains all the squares of the work-tape
from the left-most square all the way to the right-most square that was written on
up to that point of the computation), and the position of the head on the work-tape.

There are at most

N = |Q| · s1 · (|Γ|1 + |Γ|2 + · · ·+ |Γ|s1) ≤ |Q| · s1 · |Γ|s1+1,

possible snapshots, and there are

N1 +N2 + · · ·+Nm < (Nm+1 − 1)/(N − 1)

possible crossing sequences of length at most m.
Since x1 was chosen to be of minimal length, no two crossing sequences on x1

are equal (for otherwise, the portion of the input between them could be eliminated,
obtaining a new shorter input that still requires s1 squares of space). To see this,
suppose that the computation on the middle portion went all the way up to some
square r; then the second crossing sequence, S′, would have a record of at least the
first r squares in some snapshots. But if S = S′, where S′ is the first crossing sequence,
then S′ would have at least the first r squares in the same snapshots. This means
that we do not shorten the required tape space by removing the middle portion.

So we know that (n1 − 1) ≤ (Nm+1 − 1)/(N − 1), and so n1 ≤ Nm+1. On the
other hand, m ≤ N because otherwise we would have a loop, and M is a decider.
Thus, n1 ≤ NN+1, i.e.,

n1 ≤ (|Q| · s1 · |Γ|s1+1)(|Q|·s1·|Γ|s1+1+1).

By taking log of both sides twice we get what we want; note that the constant c arises
from |Q|, |Γ|, and so it depends only on M and not the size of the input.

We now pick k2 sufficiently large so that there exists an x2 of minimal length
n2 > n1 such that M requires s2 ≥ k2 space to decide x2. Since L is not regular, we
know that no matter how large k2 is, we can always find an x2 that requires at least
k2 space. The only problem is how to ensure that n2 > n1? As we are always picking
an x2 of minimal length (this is necessary for the argument to work) we might end
up with n2 = n1. But there are finitely many x2’s of length n1 (i.e., 2n1), so to make
sure that this does not happen, we take a k2 larger than the required space of any
input of length n1.

This procedure can be repeated ad infinitum to obtain {ni}. �
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If a language L can be decided in o(log log n) space, then it is not the case that
it requires Ωweak(log log n) space, and so by the contrapositive of claim 1.21 it fol-
lows that it must be regular. This proves theorem 1.17. Note that this proof is
not constructive, in the sense that we do not obtain a finite automaton from the
o(log log n)-space bounded TM.

1.4. Answers to selected exercises

Exercise 1.1. {x ∈ Σ∗|∃k ∈ N,∃u, v ∈ Γ∗ such that (qinit, ., x)
Mk

→ (qaccept, u, v)}
and {x ∈ Σ∗|∃u, v ∈ Γ∗ such that (qinit, ., x)

M∗→ (qaccept, u, v)}.

Exercise 1.5. Concatenate all the k tapes into one tape, and simulate one move of
M with two passes of the entire tape of M ′ (the first pass of M ′ to determine what is
underneath the heads on the tapes of M , and the second pass to make the necessary
changes). Note that M uses at most f(n) squares of each of its tapes. This is an
observation that we make all the time: in t many steps, a TM can write on at most
the first t squares.

Exercise 1.7. The idea is to “increase the word size.” Introduce new symbols which
encode several symbols of M .

Exercise 1.8. It only says that if a language can be decided in time O(n), then it
can be decided in time (1 + ε)n+ 2, for any ε > 0, and hence in a time that is almost
strictly linear. That is, the constant can be made arbitrarily close to 1. As far as
“big-Oh” notation, it is a way of justifying it, as the theorem says that constants are
not important.

Exercise 1.9. At least not with the proof given, since it depends crucially on in-
creasing the word size.

Exercise 1.13. We showed that there exists a constant c so that for every n there
exists an x0 ∈ {0, 1}n, so that M takes at least c ·n2 many steps to decide x00nxR0 . So
technically what we showed is that among inputs of length 3 ·n (where n is sufficiently
big) there exists at least one input on which M takes time c · n2; or, equivalently,
given inputs of length n, where n is sufficiently big and divisible by 3, there exists at
least one such input on which M takes c ·

(
n
3

)2
=
(
c
9

)
· n2 steps. So, what we really

showed is that Lpal requires Ωweak(n2) steps to be decided on a single tape TM—see
§1.3.2 for a definition of Ωweak. So in the statement of theorem 1.11 we should replace
Ω(n2) by Ωweak(n2).

Exercise 1.16. Lpal is in linear-time because we can copy the input string w to
the second tape, move the second head to the end, and then move the two heads
simultaneously towards each other, comparing symbols. It is in logspace because we
can work in |w| many stages, in stage i we compare wi to w|w|+1−i. We keep track
of the stages with one counter (O(log |w|) many bits, and in each stage compute the
positions i and |w|+ 1− i with a second counter of the same size.
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Exercise 1.18. Based on exercise 4, homework 2, in [Koz06]; the solution can be
found on page 324 of the same book.

Exercise 1.20. Suppose we already have gs1s2...si+1
. Then,

fs1s2...si+1
(q) = gs1s2...si+1

(fs1s2...si(q)).

We obtain gs1s2...si+1
(q) as follows: if the head (when started on si+1) moves right,

we are done—we simply take gs1s2...si+1
(q) to be the new state of the machine. But if

the head moves left and enters a state q′, we must run gs1s2...si(q
′), and repeat. How

can we ensure that this procedure ends? That is, how can we ensure that the head
will eventually move right? In the proof of claim 1.19 we are transforming a machine
M into a new machine M ′ where the head moves from left-to-right only. In order to
ensure that the transformation works properly M must scan the entire input before
accepting—this forces the head to move right eventually. (Of course, we can force M
to scan the entire input by insisting that it goes all the way to the end of the string
before accepting.)

1.5. Notes

Exercise 1.3 is based on the presentation of URIM machines in [Coo08]. For a de-
tailed proof of theorem 1.4 see [Pap94, theorem 2.1], for theorem 1.6 see [Pap94, the-
orem 2.2], and for theorem 1.10 see [Pap94, theorem 2.6]. §1.3.1 is based on [Pap94,
exercise 2.8.5], and it is also presented in [Koz06].

An interesting question is what is the smallest possible number of states and
symbols necessary to be able to define a UTM. Minsky showed in [Min62] that a
UTM can be constructed with seven states and a tape alphabet of four symbols. A
recent breakthrough seems to suggest that we can get away with two states and three
symbols (see the Wolfram Blog on Alex Smith). The Busy beaver function Σ(n) is
related to this question. The value of Σ(n) is the largest number of 1s that a TM that
halts may print on its tape, when started on the empty tape, having an alphabet of
two symbols, {0, 1}, and using n states. Σ(n) is not computable.

Following the historical remarks in [BM77, §17], we point out that imaginary
computers in the style of URIMs were invented by several people independently (Shep-
herdson and Sturgis, Lambek, Minsky) in the late 1950s. The first definition of the
class of recursive functions was given by Gödel in 1934 following a suggestion by Her-
brand. This definition was proven by Kleene in 1936 to be equivalent to the definition
which we are presenting here.

An even more ambitious problem than exercise 1.3 would be to show that the
Turing machine definition of recursion is equivalent to the ZFC (Zermelo-Fraenkel set
theory with the Axiom of Choice) definition of recursion. This definition is given as
follows: take the language L = {∈,=}, i.e., the language consisting of two binary
predicates. We say that the set S ⊆ N is recursive if there exists a first order formula
α over the language L, such that α has a single free variable x and if m ∈ S then
ZFC ` α(m̄), and if m /∈ S then ZFC ` ¬α(m̄). Here m̄ is the representation of
the ordinal m in the language L. Of course, it would be easier to do this in PA
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(Peano Arithmetic)—which is already sufficient for the definition of recursion, and in
fact more convenient as it can quite naturally simulate recursive functions. All these
different, but equivalent, definitions of recursion should be convincing evidence that
we have captured well the notion of “computable.”

The invention of palindromes is generally attributed to Sotades the Obscence of
Maronea, who lived in the third century BC in Greek-dominated Egypt. Surprisingly,
palindromes appear not just in witty word games (such as madamimadam in James
Joyce’s Ulysses, or the title of the famous NOVA program, A Man, a Plan, a Canal,
Panama), but also in the structure of the male defining chromosome. Other human
chromosome pairs fight damaging mutations by swapping genes, but because the Y
chromosome lacks a partner, genome biologists have previously estimated that its
genetic cargo was about to dwindle away in perhaps as little as five million years.
However, researchers on the sequencing team discovered that the chromosome fights
withering with palindromes. About six million of its fifty million DNA letters form
palindromic sequences—sequences that read the same forward as backward on the two
strands of the double helix. These copies provide backups in case of a bad mutation.
(These observations come from [Liv05].)
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P and NP

2.1. Introduction

The P =? NP question is a fundamental open problem of theoretical computer
science, and indeed of all of mathematics.1 It asks whether all problems solvable in
polytime on a nondeterministic TM can also be solved in polytime on a determin-
istic TM, or, more concretely, whether hard problems such as Boolean satisfiability
have efficient algorithms. Stephen Cook ([Coo71]) and Leonid Levin formulated the
problem independently in 1971.

Standard complexity textbooks provide ample material on P and NP; we limit
ourselves to a few observations. The class P consists of those languages that can be
decided in polynomial time (polytime) in the length of the input, and the class NP
consists of those languages that can be decided in polytime on a nondeterministic
TM, i.e.,

P =

∞⋃
k=1

TIME(nk) NP =

∞⋃
k=1

NTIME(nk).

Sometimes it is convenient to use an alternative definition of NP, in terms of
proof systems. We say that a language L has a proof system if there exists a polytime
binary predicate R(x, y), such that x ∈ L ⇐⇒ ∃yR(x, y) (here the “y” is called a
proof or certificate).

In order to give an example of a language with a proof system, we define Boolean
formulas inductively as follows: a variable p and constants T (true) and F (false) are
formulas, and if α, β are formulas, then so are: (α), (α∨β), (α∧β),¬α. We sometimes
omit parenthesis for better readability.

Consider now the language

Taut = {〈φ〉|φ is a tautology},
where φ is a Boolean formula, and 〈φ〉 is some reasonable encoding of φ as a string
(over {0, 1}). Taut is a language with a proof system because we can define it as
follows: Taut = {〈φ〉|∃yR(〈φ〉, y)} where R(〈φ〉, y) :=“y encodes a derivation of φ.”
This derivation could be, for example, a truth table. The predicate R(〈φ〉, y) checks
that y is indeed the encoding of a valid derivation of φ. What is important is that

1In the year 2000, The Clay Mathematics Institute selected seven Millennium Prize Problems
to mark the 100th anniversary of David Hilbert’s lecture at the second International Congress of
Mathematicians. One of these problems is the P =? NP question; see [Coo00] for Cook’s recent
manuscript prepared for the Clay Mathematics Institute. A nice introduction and history of the
seven problems is given in [Dev05].
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given a formula φ and an alleged derivation, it is possible to check in polytime that
the derivation is indeed a correct derivation of φ.

A proof system is polybounded (polynomially bounded) if |y| can be bounded by
some polynomial in |x|. The prototypical example of a language with a polybounded
proof system is

Sat = {〈φ〉|φ is satisfiable}.
Here the y could simply be the encoding of a truth assignment; a trivial encoding
would work: if y = a1a2 . . . an ∈ {0, 1}∗, then variable xi would be assigned the truth
value T if ai = 1, and F if ai = 0. Note that the certificate y is short in this case (in
fact, of length bounded by |〈φ〉|).

The class NP consists of languages with polybounded proof systems, such as Sat.
In lemma 2.2 below we show that the two definitions of NP are equivalent.

Let co-NP be the class of languages whose complements are in NP, i.e., co-NP =
{L|L ∈ NP}. Let UnSat be the language of unsatisfiable Boolean formulas. Then
UnSat = Sat (see footnote2), and so UnSat ∈ co-NP, and by the same reasoning
Taut ∈ co-NP.

The question NP =? co-NP can be seen as asking whether Taut has a poly-
bounded proof system (we shall study this question in more detail in chapter 6).

Exercise 2.1. Show that if L ∈ NP and L′ ∈ P, then L ∩ L′ ∈ NP.

Lemma 2.2. A language L is in NP iff there exists a polytime binary predicate R,
and a polynomial p, such that x ∈ L ⇐⇒ (∃y ≤ p(|x|))R(x, y). In short, a language
is in NP iff it has a polybounded proof system.3

Proof. [=⇒] If L ∈ NP, then there exists a nondeterministic polytime TM M
deciding L. Let R(x, y) be the predicate that checks whether y is (an encoding of)
an accepting computation of M on x. [⇐=] Let M be a nondeterministic polytime
TM which on input x “guesses” a y, and checks R(x, y). When we say “guesses,”
we mean that the machine examines all the y’s, each y on a different branch of the
computation. �

Lemma 2.3. Suppose that the language L has a polybounded proof system V ,
and suppose that P = NP. Then there exists a polytime function f , such that for
every x ∈ L, V (x, f(x)) holds, and for x /∈ L, f(x) = “no.” In other words, if x ∈ L,
then f(x) outputs in polytime (in |x|) a proof of membership, and if x /∈ L, then f
says so.

Proof. Let “·” denote the concatenation of strings, that is, given two strings
x, y ∈ Σ∗, x = x1x2 . . . xn and y = y1y2 . . . ym, x · y = x1x2 . . . xny1y2 . . . ym. In
practice we often omit the dot and write xy instead of x · y.

2This is not quite true, since Sat, understood to be {0, 1}∗ − Sat, contains encodings of un-
satisfiable formulas as well as “junk” strings, i.e., strings that do not encode a formula. Let WFF
(well-formed formula) be the set of strings that encode formulas. When we talk of the complement
of Sat we really mean Sat ∩WFF. Clearly, it can be checked in polytime whether 〈φ〉 ∈WFF. (See
exercise 2.1.)

3(∃y ≤ p(|x|))R(x, y) denotes ∃y(|y| ≤ p(|x|) ∧ R(x, y)), and (∀y ≤ p(|x|))R(x, y) denotes
∀y(|y| ≤ p(|x|)→ R(x, y)).
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Let Q be a binary predicate such that

Q(x, y) := (∃z ≤ (p(|x|)− |y|))V (x, y · z). (2)

Note that the language {〈x, y〉|Q(x, y)} is in NP, and so by assumption it is in P. The
algorithm computing f(x) (recall that ε denotes the empty string) is given below.

Algorithm 2.4 (Computing Certificates).
On input x:

1. p := ε
2. if ¬Q(x, p) then return “no”
3. while (¬V (x, p))
4. if Q(x, p · 0) then p := p · 0
5. else p := p · 1
6. return p

The algorithm tries out consecutive bits of the proof and uses the decider for Q
to check if it is following the right path. As a single check can be done in polynomial
time and the length of the proof is polynomial in the length of x, f can be computed
in polytime. �

Exercise 2.5. Is the “−|y|” in the right-hand side of the definition given by (2)
really necessary?

2.2. Reductions and completeness

In the context of NP, it is customary to use polytime many-one reductions, denoted
≤mP . But standard NP-hardness reductions can be usually carried out in L (logspace),
so instead we use logspace many-one reductions,4 denoted ≤mL . Thus, when we write
“≤” we mean “≤mL ”. Formally, L1 ≤ L2 iff there exists a logspace function f such
that x ∈ L1 ⇐⇒ f(x) ∈ L2. A TM that computes a function—rather than decides
a language—is often called a transducer. A transducer has a read-only input tape, a
work-tape, and a write-only output tape; a tape is write-only if its head moves only
from left to right.

Exercise 2.6. Show that logspace reductions are transitive, i.e., if A ≤ B and
B ≤ C, then A ≤ C. Note that this requires a precise definition of what it means for
a function to be computed in logspace (see the first paragraph of §1.2).

A language L is C-hard, for some complexity class C, if for every language L′ ∈ C
it is the case that L′ ≤ L. A language is C-complete if it is C-hard, and also in C.

The next theorem introduces the notion of circuits which we are going to cover in
chapter 5. To refresh the definition of circuits see §5.1; a magnificent introduction to
Boolean circuit theory is given in [Weg87]. The language CircuitValue, defined as
the set of pairs 〈C, x〉 such that x is an input that satisfies the circuit C, is complete
for the class P.

4Logspace reductions make more sense in the context of P, since if we allow polytime reductions
we can “hide” all the computation in the reduction, in effect making every P language (except ∅ and
Σ∗) P-complete.
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Theorem 2.7. CircuitValue is P-complete and remains so with the following
two restrictions: all the gates are Or and And (i.e., C is a monotone circuit), and all
the gates are arranged in alternating layers of And and Or gates.

Proof. Suppose that L ∈ P, and so L is decided by a TM in time nk. For all
inputs w, |w| = n, we can build an nk × nk computation tableau, which represents
the history of the computation of the machine on a given input of length n. The first
row of the tableau is just the initial configuration, and then each row follows from
the previous by a transition. Since a computation need not take exactly nk many
steps, but only at most these many, we make the convention that once a halting
configuration is reached, it is repeated to fill exactly nk many rows of the tableau.

It should be clear that for a given n, we can construct a circuit which on input w
(|w| = n) computes each entry of the tableau. For example, one way to do this is to
represent each entry of the tableau with an array of |Q|+ |Γ| many gates (where Q is
the set of states of the machine, and Γ is the tape alphabet), representing states and
tape alphabet symbols with Boolean variables set to 0 or 1. Specifically, entry (i, j) in
the tableau has output gates gijs, for each s ∈ Q∪Γ. Only one of these output gates
is on (i.e., set to 1), expressing that the corresponding symbol is the one occupying
this entry.

This circuit implements the machine’s transition function to compute each row
of the tableau correctly for the given input w, and at the end, the circuit outputs 1
if the last row of the tableau represents an accepting configuration, and 0 otherwise.5

Consider the following two consecutive rows, after the head moves right:
. . . u1 u2 u3 q a v1 v2 v3 . . .
. . . u1 u2 u3 b p v1 v2 v3 . . .

and the following two consecutive rows, after the head moves left:
. . . u1 u2 u3 q a v1 v2 v3 . . .
. . . u1 u2 q u3 b v1 v2 v3 . . .

Except in the neighborhood of the state q, the other entries remain unchanged.
Thus,

g(i+1)js = gijs ∧ ¬
∨

q∈Q,l=j−1,j,j+1

gi(j−1)q

expressing that an entry remains unchanged, if the entries right above, to the right
and left, do not contain a state symbol. On the other hand, if they do contain a state
symbol, they are modified according to the transition function. It is clear that this
circuit is extremely uniform; each consecutive pair of rows has the same connections,
dictated by the proximity of the head and the transition function.

By de Morgan laws, all the negations in such a circuit can be pushed to the
input level, replicating gates on the way down if necessary, and then change the input
to consist of two copies of w, where the second copy of w is inverted, i.e., every 1
becomes a 0, and every 0 becomes a 1. Connect the gates that require inputs to w
and to inverted w as appropriate.

For the second restriction see lemma 5.6. �

5It is not surprising that a computation can be efficiently simulated with circuits; after all,
computers are built from circuits.
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Exercise 2.8. Give explicit definitions for all the gates in theorem 2.7, and in
particular, define the connections for the gates expressing the transition function of
the TM.

Theorem 2.9. If B is NP-complete, and B ∈ P, then P = NP.

Exercise 2.10. Prove theorem 2.9.

Theorem 2.11. If B is NP-complete, and B ≤ C ∈ NP, then C is NP-complete.

Exercise 2.12. Prove theorem 2.11.

Theorem 2.13 (Cook-Levin). Sat is NP-complete.

Proof. If A ∈ NP, then A = L(N), where N is a nondeterministic TM that
runs in time nk. Each configuration of N can be described with a string of length
nk (as in nk-many steps the machine cannot write on more than nk-many squares of
the tape). Any branch of the computation has length at most nk. So any branch can
be described with an nk × nk tableau (same idea as in the proof of theorem 2.7). To
determine whether N accepts w, we must determine if an accepting tableau exists.

We construct a reduction f(〈w〉) = 〈φw〉 such that w ∈ A ⇐⇒ φw is satisfiable.
The variables are xijs, where xijs is true if position (i, j) in the tableau contains the
symbol s ∈ Q ∪ Γ ∪ {#}. Then, let φw be

φcell ∧ φstart ∧ φmove ∧ φaccept,

where the first formula, φcell, ensures that exactly one symbol is assigned to each
cell, the second formula, φstart, ensures that the first row of the tableau is the initial
configuration, i.e., (qinit, ., w1w2 . . . wn), padded at the end with t’s to fill nk many
squares.

The third formula, φaccept, ensures that the last row is an accepting row (once
we get an accepting row, we repeat it until we reach the nk-th row). For example,
φaccept could be given as follows: ∨

1≤i,j≤nk
xijqaccept .

Finally, φmove ensures that each row follows from the previous by a legal transition of
N (or, in the case that the previous row was accepting, the current row is its copy).
This can be implemented by observing that each row is exactly like the previous one,
except in the six squares surrounding the state.

xi(j−1)s1 xijs2 xi(j+1)s3

x(i+1)(j−1)s4 x(i+1)js5 x(i+1)(j+1)s6

Let Wij(s1, . . . , s6) be the conjunction of the entries of the above table. So, φmove is∧
i,j

∨
s1, s2, s3, s4, s5, s6

legal window

Wi,j(s1, s2, s3, s4, s5, s6). (3)

Claim 2.14. φw can be constructed in logspace in |w|.



30 2. P AND NP

Proving this claim in detail is the hard part of the proof. But, to be convinced of
it, note that in logspace we can maintain constantly many pointers and counters of
logarithmic length (and hence of sufficiently many bits to be able to index the tableau
and φw). This is sufficient to construct φw because its structure is simple.6 �

A literal is a variable or its negation, i.e., x or ¬x. It is often convenient to
express ¬x as x̄; we use the two notations interchangeably. A clause is a disjunction
of literals, i.e., (l1∨ l2∨ . . .∨ ln) where each li is a literal. Every Boolean function can
be represented as a Boolean formula in conjunctive normal form (CNF), meaning that
it is a conjunction of clauses. An example of a CNF formula is (x∨ ȳ∨ z̄)∧(y)∧(x̄∨z).
A formula is in disjunctive normal form (DNF) if it is a disjunction of conjunctions
of literals. Furthermore, 3CNF is a CNF formula where each clause has exactly three
literals.

Exercise 2.15. Show that any Boolean function has a CNF and a DNF.

Corollary 2.16. Let 3Sat be Sat restricted to 3CNF formulas. Then 3Sat is
NP-complete.

Proof. The formula φw from the proof of theorem 2.13 can be given as a CNF
formula without a significant increase in size. A general CNF can be transformed into
3CNF, also with little increase in size. �

Exercise 2.17. Show that φw can be efficiently transformed (in logspace in |w|)
into a CNF formula.

Exercise 2.18. Show how to pad clauses with 1 or 2 literals, while preserving
satisfiability. Then show how to shrink clauses from n > 3 literals to just 3 literals.

Using reductions from Sat and 3Sat we can now start showing many more NP
problems to be NP-complete; see §8.1. A comprehensive list of NP-complete problems
and reductions can be found in the classic book [GJ79]. Some unexpected problems
have also been shown to be NP-complete, for example Minesweeper.

Exercise 2.19. Suppose that a Boolean expression on n variables has less than
nk clauses, each with at least k log n distinct variables. Show that it must have
a satisfying truth assignment, and give a polytime algorithm for finding such an
assignment.

Let M be a nondeterministic TM, and let #acceptM (x) be the number of ac-
cepting paths of M on input x. We define the functional class #P to be the class
of functions f for which there is a polytime nondeterministic TM M such that
f(x) = #acceptM (x). The majority of the standard (logspace) many-one reductions
for classical NP-complete problems are parsimonious (they preserve the number of so-
lutions). Hence they can be used to show that the counting versions of these problems
are complete for #P.

6Carrying the proof of this claim in detail once in your life is what makes a complexity Pollywog
into a complexity Shellback.
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2.3. Self-reducibility of satisfiability

If α is a Boolean formula and v is a variable, then α[T/v] and α[F/v] are new
Boolean formulas defined as follows: every instance of the variable v is replaced
by T (respectively F) and the resulting formula simplified: subformulas of the form
T∧β, T∨β, F∧β, F∨β are replaced by β, T, F, β, respectively. We sometimes abbreviate
“α is satisfiable” with “α ∈ Sat.”
Sat is self-reducible in the following sense: if α is a formula and v is a variable,

then
α ∈ Sat ⇐⇒ (α[T/v] ∈ Sat or α[F/v] ∈ Sat).

Theorem 2.20. Consider languages over Σ = {0, 1}. Suppose that we have a set
T ⊆ {1}∗ (i.e., T is a set consisting of strings of 1s); such a set is called a tally set. If
T is NP-hard, then P = NP.

Proof. Assume that T is NP-hard, and so Sat ≤ T , and let g be the function
implementing a (logspace) reduction from Sat to T .

We give a polytime algorithm for Sat using this g. The algorithm works in
stages: at stage 0, let C0 = {α}, where α is the input formula. At stage (i + 1),
Ci = {α1, . . . , αn} (where Ci is the result of the previous stage, i.e., stage i), and we
create

C ′ = {α1[T/vi+1], α1[F/vi+1], . . . , αn[T/vi+1], αn[F/vi+1]}.
Thus, C ′ contains all the formulas of Ci with vi+1 set to T and to F (so |C ′| = 2 · |Ci|),
and simplified.

We now prune C ′ as follows: we compute g(β) for every β ∈ C ′. Whenever we
get two formulas that map to the same string in {1}∗, we keep only one of them. If
g(β) maps to some string not in {1}∗, we simply delete β. We let Ci+1 be the result
of this pruning. At the end, when no variables are left, Ck ⊆ {T, F}, and we answer
“yes” (i.e., “yes, α is satisfiable”) iff T ∈ Ck.

This algorithm is polytime, because the pruning ensures that the Ci’s are always
polysize (there are polynomially many unary strings of polynomial size). It is correct
since g is assumed to be a correct reduction. �

Exercise 2.21. We say that a language is sparse if there is a polynomial p(n)
such that |L ∩ {0, 1}n| ≤ p(n). Show that if there is a sparse language L which is
hard for co-NP with respect to logspace many-one reductions (i.e., ≤mL ), then in fact
P = NP.

Theorem 2.22 (Mahaney). If there are sparse languages which are hard for NP,
then P = NP.

See [HO02, §1.1.2] for a proof of Mahaney’s theorem. The Berman-Hartmanis
Isomorphism Conjecture (IC) states that all NP-complete languages (here it is the ≤mP
notion of completeness) are polytime isomorphic (inter-reducible with polytime many-
one reductions that are bijections, with polytime inverses). In other words, there is
only one NP-complete set in many guises ([HO02, pp. 26 and 282]). A language is
dense if it is not sparse. A line of attack on the IC was to show the existence of a
sparse NP-complete language, since no dense NP-complete language (such as Sat)
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can be polytime isomorphic to a sparse language, thereby showing IC to be false.
Mahaney’s theorem shows the futility of this line of attack: if sparse NP-complete
languages exist, then P = NP, in which case IC fails trivially anyways.

Exercise 2.23. Observe that if the IC is true, then P 6= NP.

The next theorem also uses the idea of self-reducibility of Sat, and it introduces
the notion of the Polytime Hierarchy (PH) which we are going to cover in more detail
in §4.3. Define Σpi to be the class of languages L for which there is a polytime relation
R such that

x ∈ L ⇐⇒ ∃y1∀y2 . . . QyiR(x, y1, y2, . . . , yi),

where R(x, y1, y2, . . . , yi) is decidable in polytime in |x|. Let Πp
i be defined analo-

gously, but starting with a ∀ quantifier. Then, PH =
⋃
i Σpi =

⋃
i Πp

i .

Theorem 2.24 (Karp-Lipton). If all languages in NP have polysize circuits, that
is, NP ⊆ P/poly, then PH collapses to its second level, that is, PH = Σp2.

Proof. The class P/poly consists of those languages that have polysize circuits;
see the definition on page 65 in chapter 5.

It is enough to show that if NP ⊆ P/poly, then Πp
2 ⊆ Σp2 (see footnote7). To

show that NP ⊆ P/poly ⇒ Πp
2 ⊆ Σp2 argue as follows: assume L is in Πp

2, so
L = {x|∀y∃zR(x, y, z)} (where |y|, |z| are implicitly bounded by a polynomial in
|x|). Consider the language L′ = {〈x, y〉|∃zR(x, y, z)}, which is in NP by lemma 2.2.
Thus, there exists a polytime function f such that L = {x|∀y f(〈x, y〉) ∈ Sat}.

Note that x ∈ L ⇐⇒ ∃T∀y[T (y) satisfies f(〈x, y〉)], where T (y) is a truth
assignment that satisfies f(〈x, y〉) for the given y (if one exists). This is a way of
stating that x ∈ L with the right alternation of quantifiers. The problem is that the
naive way of representing T would be as a string of truth assignments for each y, and
there are exponentially many y’s (in |x|), so this does not work.

But we assumed that NP ⊆ P/poly, and using the self-reducibility of Sat we
conclude that for all n, there exists a circuit Cn such that for all φ, |φ| = n, Cn
outputs a satisfying assignment to φ (if one exists).

Now note that |y| ≤ p(|x|), for some polynomial p, so for any given x0, we have
that |f(〈x0, y〉)| ≤ q = q(|x0|), where q is a polynomial that depends on p and the
polynomial bounding f . So,

x ∈ L ⇐⇒ ∃C = 〈C0C1 . . . Cq〉∀y[C|f(〈x,y〉)|(f(〈x, y〉)) satisfies f(〈x, y〉)],

where |C| and |y| can be bounded by a polynomial in |x|, and the predicate decided in
time polynomial in |x|, and where 〈C0C2 . . . C1〉 denotes the encoding of a sequence
of q circuits. Hence L is in Σp2. �

7It follows more or less from definition that if Πp
2 ⊆ Σp

2 then in fact the entire hierarchy collapses
to Σp

2, i.e., PH = Σp
2, but see §4.3 for the necessary background.
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2.4. Padding argument

Define the padding function as pad : Σ∗×N −→ (Σ∪{#})∗ where pad(s, l) = s#j

for j = max(0, l − |s|). For any language L and function f : N −→ N let

pad(L, f(n)) = {pad(s, f(|s|))|where s ∈ L}.
Note, for example, that if L ∈ TIME(n6), then pad(L, n2) ∈ TIME(n3). To see this,
use essentially the same machine that decides L in time n6 to decide pad(L, n2) in
time n3 by making it “ignore” the trailing junk8 (note that |pad(x, |x|2)| = |x|2, and
x is decided in time |x|6 = (|x|2)3).

This seemingly innocuous trick to reduce the computational time of TMs has
some interesting applications.

Theorem 2.25. If EXPTIME 6= NEXPTIME, then P 6= NP.

Proof. Show the contrapositive: assume P = NP and L is in NEXPTIME. Then
pad(L, 2n

k

) is in NP, and so it is in P, and hence L is in EXPTIME. �

Theorem 2.26 (Ladner). If P 6= NP, then there is a language in NP − P which
is not NP-complete.9

Proof. Consider PadSat = {pad(φ, |φ|p(|φ|))|φ ∈ Sat}, where we next define
the padding function p(n). Let M1,M2,M3, . . . be the list of all Turing machines.
This list can be obtained from the universal Turing machine—recall that the UTM
takes as input the description of another TM as well as an input to that machine,
and simulates the machine on its input. We also want all the machines to occur
infinitely often in the list; this can be obtained from the original list M1,M2,M3, . . .
by re-listing them as follows: in the i-th stage list all machines starting with M1 and
ending with Mi.

Let p(n) be the smallest i < log log n such that for every x ∈ {0, 1}≤logn the
following holds: Mi halts on x within (|x|i + i) steps and accepts iff x ∈ PadSat. If
there is no such i, we let p(n) = log log n. Note that p(n) is defined in terms of itself,
but the recursion is well defined since to compute p(n) we need only consider p(k) for
k ≤ log n (when we check that x ∈ PadSat).

The idea behind the “strange” definition of p(n) is to have a function that grows
fast enough so that PadSat is not NP-complete, but slowly enough to ensure that it
is not in P. In what follows we show that this is indeed the case.

Claim 2.27. PadSat is not in P.

Proof. Suppose that it is, and it is decided by some M running in time (nk+k).
There is an i > k such that M = Mi (here we use the assumption that each machine

8Not quite ignore, as it has to check that the input string is of the form w = pad(x, |x|2), and
reject if not.

9There are candidates for such languages: given two graphs G = (V,E) and G′ = (V ′, E′),
we say that they are isomorphic (G ≡ G′) if there exists a bijection π : V −→ V ′ such that
(i, j) ∈ E ⇐⇒ (π(i), π(j)) ∈ E′. We suspect that GraphIsomorphism = {〈G,G′〉 : G ≡ G′}
is an example of a language which is in NP − P and yet not NP-complete. It is easy to see that
GraphIsomorphism is in NP: the certificate is π.
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occurs infinitely often in our list of machines). Therefore, by the definition of p, for all
n > 22i , p(n) ≤ i. But this means that for n > 22i , PadSat is just Sat padded with
# to be of length at most ni. So if PadSat were in P, so would Sat by the following
procedure: given φ, where |φ| = n, if n ≤ 22i , check if φ is satisfiable by examining
its truth table; if, on the other hand, n > 22i , then check if φ#n

i−n ∈ PadSat. This
contradicts the assumption that P 6= NP. �

Claim 2.28. limn→∞ p(n) =∞.

Proof. Since PadSat /∈ P (by claim 2.27), for each i we know that there exists
an x such that given time (|x|i + i), Mi either does not halt or if it does, it gives
the incorrect answer to the question whether x ∈ PadSat. Then, we know (from the
definition of p) that for every n > 2|x|, p(n) 6= i. So for every i there are only finitely
many n’s such that p(n) = i. �

Claim 2.29. PadSat is not NP-complete.

Proof. As p(n) tends to infinity with n (by claim 2.28), the padding is of super-
polynomial size. Suppose PadSat is NP-complete, so Sat ≤ PadSat. This reduction
takes ψ (with |ψ| = n), to pad(φ, |φ|p(|φ|)), such that |pad(φ, |φ|p(|φ|))| is O(nk) for
some fixed k. Therefore, |φ|p(|φ|) is O(nk). But this means that |φ| must be o(n) (i.e.,
we can find a fraction p

q such that p, q ∈ N, and p < q, and |φ| < n
p
q ). Using this

fact, we can now design a polytime algorithm for Sat which applies the reduction

repeatedly (given a constant a, we want an i such that n( pq )
i

< a; this i isO(log log n)),
each time obtaining a smaller φ, until it is of constant size, and can be solved by brute
force. It follows that P = NP; contradiction. �

This ends the proof of Ladner’s theorem. �

Exercise 2.30. To finish the above proof, show that PadSat ∈ NP.

2.5. Answers to selected exercises

Exercise 2.5. No, it only makes the bound tighter, and emphasizes that |y · z| ≤
p(|x|).

Exercise 2.6. The difficulty is that while f(x) can be computed in logspace, |f(x)|
may still be of polynomial length in |x|, and it is perfectly legal to have a long
y = f(x) on the output tape. So, when we are computing the composition of two
logspace functions f, g, once we have computed f(x), we cannot put it on the work
tape, and compute g(f(x)) directly. To fix this, we recompute the i-th bit of f(x)
each time it is required in the computation of g(f(x)).

Exercise 2.17. The formula φw is almost in CNF form, we only have to iron out a
few wrinkles. Note that φw is composed of four parts:

φcell, φstart, φmove, φaccept.
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We have to make sure that each part is either a disjunction, a conjunction, or a
conjunction of disjunctions. The formula φaccept is just a disjunction, so it is already
in the right form. The formula φstart can be given as a conjunction of the variables
x1js asserting that the j-th symbol is the j-th symbol of the initial configuration. The
formula φcell asserts that each cell contains exactly one symbol, so it is of the form

∧
i,j

∨
s

xijs ∧ ∧
s′ 6=s

¬xijs′

 .

Using distributivity of ∧ and ∨, we can push the
∨
s inside, incurring a small increase

in size, because the number of symbols s is a constant. This is a good place to make
an observation: suppose we have a DNF formula of the form:

m︷ ︸︸ ︷
(. . . ∧ . . .)︸ ︷︷ ︸

n

∨(. . . ∧ . . .) ∨ . . . ∨ (. . . ∧ . . .),

i.e., each clause has n literals, and there are m clauses. Then, using distributivity,
this can be transformed into CNF so that each clause has m literals, and there are
nm many clauses. Of course, the same can be done to transform CNF into DNF (we
shall use this fact in §5.3.1).

Thus, we can put φcell into CNF effectively, since the number of symbols s is a
constant, so from s clauses, by the above observations, we get ss many clauses—still
a constant.

Finally, we deal with φmove (see equation (3)). Again, there are constantly many
legal windows, so we can push the

∨
all the way inside incurring little increase in

size.

Exercise 2.18. (l1 ∨ l2) can be transformed to (l1 ∨ l2 ∨ x) ∧ (l1 ∨ l2 ∨ x̄) (or simply
(l1 ∨ l2 ∨ l2)). For the case (l1) introduce two new variables x, y and four clauses,
each with l1 and an x-literal and a y-literal, with the four possible arrangements of
negations for x and y. Finally, for n > 3 literals, send (a1 ∨ a2 ∨ . . . ∨ an) to

(a1 ∨ a2 ∨ z1) ∧ (z1 ∨ a3 ∨ z2) ∧ (z2 ∨ a4 ∨ z3) ∧ . . . ∧ (zn−3 ∨ an−1 ∨ an),

where the zi’s are new variables. The claim is that the new formula φ′w is satisfiable
iff φw is satisfiable (note that the two formulas are not logically equivalent—φ′w has
more variables).

Exercise 2.19. If a clause has at least k log n distinct variables, then the number
of truth assignments which falsify it has to be less than 2n−k logn = 2n

nk
. Then the

number of truth assignments which falsify at least one clause is less than nk 2n

nk
= 2n,

and therefore there must be at least one truth assignment which satisfies the whole
formula. Consider the original set of clauses φ and set the first variable to either 0
or 1, thereby getting two sets of clauses, φ0 and φ1. If we denote by f(ψ) the number
of truth assignments falsifying ψ, we can easily see that f(φ) = f(φ0)+f(φ1). But we
know that f(φ) < 2n and so f(φi) < 2n−1, for i = 0 or i = 1. It turns out, that if we
select the i which satisfies the most clauses (and choose i arbitrarily if there is a tie)
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we can get a satisfying assignment (see [Pap94, theorem 13.2]). Repeating the above
step n times we will get a total truth assignment satisfying the original formula.

Exercise 2.21. See the proof of theorem 1.4 in [HO02].

Exercise 2.23. Suppose the IC is true, and so is P = NP. Then every language in
P (other than ∅ and Σ∗) is NP-complete (with respect to polytime reductions), and
there are finite languages in P.

2.6. Notes

For the proof of theorem 2.13 we follow [Sip06, theorem 7.37]. Exercise 2.19
is [Pap94, exercise 11.5.23]. Possible references for theorem 2.20 are [Pap94, theo-
rem 14.3, pg. 337] and [HO02, theorem 1.2, pg. 3]. Theorem 2.24 is based on [KL80].
For a proof of theorem 2.22, Mahaney’s theorem, see [HO02, §1.1.2]; a new technique
is needed for this proof, the so called left set technique.
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Space

3.1. Basic definitions and results

A language L is in the deterministic class SPACE(f(n)) (or nondeterministic class
NSPACE(f(n))) if there is a TM with a read-only input tape that decides L and uses
at most the first O(f(n)) squares on each of the work tapes. The standard space
classes are the following:

L = SPACE(log n) PSPACE =
⋃
k SPACE(nk)

NL = NSPACE(log n) NPSPACE =
⋃
k NSPACE(nk),

and co-NL which contains the complements of all the languages in NL.
We say that a function f : N −→ N is space constructible if there exists a TM M

which on any input of length n (i.e., on any x ∈ {0, 1}n) marks off f(n) many squares
of the output tape, and the machine uses at most f(n) squares of its tapes to do so.
We use space constructible functions as a “ruler” to mark off how much space we have
to do the job. Note that the usual functions such as log n, (log n)k, nk, 2(logn)k , 2n

k

,
etc., are all space constructible functions. Thus, unless stated explicitly, we always
assume that our space bounds are constructible functions.

There is no guarantee of termination for space-based classes, as the same config-
uration may be repeated, and so the TM may find itself in a loop. However, when
space is bounded by f(n), the number of different configurations that may occur on
any branch is bounded by 2c·f(n), for some constant c.

Exercise 3.1. Show how to compute this constant c.

So we can implement a counter that increases by one after each step of the
computation, and the TM rejects when the counter exceeds 2c·f(n) (such a counter
requires only O(f(n)) space on some dedicated work tape). Note that for a space
bounded nondeterministic computation, if an accepting branch exists at all, there is
an accepting branch of length at most 2c·f(n).

Exercise 3.2. Consider the following three models of computation: (1) Logspace-
bounded TMs.

(2) Automata with a two-way read-only input head and a fixed finite number of
integer counters. The counters can hold an integer between 0 and n, the length of the
input. At each step the automaton may test each of its counters for zero, and based
on this information and its current state, it may add one or subtract one from each
of the counters, move its read head left or right, and enter a new state.
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(3) Automata with a fixed finite number of two-way read-only input heads that
may not move outside the input—the idea is that the input is repeated on each tape,
but only its length really matters for all tapes but the first one; the other tapes work
as counters.

Show that for either deterministic or nondeterministic machines, these three mod-
els of computation are equivalent.

Let Reach = {〈G, s, t〉|t is reachable from s} be the language of encodings of
undirected graphs G with two specified nodes s, t, such that there is a path in G from
s to t. The graph G is assumed to be presented in any one of the standard ways of
encoding graphs, for example as an adjacency matrix. DirectReach is the problem
of reachability where G is a directed graph. Note that DirectReach is also known
as s, t-Connectivity, Maze, etc.

Theorem 3.3. DirectReach is NL-complete.

Proof. The following algorithm decides DirectReach in NL.

Algorithm 3.4 (Nondeterministic Reachability).
On input 〈G, s, t〉:

1. u := s
2. while (u 6= t)
3. nondeterministically select a vertex v
4. if (u, v) /∈ E, reject
5. else u := v
6. accept

Next we show that DirectReach is NL-hard.1

To this end we introduce the fundamental concept of a configuration graph which,
for a given TM M and a given input x, is the directed graph CM,x whose nodes are
all the configurations of M on input x, and where there is an edge (C1, C2) iff there
is a legal transition of M from configuration C1 to C2 (i.e., C1 yields C2).

It is obvious that the problem of acceptance of a TM M on input x can now be
viewed as the problem of directed reachability on the configuration graph CM,x with
s being the initial configuration Cinit and t being the accepting configuration Caccept.
The only issue is that there may be several accepting configurations (the computation
is nondeterministic), and furthermore, we may not know the contents of the tape of
an accepting configuration in advanced. We fix this problem by putting the machine
in a standard form before accepting; for example by clearing the tapes of all symbols
and making the heads move to the left-most square and rest on .. Now for a k tape
TM we have that Caccept = (qaccept, ., ε, . . . , ., ε).

A configuration graph CM,x for a TM whose space is bounded by f(|x|) has
at most 2c·f(|x|) many nodes (i.e., configurations), and hence an NL machine has a
configuration graph of polynomial size.

1With respect to logspace reductions (i.e., ≤m
L ) which we defined on page 27.
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Let L ∈ NL, and let M be the nondeterministic logspace bounded TM that decides
L. We reduce L to DirectReach via

g(x) = 〈CM,x, Cinit, Caccept〉.
This proof is finished in the next exercise. �

Exercise 3.5. Complete the last paragraph of the above proof: show that g is a
logspace function. In order to do that you will have to define precisely the encoding
〈CM,x, Cinit, Caccept〉.

Exercise 3.6. Show that 2Sat is NL-complete. Hint: given a 2CNF formula φ,
transform it into a graph Gφ, where the nodes of the graph are all the variables of φ,
as well as the nagations of all the variables of φ. Now, given two nodes α and β, we
add the edges (α, β), (β, α) if and only if α∨ β is a clause of φ. The understanding is
that α is ¬x if α = x, and α is x if α = ¬x. Show that Gφ has the following property:
φ is satisfiable if and only if there is no variable x such that Gφ has a path from x to
¬x. (Cf. lemma 6.15.)

Theorem 3.7 (Savitch). DirectReach ∈ SPACE(log2 n).

Proof. In fact Savitch’s theorem proves a stronger result: for every f(n) ≥ log n,
NSPACE(f(n)) ⊆ SPACE((f(n))2). Thus, we can get rid of nondeterminism at the
cost of squaring the space bound.

Define the Boolean predicate R(G, u, v, i) to be T iff there is a path in G from u
to v of length at most 2i. The key observation is that such a path exists if there exists
a w which is a mid-point of the path. In other words there exist paths of distance at
most 2i−1 from u to w and from w to v, i.e.,

(∃w)[R(G, u,w, i− 1) ∧ R(G,w, v, i− 1)].

Using the above recursive definition, the following algorithm computes the pred-
icate R(G, u, v, i).

Algorithm 3.8 (Savitch).
On input G, u, v, i

1. R(G, u, v, i):
2. if i = 0 then
3. if u = v, then return T

4. if (u, v) is an edge, then return T

5. else for each vertex w:
6. if R(G, u,w, i− 1) and R(G,w, v, i− 1), then return T

7. return F

Let L ∈ NSPACE(f(n)), and let M be a TM deciding L in nondeterministic f(n)-
space. We have already seen in the proof of theorem 3.3 that such an M has at most
2c·f(n)-many configurations. Thus,

x ∈ L ⇐⇒ R(CM,x, Cinit, Caccept, c · f(n)).

The next exercise finishes this proof. Note that the machine implementing Savitch’s
algorithm need not keep the entire graph CM,x on its tape. The only place where
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the graph is consulted is in step 4 of the above algorithm (to establish if (u, v) is an
edge), and this can be done on the basis of the transition function of M . �

Exercise 3.9. Show that the algorithm in the proof of Savitch’s theorem is
correct (i.e., it computes R(G, u, v, i) correctly) and it requires at most i · s space,
where s is the number of bits required to keep record of a node.

The surprising consequence of Savitch’s theorem is that nondeterminism does not
increase the power of polynomial space.

Corollary 3.10. PSPACE = NPSPACE.

As we already saw in chapter 2, satisfiability of Boolean formulas (Sat) is NP-
complete. On the other hand, satisfiability of quantified Boolean formulas (QSat) is
PSPACE-complete.

A quantified Boolean formula (QBF) is defined inductively as ordinary Boolean
formulas (see page 25), but we also have two additional cases: if α is a Boolean
formula, then so are (∀xα) and (∃xα). The semantics of Boolean quantifiers are as
follows: ∃xα(x)↔ (α(0/x) ∨ α(1/x)), and ∀xα(x)↔ (α(0/x) ∧ α(1/x)).

Note that Boolean quantifiers do not increase the power of expressibility; they
only seem2 to allow greater succinctness. For example,

∃x1∃x2 . . . ∃xnα(x1, x2, . . . , xn)↔
∨

a1a2...an∈{0,1}n
α(a1/x1, a2/x2, . . . , an/xn).

Clearly, the RHS is greater than the LHS by a factor of 2n.
LetQSat = {〈φ〉|φ is a satisfiable QBF}. Note that a quantified Boolean formula

may not have any free variables, in which case it is in QSat if it is true.

Theorem 3.11. QSat is PSPACE-complete.

Proof. To show that QSat is in PSPACE try all the assignments recursively;
this can be accomplished with quadratic space.

Let L be any language decided by TM M in space nk. We show L ≤ QSat.
Let φ~c1,~c2,t be a quantified Boolean formula, where: ~c1,~c2 are two groups of variables
representing configurations ofM on a particular w (|w| = n), t is a parameter denoting
the number of steps of M , so t ≤ 2O(nk), and φ~c1,~c2,t is true if and only if ~c1 yields ~c2
in at most t steps. We show how to construct φ~c1,~c2,t.

The formula φ~c1,~c2,1 is quantifier-free, and formalizes the notion that ~c1,~c2 are
either the same configuration, or ~c1 yields ~c2 in one step. (Recall φmove in the proof of
theorem 2.13.) For t > 1, we build our formula recursively as follows: φ~c1,~c2,t is given
by: ∃~m1[φ~c1,~m1,d t2 e∧φ~m1,~c2,d t2 e], except that this would double the size of the formula
at each recursive step. To avoid this problem we restate this formula as follows:

∃~m1∀~x∀~y[{(~x↔ ~c1 ∧ ~y ↔ ~m1) ∨ (~x↔ ~m1 ∧ ~y ↔ ~c2)} → φ~x,~y,d t2 e],

where ~a↔ ~b abbreviates ∧i(ai ↔ bi).
Therefore, w ∈ L ⇐⇒ 〈φ

~cinit,~caccept,2O(nk)〉 ∈ QSat. �

2We say “seem” as it is an open question whether Boolean quantification allows to significantly
(i.e., super-polynomially) shorten Boolean formulas.
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3.2. The inductive counting technique

This section presents the famous Immerman-Szelepcsényi result showing that
for f(n) ≥ log n, NSPACE(f(n)) = co-NSPACE(f(n)). We present the proof for
f(n) = log n in theorem 3.12 below, and leave the extension to f(n) > log n (for
“reasonable” f(n), i.e., constructible f(n)) as exercise 3.14.

The class LBA (Linear Bounded Automata) is defined as LBA = NSPACE(n).
In 1964 Sige-Yuki Kuroda proposed two problems that became known as the “LBA
problems.” The first LBA question, which to this day remains open, is whether the
nondeterminism can be done away with; i.e., NSPACE(n) =? SPACE(n).

The second LBA problem is whether NSPACE(n) = co-NSPACE(n), was answered
in the affirmative by Immerman and Szelepcsényi (independently of each other).

Theorem 3.12 (Immerman-Szelepcsényi). NL = co-NL.

Proof. Let DirectUnReach be the complement of DirectReach, i.e., it
is the language of encodings of G, s, t such that there is no path from s to t. As
DirectReach is NL-complete, DirectUnReach is therefore co-NL-complete, so to
prove the theorem it is enough to show that DirectUnReach is in NL.

Suppose that we know that the number of vertices reachable from s is k. How
can we use this information to check that t is not reachable from s? For each vertex,
s = v1, v2, . . . , vn−1, t = vn, we attempt to guess a path from s to vi. Each time we
succeed we increase a counter by 1. If one of these paths contains t we reject. If the
counter reaches k, but we have not yet checked vn = t, we know t is not reachable
from s, so we accept. If after checking vn = t the counter is < k, we reject.

So the question is: how to compute this k in NL? We use the inductive counting
technique. This technique works in stages, computing at stage i how many nodes are
reachable from s with paths of length at most i. First, we check how many nodes are
reachable from s with paths of length 0 (answer: 1, just s). Then, we compute how
many nodes are reachable with paths of length (i+ 1) knowing how many nodes are
reachable with paths of length i.

Let ki be the number of nodes reachable from s with paths of length ≤ i. For
each node v, we try to guess a path of length ≤ i from s to each u. If we succeed,
we increase a counter by 1, and we increase ki+1 if (u, v) is an edge. If at the end
counter < ki, we reject because we did not account successfully for all the nodes in
the i-th layer. We repeat this for each v, and at the end, if all the checks have gone
through, we have ki+1. Of course, the number of nodes reachable from s, is k = kn.
Here is the algorithm for computing ki+1 from ki.

Algorithm 3.13 (Immerman-Szelepcsényi).
On input i, ki:

1. set ki+1 := 1
2. for every vertex v 6= s:
3. set k′i := 0, TruthValue := F

4. for every vertex u:
5. guess whether u is in layer i; if guessed “no” go to next u
6. guess a path from s to u of length up to i; if guess failed, reject
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7. set k′i := k′i + 1
8. if (u, v) is an edge, set TruthValue := T

9. if k′i < ki, reject
10. if TruthValue = T, set ki+1 := ki+1 + 1

Thus we can establish in NL that there is no path from s to t. �

Exercise 3.14. Show that the Immerman-Szelepcsényi theorem can be extended
to show that for any f(n) ≥ O(log n), NSPACE(f(n)) = co-NSPACE(f(n)).

3.3. Interactive Proof Systems

We introduce a new model of computation (still based on TMs), called interactive
proof systems, and the class of languages decidable by such systems, called IP. The
main result of this section is that IP = PSPACE. To define IP we introduce the
concept of randomness, which we are going to explore further in chapter 7. Essentially,
randomness allows us to make some decisions by the flipping of a coin, and accept or
reject with a certain probability.

An interactive proof system consists of two independent TMs P (the prover) and
V (the verifier). The two machines share a common read-only input tape and a
read/write communication tape, but otherwise operate independently. Each machine
has its own private work tape. In addition, V has access to a private string of random
bits, and it runs in deterministic polytime. On the other hand, P has no time or space
bounds, but it must halt, and it must write polysize messages to the communication
tape.

The two machines take turns; when it is V ’s turn, it runs for a polynomial amount
of time, accessing the random bits whenever it needs to make a probabilistic decision.
At some point it writes a message for P , and then enters a special state that transfers
control to P . Then it is P ’s turn, and they keep taking turns for a polynomial number
of rounds. At the end, V decides to accept or reject. We assume that P is omniscient,
except that it does not know V ’s random bits.

Formally, we say that a language L has an IP protocol if there exists a V such
that:

• if x ∈ L, then there exists a P such that Pry[(P, V ) accepts x] ≥ 3
4 , and

• if x /∈ L, then for all P , Pry[(P, V ) accepts x] ≤ 1
4 .

Note that in the second case, P might be a malicious prover bent on misleading V .
The y’s range over all the random strings up to the polynomial bounding the running
time of V .

An example of a language with an IP protocol is Sat. On input φ, V requests a
truth assignment satisfying φ. So P returns a string t—obtained, say, by a brute-force
search—and if t � φ (i.e., t satisfies α), then V accepts, and otherwise, V rejects. To
analyze the error, note that if φ is satisfiable, then P will always return a satisfying
assignment, so in this case the probability of error is 0, and if φ is not satisfiable, no
matter how evil P is and what devilish tricks it has up its sleeve, at the end V always
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tests t, so again the probability of error is 0. Note that in this example V did not
make use of its random bits.

A more interesting example is GraphNonIsomorphism, where 〈G,H〉 is a “yes”
instance if G and H are not isomorphic, i.e., there is no bijection τ : [n] −→ [n] such
that (i, j) is an edge in G iff (τ(i), τ(j)) is an edge in H. Here V chooses a random
permutation τ , applies it to both G and H to obtain G′ and H ′, and then flips a coin
to establish which of the two (i.e., G′ or H ′) to send to P . Now P checks if it received
an image of G (i.e., G′) or of H (i.e., H ′). If P answers correctly, V goes to the next
round, and otherwise, V rejects. We assume polynomially many rounds.

If the two graphs G,H are indeed non-isomorphic, then P will have no trouble
responding correctly (it can compute whether it got a permutation of G or of H, just
by doing exhaustive search of all τ). So in this case V accepts with probability 1 (i.e.,
0 probability of a false negative). But if they are isomorphic, then all that P can do
is guess, and after k rounds it would have had to guess correctly k times in a row to
fool V , and so the probability of acceptance (i.e., the probability of a false positive)
is 2−k, so for k = 2 we conform to the definition, and for k = 100 the probability of
error becomes negligible.

We now prove the main result of this section, the surprising IP = PSPACE. We
break it up into two parts: IP ⊆ PSPACE and PSPACE ⊆ IP.

3.3.1. IP ⊆ PSPACE. We may assume that P ’s responses are just one bit long;
the protocol can be easily modified so that V asks P for an answer one bit at a time.
It is convenient to think of P as an oracle function P : Σ∗ −→ {0, 1} that, whenever
queried on the string 〈x,m1,m2, . . . ,mk〉, consisting of the input string and the history
of the messages exchanged with V thus far, it answers lk = P (〈x,m1,m2, . . . ,mk〉)
where lk is 0 or 1.

Thus, the protocol may be described as a tree TP (which depends on P ) where
the nodes are configurations of V , and where V ’s query to the tape with random bits
is modeled by a binary branch (we assume that V reads the random bits from left to
right, never moving left, i.e., it is not “recycling” the random bits). The probability of
a path is the product of the edge probabilities on that path ( 1

2 for an edge belonging
to a random branch, and 1 otherwise). The probability of a branch is the product
of the probabilities on its edges. So the probability of V accepting is the sum of the
probabilities of all the accepting branches (i.e., branches where the last configuration
is accepting).

Regardless of the actual computational power of P , and without really knowing
what P is, we can compute the largest possible number of accepting branches for any
polynomially long sequence of query responses, and if their fraction is ≥ 3

4 , we accept,
and if it is ≤ 1

4 we reject. By the correctness of the original (P, V ) protocol, we know
that one or the other is always the case.

To compute this optimal number of accepting branches, we examine all possible
P ’s, which in this context means examining all possible strings of polynomial length
over {0, 1}. Each such string models a particular oracle P , where the i-th bit is the
answer to the i-th query. In polynomial space we can consider all such P ’s, and
compute the fraction of accepting branches for the corresponding TP . This can be
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done by a depth-first strategy, since each branch is of polynomial length, and each
configuration is of polynomial size. Note that this also shows that while we assumed
that P is all but omnipotent and omniscient, in fact it is enough to assume that P
works in PSPACE.

3.3.2. PSPACE ⊆ IP. This direction requires new ideas. We are going to prove
thatQSat, which we showed in theorem 3.11 to be PSPACE-complete, is in IP. To this
end, we introduce a new technique called arithmetization, which consists in translating
Boolean formulas into multivariate polynomials.3

We take a QBF formula φ and first of all modify it so that negations occur only in
front of variables (this is easy using de Morgan laws), and then translate it recursively
into an algebraic expression pφ. A single variable x is translated into x, and ¬x into
(1− x), i.e., px = x and p¬x = (1− x), respectively. Furthermore,

p(α∧β) = pα · pβ ,
p(α∨β) = pα + pβ ,

p∀xα = Πa∈{0,1}pα(a/x),

p∃xα = Σa∈{0,1}pα(a/x).

Note that pα is a syntactic object, just as α is a syntactic object; the Π,Σ are
there to shorten the expression.4 Let value(pα) be the value of the expression (i.e.,
the semantic interpretation using standard arithmetic). Note that value(pα) ≥ 0.

Exercise 3.15. Show that value(pα) > 0 iff α is true. Note that when we say “α
is true,” the tacit assumption is that it does not have free variables.

Exercise 3.16. Show that value(pα) < 22|pα| . Note that this bound is too big to
be of use to the verifier in an IP protocol.

Exercise 3.17. Show that for all a, such that 0 < a < 22n there exists a prime
number k ∈ [2n, 23n] such that a 6≡k 0. You may use the fact that for every m
there are at least

√
m prime numbers ≤ m, and the Chinese Remainder theorem; see

theorem 8.23, on page 126.

The protocol starts as shown in figure 1 (see footnote5).
So now P must establish for V that it is indeed the case that â ≡k value(pα).

This is going to be established in several rounds. In each round, one of the following
cases takes place.

• If α = (α1 ∧ α2) then P sends â1, â2 and V verifies that â1 · â2 ≡k â, and
now requests that P prove that value(pα1

) ≡k â1 and value(pα2
) ≡k â2.

3We are also going to be using the technique of arithmetization in §5.3.2 to prove that bounded-
depth circuits of polynomial size cannot compute parity.

4That is, ∃x∃y(x ∨ y) is now expressed as Σa∈{0,1}Σb∈{0,1}(a+ b), with the Σs there, and not
as (0 + 0) + (0 + 1) + (1 + 0) + (1 + 1).

5Note that in light of the recent result showing that Primes are in P ([AKS04]) it is not really
necessary to use Pratt’s theorem (theorem 8.19) and a certificate of primality; V can verify directly
whether k is a prime. Furthermore, V has a source of random bits, so if V were disposed not to
use the polytime algorithm for Primes nor Pratt’s theorem, V could always use the randomized
Rabin-Miller algorithm (see §7.1.2).
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Prover Message Verifier
Compute a = value(pα)
find an appropriate prime
k ∈ [2n, 23n] and certificate
of primality b
let â ≡ a (mod k)

â,k,b
=⇒

Check that â > 0,
k ∈ [2n, 23n] and b is a
correct certificate

Prove value(pα) ≡k â⇐=

Figure 1. Initial exchanges of the protocol.

• If α = (α1 ∨ α2) then same thing happens, except that V verifies that
â1 + â2 ≡k â.

• If α = ∀xα1(x), then P sends a polynomial polyα1
(x) that purportedly is

equal to pα1
(x). Then V checks that polyα1

(0) · polyα1
(1) ≡k â. Now V

selects a random r ∈ Zk, and requests that P prove that value(pα1
(r)) ≡k

polyα1
(r).

• If α = ∃xα1(x), then the same thing happens as in the previous case, except
that V checks that polyα1

(0) + polyα1
(1) ≡k â.

At the end, V accepts if the values of the variables returned by P are consistent with
the r-assignments given by V .

For example, suppose that the formula in question is ∀x(x∧x), which is obviously
false. Suppose that P claims that â = value(p∀x(x∧x)) = 6, the prime is k = 7, and
P sends the polynomial x2 + 2, i.e., P claims that poly(x∧x)(x) = x2 + 2. So now
V checks that poly(x∧x)(0) · poly(x∧x)(1) = (02 + 2)(12 + 2) = 6, selects 1 ∈ Z7, and
wants to verify that value(p(x∧x)(1)) = poly(x∧x)(1) = 3. And now P is in a jam,
because there is no way it can convince V that value(p(x∧x)(1)) = 3, since 1 · 1 6= 3,
not even for ready money.6

Note that there is one potential problem. Consider the translation of the formula
∀x∀y1∀y2 . . . ∀ykα; it is ΠxΠy1Πy2 . . .Πykα, and so the related polynomial in x is of
degree 2k. To keep the degree of the polynomials small, we show that any QBF can
be put into an equivalent simple form which means that between any variable and its
quantifier there is at most one universal quantifier.

Exercise 3.18. Show that any QBF can be put in simple form in polytime. Show
that the translations of a simple formula of length n are such that the degree of the
polynomials are always bounded by 2n.

Finally, observe that false negatives occur with probability 0, since if α is true,
then all that P has to do is behave well, and communicate honestly, and V will accept.

6Oscar Wilde’s The importance of being Earnest, Act 1.
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On the other hand, if α is false, then the only sensitive moment is when P sends the
polynomial polyα1

(the ∀ and ∃ cases). It could happen that the polynomial is incor-
rect, but nevertheless value(pα1(r)) ≡k polyα1

(r), i.e., r is a root of the polynomial
value(pα1

(x))− polyα1
(x) over Zk. (Here is where we have made use of the fact that

k is a prime, so Zk is a field.) Since k ≥ 2n and the degree of the polynomial is at
most 2n, by the Fundamental theorem of Algebra it follows that the probability of
this taking place is at most 2n

2n , and hence small for large n.

3.4. Answers to selected exercises

Exercise 3.5. Order the configurations lexicographically, so they are numbered
1, 2, . . . , p(n), where p is a polynomial. Construct the adjacency matrix of the graph
by putting a 1 in position (i, j) if configuration Ci yields configuration Cj . Note that
a logspace bounded TM can still work with a polynomial size configuration graph:
the machine need not keep a copy of the entire configuration graph; the graph can be
given implicitly by M and x, and whenever the machine needs to establish whether
(C1, C2) is an edge, it can do so on the basis of M and x, without having to examine
the entire graph. Furthermore, it can check whether there is a path from Cinit to
Caccept in polynomially many steps.

Exercise 3.18. Using de Morgan laws we can move (in logspace) all the negations
to be in front of variables (and cancel double negations, ¬¬x = x). Now we want to
transform the formula so that between any variable and its point of quantification,
there is at most one universal quantifier. We do this from the outside in, larger
subformulas first, introducing a lot of new dummy variables. For every subformula of
the form ∀xα(x, ~y), where the variables ~y are free, we introduce a new set of variables
~y′ and transform the formula to be ∀x[∃~y′

∧
i(yi ↔ y′i) ∧ α(x, ~y′)]. Note that the ~y′

are quantified inside the ∀x, and the ~y occur exactly once and just inside the ∀x.

3.5. Notes

Exercise 3.2 is based on [Koz06, chapter 5]. For more details on the proof of
theorem 3.12 see [Pap94, theorem 7.6]. For more details on the proof of IP = PSPACE
see [Koz06, lectures 16 and 17] and [SP95, chapter 21]. Also [Bab90] contains an
interesting account of the discovery of this result.

The fact that NSPACE(n) turned out to be equal to co-NSPACE(n) is also in-
teresting for the following reason: the class of context-free languages, CFL, is the
class of languages decidable by grammars whose rules are of the form X → α, that
is, a variable yields an α, where α is a string of variables and terminals. The class
of context-sensitive languages, CSL, is the class of languages decidable by grammars
whose rules are of the form α → β, with the restriction that |α| ≤ |β|; it was known
that CSL = LBA = NSPACE(n), and since we know that CFL are not closed under com-
plementation, it was natural to ask whether CSL are closed under complementation—
now we know that they are. Finally, if we put no restrictions on the rules of the
grammar, i.e., if we allow all α→ β, where α, β are free to be any strings of variables
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and terminals, then we obtain the so called Semi-Thue system, also known as a string
rewriting system. Semi-Thue systems capture the same languages as general TMs;
see §1.1 for the different, yet equivalent, models of computation.
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Diagonalization and Relativization

4.1. Hierarchy theorems

We say that a TM M recognizes a language L if L = L(M) (i.e., M halts and
accepts all x ∈ L, and M may reject or not halt on x /∈ L). We say that a language
L is recursively enumerable if it is recognized by some M . Let RE be the class of
recursively enumerable languages.

A TM M is called a decider if it halts on every input. We say that a TM M decides
a language L if L = L(M) and M is a decider (i.e., M recognizes L, and, furthermore,
M halts on all inputs—in the accepting state if x ∈ L, and in the rejecting state if
x /∈ L). A language L is called decidable (or recursive) if there exists a decider M
such that L = L(M). Let Rec be the class of recursive (i.e., decidable) languages.1

It is well known that the language

ATM = {〈M,x〉|M accepts x}

is recursively enumerable, but not recursive. ATM is clearly in RE; we use the diagonal
argument to show that it is not recursive.2

Theorem 4.1. ATM is not recursive.

Proof. Suppose MATM
decides ATM. Define D, the “diagonal” machine, as

follows: on input 〈M〉, D first simulates MATM
on 〈M, 〈M〉〉, until MATM

is about
to halt (MATM is a decider, so by assumption it always halts). If MATM is about to
accept, D rejects. If MATM is about to reject, then D accepts.

Consider D(〈D〉). If D(〈D〉) rejects, then MATM
must accept 〈D, 〈D〉〉, by defi-

nition of D, so D(〈D〉) must accept by definition of MATM
. If D(〈D〉) accepts, then

1Note that all complexity classes are assumed to be contained in Rec, i.e., if C is a complexity
class, then C ⊆ Rec. For time-bounded computations this follows by definition; for space-bounded
computations, we can always modify a space-bounded TM M to be a decider M ′. This is so because
we can always add a counter which checks that the number of moves does not exceed the number of
possible configurations, and halt and reject when it does. Such a counter need not be longer than
the space available to the machine.

2Note that it follows directly from Cantor’s original diagonal argument that there are undecid-
able languages (in fact that there are not recursively enumerable languages): the set of all TMs has
the same cardinality as N, and the set of all languages has the same cardinality as P(N), the power
set of N, and by Cantor’s diagonal argument N < P(N), so there are languages which do not have
a TM. However, theorem 4.1 says more than that; it gives a concrete example of an undecidable
language, i.e., ATM, which is recursively enumerable, and in fact complete for the class of recursively
enumerable languages.
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MATM
must reject, by definition of D, so by definition of MATM

D(〈D〉) rejects. Thus,
D(〈D〉) accepts iff it does not; contradiction. �

We shall now use a slightly modified version of this diagonal argument to show
some strong separations between complexity classes; these results go under the name
of Hierarchy theorems. Recall the definition of “little-oh” (see page 11), and of space
constructible functions (see page 37).

Theorem 4.2 (Space Hierarchy). Given any space constructible function f , a
language A exists that is decidable in space O(f(n)) but not in o(f(n)).

Proof. Let D be a deterministic TM which on input 〈M〉#m, m ≥ 0, and M
is a single-tape TM, simulates M(〈M〉) within space bound f(n), n = |〈M〉#m| =
|〈M〉| + m. The suffix of “#” works as padding; its purpose will be clear later. D
works as follows.

• If M halts within the alloted space f(n), then D accepts iff M rejects (i.e.,
D “does the opposite”).

• If M does not halt (but stays throughout in the alloted space), D rejects. In
order to accomplish this, D keeps a counter of the number of moves of M ,
and it rejects when the counter reaches 2cf(n), for some constant c depending
on M . The number 2cf(n) is the number of possible configurations of M on
inputs of length n; this number requires cf(n) bits to encode.

• If M requires more than f(n) squares of space, then D rejects directly. Note
that D keeps track of the space by placing a special symbol ♣ on the square
number f(n) of each work-tape, and if the simulation ever wants to move
right of this symbol, the computation ends and D rejects. Since f is space
constructible, computing which is the f(n)-th square can be done in space
c′f(n), for some constant c′.

Clearly, D runs in space max{1, c, c′} · f(n), i.e., in space O(f(n)).
We argue that the language L(D) cannot be decided in space o(f(n)). Suppose

that N runs in space g(n) ∈ o(f(n)) (if N is a k-tape TM we can convert it into a
single-tape TM which runs in space kg(n), which is still in o(f(n))), so limn→∞

g(n)
f(n) =

0, and so for any ε > 0 there exists an n0 such that for all n ≥ n0, g(n) < εf(n).
Thus, given 〈N〉#n0 as input, D will simulate N(〈N〉) within space

g(|〈N〉|+ n0) < εf(|〈N〉|+ n0),

and so, by selecting ε < 1, we ensure that D and N differ on 〈N〉#n0 , and thus
L(N) 6= L. Note that |〈N〉| could be small, so the padding #n0 ensures that the input
is of sufficient length.

Finally, note that there is a certain (small) overhead associated with the simula-
tion. We can compensate for this by selecting ε suitably small. �

Corollary 4.3. For ε1 < ε2 in Q ∩ [0,∞), SPACE(nε1) ⊂ SPACE(nε2).

Corollary 4.4. NL ⊂ PSPACE.
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Proof. From Savitch’s theorem (theorem 3.7) we know that NL is contained in
SPACE(log2 n), and from the Space Hierarchy theorem we know that SPACE(log2 n) ⊂
SPACE(n). �

Corollary 4.5. QSat /∈ NL.

Proof. By corollary 4.4, NL ⊂ PSPACE, and QSat is complete for PSPACE by
theorem 3.11. �

Corollary 4.6. PSPACE ⊂ EXPSPACE.

Proof. For all constant k, SPACE(nk) ⊆ SPACE(nlogn) ⊂ SPACE(2n). �

We can now give an example of a provably intractable language. Recall that
regular expressions are built up from ∅, ε, a ∈ Σ, by using the regular operations ∪, ·, ∗
(union, concatenation, and Kleene’s star, respectively). Then, ∅, ε, a ∈ Σ are regular
expressions, and if R,S are regular expressions, then so are R∪S,R ·S,R∗, (R). The
language of a regular expression R, denoted L(R), is defined inductively as follows:

L(∅) = ∅, L(ε) = {ε}, L(a) = {a},
L(R ∪ S) = L(R) ∪ L(S),

L(R · S) = {xy|x ∈ L(R) & y ∈ L(S)},
L(R∗) = {x1x2 . . . xn|n ≥ 0, xi ∈ L(R)}.

The language

EQrex = {〈R,S〉|R,S are regular expressions and L(R) = L(S)}

is in PSPACE.
If we also introduce the exponentiation operator R ↑ k = R ·R · · · · ·R (k-times),

and let EQrex↑ be the corresponding language, then we have the following theorem.

Theorem 4.7. EQrex↑ is EXPSPACE-complete.

Corollary 4.8. EQrex↑ is intractable.

Proof. If it were in P, then it would certainly be in PSPACE, but by completeness
it would follow that EXPSPACE ⊆ PSPACE, contradicting the separation we obtained
from the Space Hierarchy theorem. �

A function t : N −→ N, where t(n) is at least O(n log n), is time constructible
if the function that maps any x ∈ {0, 1}n to the binary representation of t(n) is
computable in time O(t(n)).

Theorem 4.9 (Time Hierarchy). Given a time constructible function t, there
exists a language A that is decidable in time O(t(n)) but not in time o(t(n)/ log t(n)).

Exercise 4.10. Prove the Time Hierarchy theorem.

Corollary 4.11. P ⊂ EXPTIME.
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We can also prove Hierarchy theorems for nondeterministic classes. This is a
little bit more tricky, since it is not clear how to “flip” the result of the computation
efficiently in the nondeterministic case. We demonstrate the main idea with concrete
nondeterministic time classes, and then leave the general result as an exercise.

Theorem 4.12. NTIME(n) ⊂ NTIME(n1.5).

Proof. Let f : N −→ N be defined as follows:

f(1) = 2

f(i+ 1) = 2f(i)1.2 .

D will flip the answer of Mi on some input in {1n|f(i) < n ≤ f(i+ 1)}.
First, assume once again that we have an enumeration M1,M2,M3, . . . of all TMs

such that each TM M appears infinitely often. Thus, given any M , and given any
i0, we can always find an i ≥ i0 such that M = Mi. Assume also that the degree of
non-determinism is bounded for the entire list, so it is, say, 2.

Define the diagonal machine D as follows: on input x = 1n (if x /∈ {1}∗, reject
outright), compute an i such that f(i) < n ≤ f(i+ 1) (note that this must, and can,
be done in time O(n1.5)). The machine D now considers two cases.

Case 1. f(i) < n < f(i + 1) (i.e., n is strictly in between). Then, D simulates
Mi on input 1n+1, using nondeterminism, in time n1.1 (if Mi does not halt within
this time, D simply accepts) and outputs the same answer.

Case 2. n = f(i+1), then D accepts 1n iff Mi rejects 1f(i)+1 in time (f(i)+1)1.1.
For D to know that Mi rejects, it must go through 2(f(i)+1)1.1 -many branches of Mi

on 1f(i)+1. But this is doable, since the input size is n = f(i+ 1) = 2f(i)1.2 .
Thus D is a nondeterministic machine that runs in time O(n1.5). We want to

show now that L(D) /∈ NTIME(n). Suppose that it is, so we can find an i large enough
so that Mi decides L(D) in time O(n) and on inputs of length n ≥ f(i), Mi can be
simulated in less than n1.1 many steps.

We know that for all f(i) < n < f(i+ 1), D(1n) = Mi(1
n+1), and we also know

that D(1f(i+1)) 6= Mi(1
f(i)+1). Together with the fact that D(x) = Mi(x) for all x,

this is an untenable situation.

f(i) + 1 f(i) + 2 f(i) + 3 . . . f(i+ 1)

f(i) + 1 f(i) + 2 f(i) + 3 . . . f(i+ 1)

Figure 1. All these equalities cannot co-exist with f(i+ 1) 6= f(i) + 1.

The first row of figure 1 consists of the values of D on strings of as many 1s as
the given number. The second row represents Mi. Two solid lines represent equality.
By transitivity all corresponding values are equal, but then we have a pair that are
not; this is not possible. �
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4.2. Oracles and Relativization

An oracle is a language O, and an oracle TM MO is an ordinary TM with an
extra tape called the oracle tape. MO writes a string x on the oracle tape, queries the
oracle by entering a special “oracle query state,” and gets an answer in one step, i.e.,
the oracle O writes a 0 or a 1 on the first square of the tape denoting that x /∈ O or
x ∈ O, respectively. Note that this definition can be extended in the natural way to
oracles that output strings. Let PO and NPO be the set of languages decidable with
polytime deterministic (respectively, nondeterministic) TMs with an oracle for O.

For example, suppose that the oracle O is Sat. Then PSat is the class of languages
decidable by polytime TMs which can query Sat. Note that NP ⊆ PSat, and also
co-NP ⊆ PSat. This is because an oracle for Sat can be used to answer queries about
Taut; to check that φ ∈ Taut just check that ¬φ /∈ Sat. In general, if L1 = L(ML2),
then we say that L1 is Turing-reducible to L2. Note that the power of the reduction
depends on M ; so for example, if M were a polytime TM, L1 would be polytime
Turing-reducible to L2, denoted ≤TP , where the “T” stands for TM, just like the “m”
in ≤mP stands for “many-one,” and P stands for polytime in both cases.

Turing reductions allow to query a language repeatedly, using the answers to the
queries at will. On the other hand, many-one reductions allow exactly one query, and
the machine has to answer with the query answer. Therefore, Taut ≤TP Sat, but it
is a big open question whether Taut ≤mP Sat, underlying the difference of the two
reductions.

Consider the language

MinFormula = {〈φ〉 : ∀ψ[|ψ| < |φ| → ψ 6↔ φ]},

i.e., MinFormula is the language of encodings of those Boolean formulas for which
there does not exist a smaller Boolean formula that computes the same Boolean
function; MinFormula ∈ co-NPSat. To see this, note that a co-NP machine can
examine all ψ such that |ψ| < |φ|, and for each ψ check (using an oracle for Sat) that
¬(ψ ↔ φ) is satisfiable.

It may appear strange that NPSat is believed to be a larger class than NP, but
note that in NPSat, we are allowed to query the oracle repeatedly, and take into
account negative answers—this is more than is allowed by many-one reductions.

The diagonal argument presented in this chapter appears very powerful; recall
the Hierarchy theorems and their consequences. Is it also possible to show that
P 6= NP with a diagonal argument? This question is somewhat vague, since we have
not defined precisely the nature of a “diagonal argument.” Still, we can make the
observation that diagonal arguments relativize. By this we mean that if we can prove
the separation of two complexity classes C1 and C2, defined in terms of TMs with
bounds on resources, then the same argument should go through for showing the
separation of CO1 and CO2 , for any oracle O.

Therefore, if we can prove that there exist two oracles A,B such that CA1 = CA2
and CB1 6= CB2 , then we can take that as evidence (with a “grain of salt”) that a
diagonal argument will not work to show the separation of C1 and C2.
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In the next theorem we show the existence of an oracle A such that PA 6= NPA;
this is a very nice construction, but it implies that the P versus NP question will likely
not be settled by a diagonal argument: “A bliss in proof, and proved, a very woe”.3

Theorem 4.13. There exist oracles A,B such that: PA 6= NPA and PB = NPB .

Proof. For the second claim let B = QSat. Trivially, PQSat ⊆ NPQSat, and

NPQSat
(1)

⊆ NPSPACE
(2)

⊆ PSPACE
(3)

⊆ PQSat.

For (1) note that QSat is in PSPACE, so whenever the NP machine wants to query
the QSat oracle, we simply do the computation directly in PSPACE. For (2) we use
corollary 3.10, and for (3) we use the fact that QSat is PSPACE-complete: theo-
rem 3.11.

For the first claim, given any oracle A, define LA as follows:

{w|∃x, x ∈ A and |w| = |x|}.

Clearly, for any A we have LA ∈ NPA: on input w, guess a x such that |w| = |x|, and
check that x ∈ A. We now construct an A which ensures that LA /∈ PA.

Let Mt1 ,M
t
2 ,M

t
3 , . . ., be a list of polytime oracle TMs. The symbol “t” denotes

that these are TMs with a slot for an oracle (think of it as a PCI slot), but without an
actual oracle attached (or the empty oracle, i.e., O = ∅, so the answer to each query
is “no”). We make sure that Mti runs in time ni by attaching a counter. We build A
and Â (Â ⊆ A) simultaneously in stages to ensure at stage i that L(MA

i ) 6= LA. In
the first stage, stage 0, we let A, Â := ∅.

At stage i A and Â are finite, so we pick an n such that n > |w| for all w ∈ A∪Â,
and 2n > ni (where recall that ni is the running time of Mti ). We now extend A in
such a way so that L(MA

i ) 6= LA.
Run Mti (1n): each time Mi queries the oracle with a string y, if the membership

of y in A has been determined (i.e., it has been established at an earlier stage whether
y is in A or Â), we do nothing to A or Â, and we answer the query consistently with
what has been decided earlier. Look at this as intercepting the query to the empty
slot, and answering according to the scheme presented here. (Note that because of the
way we have chosen n, all the strings whose status has been determined are shorter
than n.)

If y’s status is undetermined, we answer “no” (i.e., declare y 6∈ A, and thereby
y ∈ Â). If at the end Mti (1n) = “yes,” declare all remaining y, |y| = n, not to be
in A (and thereby in Â). If, on the other hand, Mti (1n) = “no,” find a y0 such that
|y0| = n, and y0 has not been queried (it must exist, because in ni time Mti cannot
query all 2n > ni y’s of length n), and put y0 in A.

Therefore, MA
i (1n) = “yes” iff 1n 6∈ LA. We still need to determine the status of

all the y’s of length ≤ n that have not been considered; say we declare all of them
not in A, i.e., in Â. �

Theorem 4.14. There exist oracles A,B: NPA 6= co-NPA and NPB = co-NPB .

3Shakespeare, Sonnet CXXIX.
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Exercise 4.15. Prove theorem 4.14.

4.2.1. A random oracle separating P and NP. In this section we are going
to show that for a random oracle A, we have that PA 6= NPA with probability 1.

Suppose that we generate a random oracle A by tossing a coin: for every string
x ∈ {0, 1}∗ we toss a coin to determine if x ∈ A. In other words, ∀x, Pr[x ∈ A] = 1

2 .
Then, for such an A, Pr[PA 6= NPA] = 1, which means that there must exist an oracle
separating P and NP (something that we know already from theorem 4.13), and in
fact “most ” oracles separate P and NP.

Just as in the proof of theorem 4.13, let Mt1 ,M
t
2 ,M

t
3 , . . . be a list of polytime

oracle TMs. For any given oracle A, PA = {L(MA
i )|i ≥ 1}.

Given a random oracle A, define the language L(A) as follows: arrange all strings
in {0, 1}∗ by length and then in lexicographic order. Given an x, |x| = n, to determine
if x ∈ L(A), look at the segment of n2n strings that follow x (in this ordering). Imagine
this segment consisting of 2n blocks, of n strings each. Then, x ∈ L(A) iff there is at
least one such block of n strings all of which are in A.

0, 1, 00, 01, . . . , x = xi, . . . . . .︸ ︷︷ ︸
n

, . . . . . .︸ ︷︷ ︸
n

, . . . , . . . . . .︸ ︷︷ ︸
n︸ ︷︷ ︸

2n

, xi+(n2n+1), . . .

Note that for any oracle A, L(A) ∈ NPA: the certificate for x ∈ L(A) is a number
i ≤ 2n (giving the index of the block containing only 1s; note that i can be encoded
with polynomially many bits in binary), and we verify those n numbers with the
oracle A.

Clearly, Pr[PA = NPA] ≤ Pr[L(A) ∈ PA], and:

Pr[L(A) ∈ PA] (4)

= Pr[∃i, L(MA
i ) = L(A)] (5)

≤
∑
i

Pr[∀x, x ∈ L(MA
i )�L(A)] (6)

≤
∑
i

Pr[∀j, xj ∈ L(MA
i )�L(A)] (7)

=
∑
i

∏
j

Pr[xj ∈ L(MA
i )�L(A) | ∀k < j, xk ∈ L(MA

i )�L(A)︸ ︷︷ ︸
(∗∗)

]

︸ ︷︷ ︸
(∗)

, (8)

where the “�” introduced in equation (6) denotes the following operation on sets:
X�Y = {w|w ∈ X ⇐⇒ w ∈ Y } (i.e., X�Y = X4Y , the complement of the
symmetric difference). The xj ’s introduced in equation (7) are any subsequence of
our ordering of {0, 1}∗, and in equation (8) we introduce the conditional probability,
i.e., Pr[A|B] = Pr[A and B]/Pr[B], which when it “telescopes” with the

∏
j is equal

to the previous line.
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Now we are concerned with finding an appropriate subsequence {xj} so that
we can bound (∗) in equation (8) by 0.9. This will have the desirable effect that∑∞
i=1

∏∞
j=1 0.9 =

∑∞
i=1 0 = 0.

We want to choose the xj ’s very far apart from each other, say |xj+1| > 2|xj |, so
that the events “xj ∈ L(A)” are independent (because when the xj ’s are this far apart,
their respective blocks, used to establish if they are in L(A) or not, do not intersect).
It is not possible to make the events “xj ∈ L(MA

i )” completely independent, since
nothing stops MA

i from making small queries; but we can make them sufficiently
independent by noting that MA

i cannot make huge queries and cannot make too
many queries.

Consider the following table of probabilities, where events E1, E2, E3, E4, are
taking place under the condition of (∗∗) from equation (8).

xj ∈ L(MA
i ) xj /∈ L(MA

i )
xj ∈ L(A) E1 E2

xj /∈ L(A) E3 E4

We want to show that Pr[E2 or E3] is at least 0.1, and so that (∗) ≤ 0.9 (in equa-
tion (8)) as desired.

Pr[E1 or E2] = Pr[xj ∈ L(A)|(∗∗)] = Pr[xj ∈ L(A)] > 0.6,

Pr[E3 or E4] = Pr[xj /∈ L(A)|(∗∗)] = Pr[xj /∈ L(A)] > 0.3.
(9)

First note that we can get rid of the condition (∗∗) since the events “xj ∈ L(A)” are
independent. Then, the probability that a block contains only strings in A is 1

2n , so
the probability that some block contains only strings in A is 1 − (1 − 1

2n )2n . Note
that limm→∞(1− 1

m )m = 1
e = 0.367 . . . > 0.3.

The expression
Pr[E2]

Pr[E2] + Pr[E4]
(10)

represents the probability that xj ∈ L(A) while xj /∈ L(MA
i ), all under the assump-

tion (∗∗), i.e., Pr[xj ∈ L(A)|xj /∈ L(MA
i ), (∗∗)], and since “xj ∈ L(A)” is independent

of (∗∗), we conclude (10) = Pr[xj ∈ L(A)|xj /∈ L(MA
i )].

Now, during the computation of MA
i on xj , MA

i can query at most polynomially
many strings of the oracle, and therefore, it can query at most polynomially many
strings from the 2|xj | blocks that follow xj . So consider those blocks where there is
a string that is queried by MA

i to be unavailable for the random experiment that
computes the probability of xj ∈ L(A). But, as |xj | grows, we can assume that the
polynomial bounding the number of oracle queries of MA

i is less than 2|xj |/2. Thus,

(10) = Pr[xj ∈ L(A)|xj /∈ L(MA
i )] ≥ 1− (1− 1/2|xj |)2|xj |/2 = 1− 1√

e
≥ 1

3
,

since the expression (1− 1/2|xj |)2|xj |/2 converges to
√

1/e as |xj | grows.
Consider now two cases. If Pr[E3] ≥ 0.1 then we are done with our quest to

show that Pr[E2] + Pr[E3] ≥ 0.1. If, on the other hand Pr[E3] < 0.1, then, since
Pr[E3] + Pr[E4] > 0.3 (by (9)), we have that Pr[E4] > 0.2. Since, (10) ≥ 1/3, it
follows that Pr[E2] > 0.1.
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In either case, Pr[E2] + Pr[E3] ≥ 0.1.

Exercise 4.16. Show that for a random oracle A, Pr[NPA 6= co-NPA] = 1.

The results in this section are related to the Random Oracle Hypothesis (ROH).
The ROH states that if two complexity classes are equal with respect to a random
oracle with probability 1, then they are equal; ROH has been shown to be false—
see [CCG+94].

4.3. Polynomial time hierarchy

Let Σ0P = Π0P = P, and let Σi+1P = NPΣiP, and Πi+1P = co-NPΣiP. We
define the polytime hierarchy as PH =

⋃
i ΣiP =

⋃
i ΠiP. Note that NP = Σ1P and

co-NP = Π1P, and the language MinFormula (defined on page 53) is in Π2P.
An Alternating Turing Machine (ATM) is a nondeterministic TM with an addi-

tional feature: all its states, except qaccept and qreject, are divided into two groups:
universal and existential. We give a (recursive) definition of what it means for a node
in the configuration graph to be accepting: a leaf node is accepting (rejecting) if it
corresponds to an accepting (rejecting) configuration. A universal (existential) node,
is accepting if all (some) of its children are accepting. We determine acceptance by
looking at the root node; we accept iff the root node is accepting.

Let ΣAlti be the class of languages decidable by polytime ATMs where the initial
state is existential and there are at most i “runs” of states on any computational
branch (i.e., a sequences of existential states, followed by a sequence of universal
states, then another sequence of existential states, etc., and there are at most i such
sequences). ΠAlti is defined analogously, except the machines start in a universal state,
and ΣAlt0 = ΠAlt0 denote the set of languages decidable by deterministic polytime
machines.

Recall that Σpi and Πp
i were defined in §2.3 on page 32.

Theorem 4.17. For all i, ΣiP = ΣAlt
i = Σpi , and the same holds for Π.

Proof. We prove it by induction on i. The basis case is i = 0 and all three are
equal to P (by definition). To show the inductive step assume the claim for i, and
show it for (i+ 1).

We show the following chain of containments:

Σi+1P
(1)

⊆ ΣAlti+1

(2)

⊆ Σpi+1

(3)

⊆ Σi+1P.

(1) Suppose L ∈ Σi+1P. Then L is decided by an NP TM with a ΣiP oracle, i.e., MO.
By IH this oracle O is in ΣAlti . Consider the ATM N which simulates M as follows:
First, N guesses at most polynomially many queries si, together with the answers to
those queries, and for the “yes” queries special “witnessing” strings wi. That is, N
initially guesses:

{(〈s1, w1〉, “yes”), (s2, “no”), . . . , (〈sm, wm〉, “yes”)},
and writes it all down. Second, N simulates MO, but when MO is about to query
the oracle O for the i-th time, N intercepts this query and checks that the query is
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indeed si. If this test passes, it responds with the answer it has guessed. The role of
the witnesses wi will become apparent in the checking stage.

Now N must verify that it guessed the correct answers to the queries. So N
branches universally on all the m queries (polynomially many of them). If si is a
“no” query, then N checks if si ∈ O (this is a ΠAlti language since oracle O is a ΣAlti
language).

If si is a “yes” query, N checks if 〈si, wi〉 ∈ O′, where O′ is just like O, except it
also takes as input the initial existential nondeterministic choices the machine deciding
O (i.e., a ΣAlti machine) makes, and thus O′ is de facto a ΠAlti−1 machine. Thus, the
wi are witnesses of what the machine for O must do on the initial existential run of
the “yes” input si, in order to eventually accept.

Thus, N performs a ΣAlti+1 computation, and so Σi+1P ⊆ ΣAlti+1.
(2) Suppose that L is decided by a ΣAlti+1 machine M . A computational path of M ,
on input x, can be described with a sequence of (i + 1) numbers in base d, where d
is the degree of nondeterminism of M . For example, y1, y2, y3 describe a sequence
of |y1|-many existential choices, followed by |y2|-many universal choices, followed by
|y3|-many existential choices. Let R(x, y1, y2, . . . , yi+1) be a predicate which holds
whenever the sequence of choices y1, y2, . . . , yi+1 on input x leads to an accepting
leaf. Since M is polytime, R is polytime. Clearly,

M accepts x iff (∃y1)(∀y2) · · · (Qyi+1)R(x, y1, y2, . . . , yi+1)

(bounds on quantified variables omitted). This shows ΣAlti+1 ⊆ Σpi+1.
(3) Finally, show Σpi+1 ⊆ Σi+1P. Suppose L ∈ Σpi+1, so x ∈ L ⇐⇒ (∃y1)α(y1, x),
where α(y1, x) is a Πp

i formula, so ¬α(y1, x) is a Σpi formula, and so by induction
¬α(y1, x) has a ΣiP oracle. Now decide L with a Σi+1P machine as follows: nonde-
terministically guess a b1 (of polynomial length), query the ΣiP oracle for ¬α(b1, x),
and accept iff the answer comes back “no.”

For Π it follows by complementing all the classes in the equality given in the
statement of the lemma. �

Theorem 4.18. If P = NP, then PH collapses to the ground level, i.e., PH = P.

Proof. It suffices to show that for any i, if ΣiP = ΠiP, then Σi+1P = ΣiP.
By theorem 4.17 we can use any of the three formulations of PH. We show that if
Σpi = Πp

i then Σpi+1 = Σpi . This is easy, since if Σpi = Πp
i , then we can “swap” two

(opposite) quantifiers (Qi and Qi−1), and then we can combine the resulting duplicate
quantifiers into one, bringing the number of alternations down by one. An inductive
procedure now presents itself to finish the proof. �

It is not known whether PH is a sequence of properly contained classes, but it is
believed to be so. Let

QSati = {ψ|ψ = ∃~y1∀~y2 . . . Q~yiφ(~x, ~y1, ~y2, . . . , ~yi) is satisfiable}

where φ is quantifier free, Q~z (Q ∈ {∃,∀}) denotes a vector of variables, i.e., Q~z is
Qz1Qz2 . . . Qzn.

Theorem 4.19. QSati is ΣiP-complete.
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Clearly PH ⊆ PSPACE, and the containment appears to be proper. Since PH is
not believed to collapse at any level, it is not believed to have complete problems,
since a complete problem for PH would have to be at some level of PH, and then
everything above that level would collapse to it.

The arithmetical hierarchy (AH) is defined analogously to PH. Recall that Rec
and RE are the classes of recursive and recursively enumerable languages, respectively
(see page 49). Then, Σ0Rec = Π0Rec = Rec, and Σi+1Rec = REΣiRec. Unlike PH, AH
provably does not collapse at any level.

Theorem 4.20. For all i, Σi+1Rec 6= ΣiRec.

Proof. The classes Σ1Rec = RE and Σ0Rec = Rec were separated by diagonal-
ization in theorem 4.1. The same diagonal argument relativizes to higher levels of the
hierarchy. �

In this paragraph we want to convey some intuition about AH, without developing
too much logic; see [BM77] for the necessary background.4 Let LA = [0, s,+, ·; =,≤]
be the standard first order language of arithmetic, containing the constant zero, the
successor function, plus, times, equality, and less-than-or-equal. Here is an example
of a formula over LA:

(s0 < x) ∧ (∀y ≤ x)(∀z ≤ x)(y · z = x→ (y = s0 ∨ z = s0)), (11)

where
s0 < x abbreviates s0 ≤ x ∧ ¬(s0 = x),
∀y ≤ xα abbreviates ∀y(y ≤ x→ α),
∃y ≤ xα abbreviates ∃y(y ≤ x ∧ α).

Let ∆0 denote the set of formulas where all quantifiers are bounded; (11) is an example
of a ∆0 formula. Let ΣAi be the set of formulas which are of the form ∃y1∀y2 . . . Qyiα,
where α is a ∆0 formula.

We say that a relation R(x) over N (where numbers are represented in binary)
is arithmetical if it can be represented as a formula A(x) over LA. For example, the
relation Prime(x), which is true iff x is prime, is arithmetical as it can be represented
by (11). It should come as no surprise (although it is not trivial to prove) that RE
relations can be represented with ΣA1 formulas (but note that ΣA0 = ∆0 relations
are a proper subset of Rec; however, ∆0 does correspond to LTH, the linear time
hierarchy—see theorem 4.26). In general, for i ≥ 1, ΣiRec languages can be given by
ΣAi relations.

While the AH certainly contains all the complexity classes mentioned in these
notes, and much more (all recursive languages, and recursively enumerable, etc.), it
is not all powerful.

Theorem 4.21 (Tarski). Let TA be the set of sentences over LA which are true
in the standard model of arithmetic (i.e., TA is the set of all the theorems of number
theory). Clearly, TA can be seen as a language when every such theorem is encoded
in some standard way as a string over {0, 1}∗. Then, TA /∈ AH.

4Or Stephen Cook’s logic notes [Coo08].
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See, for example, [BM77] for a proof of this theorem.
Note that we could have defined ΣiRec, for i ≥ 1, with ΣAi relations; this is a

machine independent definition of a complexity class. We have thus surreptitiously
come into contact with a beautiful area of complexity, known as Descriptive Com-
plexity. In Descriptive Complexity we are concerned with the richness of a language
necessary to express the computational complexity of certain concepts. One of the
first results in the area is Fagin’s theorem which shows that NP is precisely the set
of languages expressible by second-order existential formulas; a great source for this
field is [Imm99].

4.4. More on Alternating TMs

Define ATIME(f(n)) and ASPACE(f(n)) to be time and space bounded byO(f(n))
on an ATM, without a bound on the number of alternations. Let AP,APSPACE,AL
be defined analogously to their non-alternating versions. Note that PH ⊆ AP.

Theorem 4.22. For f(n) ≥ n we have

ATIME(f(n))
(1)

⊆ SPACE(f(n))
(2)

⊆ ATIME(f2(n))

and for f(n) ≥ log n we have

ASPACE(f(n))
(3)
= TIME(2O(f(n))).

Proof. (1) Depth first search of the ATM’s computation tree, not recording
configurations, but only the nondeterministic choice (in base b = degree of nondeter-
minism).
(2) Given Cinit, Caccept of the deterministic TM, the ATM branches existentially to
guess a mid-point configuration C, and then branches universally to check that Cinit ;
C ; Caccept. The depth of the recursion is

log(number of configurations) = log 2O(f(n)) = O(f(n)),

and at each step we require O(f(n)) time to write a configuration.
(3) [⊆] Construct the entire computation tree (2O(f(n)) many nodes), and mark the
accepting node (we can assume that there is a unique Caccept). Then, scan the graph
repeatedly, and if a universal (existential) configuration is such that all (at least one)
of its children are (is) accepting, mark it accepting. Stop when a scan introduces no
more accepting nodes.

[⊇] We use a similar idea to the Cook-Levin theorem (theorem 2.13). For time
2O(f(n)), the computational tableau is of size 2O(f(n)) × 2O(f(n)), so it cannot be
stored in space f(n). However: “Injurious distance should not stop my way; For then
despite of space I would be brought, From limits far remote where thou dost stay”;5

four pointers into the tableau can be stored:

s1 s2 s3

s

5Shakespeare, Sonnet XLIV.
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When the first pointer is pointing to s, existentially guess s1, s2, s3, check that they
yield s, and then universally branch on each si to check that it can be obtained from
the initial configuration, i.e., from the first row. Once we are in the first row, the
answer can be verified directly since we know the input. We start the recursion in
the lower-left corner, again assuming that there is a unique Caccept where the head is
on the first square and the tape is “clean.” �

Corollary 4.23. AL = P, AP = PSPACE, APSPACE = EXPTIME.

Define the class STA(S(n), T (n), A(n)) to be the class of languages accepted by
ATMs that are simultaneously S(n)-space-bounded, T (n)-time-bounded, and make
at most A(n) alternations on inputs of length n. A “∗” in any position means “don’t
care.” We also write Σ,Π in the third position to impose that the alternations start
with ∃ or ∀. For example, L = STA(log n, ∗, 0), and NP = STA(∗, nO(1),Σ1).

Exercise 4.24. Show that for S(n) ≥ log n,

STA(S(n), ∗, A(n)) ⊆ SPACE(A(n)S(n) + S(n)2).

4.5. Bennett’s Trick

In his 1962 Ph.D. thesis, James Bennett ([Ben62]) shows how to encode a long
sequence of numbers with shorter sequences of numbers by using alternation of quan-
tifiers. The idea is that (∃〈x0, x1, . . . , xn〉) can be expressed with

(∃〈y0, y1, . . . , y√n〉)(∀i ≤
√
n)(∃〈z0, z1, . . . , z√n〉).

We are going to use this trick to show a nice result about the linear time hierarchy.
Define the class linear time LT = TIME(n), and nondeterministic linear time

NLT = NTIME(n). Let ΣLT0 = LT and ΣLTi+1 = NLTΣLTi , which denotes the class
of languages decidable in nondeterministic linear time with a ΣLTi oracle. Define
the linear time hierarchy as LTH =

⋃
i ΣLTi . Let NTIMESPACE(f(n), g(n)) be the

class of languages decided simultaneously in time O(f(n)) and space O(g(n)) on a
nondeterministic (multi-tape) Turing machine.

Theorem 4.25 (Nepomnjascij). Let 0 < ε < 1 be a rational number, and let a
be a positive integer. Then, NTIMESPACE(na, nε) ⊆ LTH.

Proof. In this proof we are going to forgo the notation ~x representing a vector
of Boolean variables, as it would clutter the presentation. When we write x we mean
a vector of vectors of Boolean variables.

Suppose M is a nondeterministic TM running in time na and space nε. Then, M
accepts an input x iff

∃y[y represents an accepting computation for x]. (12)

So y = y1y2 . . . yna where each |yi| = nε, and so |y| = na+ε. So y is too long to verify
in linear time (in n = |x|). So we use Bennett’s trick: let z = z1z2 . . . zn1−ε where the
zi represent every (na−1+ε)-th string in y. So now, (12) can be restated as follows:

(∃z)(∀i)(∃u)[u shows zi yields zi+1 in na−1+ε steps & zn is accepting].



62 4. DIAGONALIZATION AND RELATIVIZATION

Note that |z| = n1−εnε = n, so this is fine, but |u| = na−1+εnε = na−1+2ε. But note
that (a − 1 + 2ε) < (a + ε) because 0 < ε < 1. So we have reduced u with respect
to y, by a factor of n1−ε, so to know how many times we have to repeat the above
nesting of quantifiers, we solve for i in the following equation:

na+ε

(n1−ε)i
= n,

and solving, we get i = (a+ ε)/(1− ε), which is a constant as a, ε are fixed. �

Recall the definition of ∆0-formulas on page 59. Let ∆N
0 denote the class of

languages that can be given by relations representable with ∆0 formulas.

Theorem 4.26. LTH = ∆N
0 .

An interesting open problem is whether P ⊆ LTH, or in fact what is the relation
of these two complexity classes; are they even comparable?

4.6. Answers to selected exercises

Exercise 4.10. The proof is analogous to the proof of the Space Hierarchy theorem
(theorem 4.2), and the division by log t(n) is now necessary since the machine is
“delayed” by keeping a counter.

Exercise 4.15. Let B be QSat just as in the proof of theorem 4.13.
For any oracle A define the language L(A) = {x| {0, 1}|x| ∩A = ∅ }. Note that

an NP machine with oracle A can decide L(A) by guessing y of length |x| and checking
if y ∈ A. So, a co-NP machine with oracle A can decide L(A). Just as in the proof of
theorem 4.13, let Mt1 ,M

t
2 ,M

t
3 , . . . be a list of all oracle TMs, where machine i takes

up at most ni steps to decide any string of length n.
We construct A in stages so that L(A) is not in NPA. At stage 0, A0 := ∅, and

at stage i, we choose an n such that all strings examined (for membership in A) so
far are of length < n and furthermore, ni < 2n. Simulate Mti on input 1n, and each
time Mti queries the oracle with some y, if y’s membership in A has already been
established, answer accordingly, and otherwise declare y not in A.

If at the end Mti rejects (all paths are rejecting), declare the remaining {0, 1}n
not in A. If Mti accepts, find an accepting path and some y ∈ {0, 1}n not queried on
it, and declare it in A.

Exercise 4.24. Suppose that L is decided with space S(n) and A(n) many alter-
nations, starting with an existential alternation. Let R(C,C ′) be a predicate that is
true iff C,C ′ are configurations which are not of the same type, meaning that one is
existential and the other universal, and C ′ is reachable from C with a sequence of at
most 2S(n)-many intermediate configurations where all these intermediate configura-
tions are of the same type as C.

Then, R is decidable in nondeterministic space S(n), and hence by Savitch’s theo-
rem, in deterministic space S(n)2. Now we implement the alternation with recursion
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as follows: check if there exists a C ′ (by cycling through all configurations lexico-
graphically) such that R(Cinit, C

′) and furthermore if for all C ′′ we have R(C ′, C ′′),
then there exists a C ′′′ such that R(C ′′, C ′′′) and so on.

The depth of this is A(n), and from level to level we only need to record a single
configuration, and to decide R(C1, C2) we need S(n)2 space that can be reused, so
we need A(n)S(n) + S(n)2 deterministic space.

4.7. Notes

For the Hierarchy theorems we follow [Sip06, §9.1]. See [Sip06, theorem 9.15,
pg. 344] for a proof of theorem 4.7. The proof (and statement) of theorem 4.12 follows
the exposition in [AB09]. §4.2.1 is based on [SP95, chapter 22]. The proof of theo-
rem 4.26 can be found in [CN10, §3.4]. Exercise 4.24 is from [Koz06, homework 4,
pg. 279]. The proof of theorem 4.26 can be found in [CN10].
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Circuits

5.1. Basic results and definitions

A Boolean circuit can be seen as a directed, acyclic, connected graph in which the
input nodes are labeled with variables xi and constants 1, 0 (or T, F), and the internal
nodes are labeled with And, Or, Not. We often denote And, Or, Not with the standard
Boolean connectives ∧,∨,¬, respectively. Furthermore, we often use x̄ to denote ¬x.

Nodes are also called gates in the context of circuits. The fan-in (i.e., number of
incoming edges) of a Not-gate is always 1, and the fan-in of And, Or can be anything.
The fan-out (i.e., number of outgoing edges) of any node can be arbitrary. Each node
in the graph can be associated with a Boolean function in the obvious way. The
function associated with the output gate(s) is the function computed by the circuit.
Note that a Boolean formula can be seen as a circuit in which every node has fan-out 1
(and ∧,∨ have fan-in 2, and ¬ has fan-in 1).

The size of a circuit is its number of gates, and the depth of a circuit is the largest
number of gates on any path from an input gate to an output gate.

Alternatively, circuits (of fan-in 2 and one output) can be defined more formally
as follows. A Boolean circuit is a program consisting of finitely many instructions of
the form: Pi := 0, Pi := 1, Pi := xl, Pi := Pj ∧ Pk, Pi := Pj ∨ Pk, Pi := ¬Pj , where
j, k < i (to ensure acyclicity), and where x1, . . . , xn are the input variables. We want
to compute Pm where m is the maximum index.

A family of circuits is an infinite sequence C = {Cn} = {C0, C1, C2, . . .} of
Boolean circuits where Cn has n input variables.

We say that a language L ⊆ {0, 1}∗ has polysize circuits if there exists a polyno-
mial p and a family C such that |Cn| ≤ p(n), and ∀x ∈ {0, 1}∗, x ∈ L iff C|x|(x) = 1.
Let P/poly be the class of all those languages which have polysize circuits.

Lemma 5.1. All languages in P have polysize circuits.

See proof of theorem 2.7.
The converse of the above lemma (i.e., “L has polysize circuits implies L ∈ P”)

does not hold, unless we put a severe restriction on how the n-th circuit is generated;
as it stands, there are undecidable languages that have polysize circuits.

Lemma 5.2. There are undecidable languages that have polysize circuits.

Proof. Recall that we showed in theorem 4.1 that the language ATM is unde-
cidable. We may assume that the instances of ATM, i.e., 〈M,x〉 are encoded as binary
strings where the first bit is 1. This is a minor technical point that makes the rest of
the proof simpler. Recall that (n)b is the binary representation of n.
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Let U = {1n|(n)b ∈ ATM}, and since ATM is reducible to U (via an exponential
time reduction, which is nevertheless a recursive reduction), it follows that U is also
undecidable.

On the other hand, U has a polysize family of circuits C = {Cn} deciding it,
where Cn is an And-gate connected to all the inputs if 1n ∈ U , and a single F-gate
otherwise. �

The trick in the above proof is to hide the computation in the “nonuniformity”
of the circuits; the circuit Cn is indeed small, but given n, we do not know how to
construct Cn (i.e., is it the And-gate or is it the F-gate?). Thus, we make the following
definition: a family of circuits C = {Cn} is uniform if there is a O(log n)-space TM
M which on input 1n, outputs Cn.

Theorem 5.3. A language L has uniform polysize circuits iff L ∈ P.

Those languages (or Boolean functions) that can be decided with polysize, con-
stant fan-in, and depth O(logk n) circuits, form the class NCk. The class ACk is
defined in the same way, except we allow unbounded fan-in. We set NC =

⋃
k NC

k,
and AC =

⋃
k AC

k, and while it is easy to see that the uniform version of NC is in P,
it is an interesting open question whether they are equal.

Lemma 5.4. For all k, ACk ⊆ NCk+1 ⊆ ACk+1. Thus, NC = AC.

Exercise 5.5. Prove lemma 5.4.

We say that a circuit family is in layered form if each circuit in the family has
the following three properties: (i) it consists in alternating layers of And and Or gates,
(ii) there are edges only between consecutive layers, and (iii) negations occur only at
the input level. Note that in a layered circuit, the depth is the same as the number
of layers.

Lemma 5.6. Any AC circuit family C can be put in layered form incurring a
polynomial increase in size, and a constant increase in depth.

Proof. Let Ci be the i-th circuit in the given family. First, traverse the circuit
from its output towards inputs, pushing any Not gates through And and Or gates
using de Morgan laws, and replicating gates if necessary (see figure 1). At the end, all
variables and negations are at level 0 (that is, layer 0 consists of x1, . . . , xn, x̄1, . . . , x̄n).
Now choose if you want to start the alternation at level 1 with And or Or gates; say
we start with And gates. Consider all gates of depth 1 (these will be gates connected
directly to the inputs, negated or unnegated). If a depth 1 gate is an And gate, do
nothing. If it is an Or gate, then put an And gate on each one of its wires (see figure 2).
Now consider gates at level 2, and repeat. We may have to collapse several And gates
(or several Or gates) into one And (or Or), since we are allowed unbounded fan-in.
That is, a tree of And gates may be collapsed to a single And gate which has a lot of
inputs. �

Lemma 5.7. Addition of two integers is in AC0.
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Figure 1. Using de Morgan and replicating gates.
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Figure 2. Putting And gates on the wires of an Or.

Proof. Let an−1, . . . , a0, bn−1, . . . , b0 be the two inputs (n-bit integers, where
a0, b0 are the least significant bits).

Algorithm 5.8 (Classical Binary Addition).
On input an−1 . . . a0 and bn−1 . . . b0

1. y0 := a0 ⊕ b0
2. carry0 := a0 ∧ b0
3. for i = 1, . . . , n− 1
4. yi := ai ⊕ bi ⊕ carryi−1

5. carryi := (ai ∧ bi) ∨ (ai ∧ carryi−1) ∨ (bi ∧ carryi−1)
6. yn := carryn−1

Suppose we were to implement the classical algorithm with a circuit. Since carryi
depends on carryi−1, the depth of the resulting circuit would be at least O(n), and
hence not an AC0 circuit.

Instead, note that the i-th bit of the sum is ai ⊕ bi ⊕ carryi, where carryi is the
carry bit left over after summing the (i−1) first bits. Compute carryi differently; note
that the i-th carry is 1 iff ∃j ∈ {0, . . . , i−1} such that aj∧bj and ∀k ∈ {j+1, . . . , i−1}
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it is the case that ak ∨ bk. This can be stated with:

carryi :=
∨

0≤j<i

(aj ∧ bj) ∧
∧

j<k<i

(ak ∨ bk)

 .
Note that this is a circuit of bounded depth. �

Lemma 5.9. Repeated addition of integers is in NC1.

Proof. Assume that we want to add n n-bit numbers. Using the previous result
directly, we can only show that repeated addition is in AC1, which is a weaker claim.
To show that it is in NC1, we first design an NC0 circuit which takes as input three
integers, and returns two integers whose sum is the same as the sum of the original
three: given a, b, c, we produce x, y as follows:

ai, bi, ci 7→ xi = ai ⊕ bi ⊕ ci︸ ︷︷ ︸
sum without carries

, yi+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)︸ ︷︷ ︸
the carry

.

Each step reduces the number of integers to be added by 1/3. So in a logarithmic
number of steps we are left with two integers. We now add those two with an AC0

circuit, as was shown possible in lemma 5.7. �

We say that a Boolean function is symmetric if it only depends on the num-
ber of 1s in the input, and not on their order. More formally, if f = {fn}, then
f is symmetric if for all n, given any permutation π ∈ Sn, fn(x1, x2, . . . , xn) =
fn(xπ(1), xπ(2), . . . , xπ(n)).

Examples of symmetric functions are the parity function, Par = {Parn}, where
Parn(x1, . . . , xn) is 1 if the number of 1s in its input is odd, and the majority function,
Maj = {Majn}, where Majn(x1, . . . , xn) is 1 if at least half of its inputs are 1, and
a generalization of majority, namely the threshold function, Th = {Thk,n} which
outputs 1 iff at least k of its n variables are 1.

Lemma 5.10. All symmetric Boolean functions can be computed with NC1 cir-
cuits.

Proof. Notice that if f = {fn} is a symmetric Boolean function, then the value
of fn depends only on the number of inputs that are set to 1. To construct the circuit
that calculates fn, we treat all inputs as 1-bit numbers and construct a circuit that
adds them, thus counting the number of 1’s in the input.

From lemma 5.9, we know that this can be done using an NC1 circuit. The output
of this circuit is a log n bit number. Now look at those log n many bits as the input
to a circuit which gives us the value of fn; this circuit can be given in CNF, since
each clause will have log n many literals, and there are O(2logn) many clauses, and
thus the CNF circuit has size O(n log n) (and depth 2 when the fan-in is unbounded,
and depth log n when the fan-in is required to be 2).

Altogether we obtain an NC1 circuit. �

Recall that a deterministic finite automaton (DFA) is a TM that reads the input
left-to-right, changing states as it goes, and never using any extra space.
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Lemma 5.11. The set of regular languages is contained in NC1.

Proof. Let L be a regular language decided by a DFA M . Define Ma, a ∈ Σ,
to be the Boolean matrix with a 1 in position (i, j) iff on symbol a machine M moves
from state qi to state qj .

Given a ∈ {0, 1}∗, a = a1a2 . . . an, consider the iterated Boolean matrix product
M := Ma1Ma2 · · ·Man . (Boolean product means that instead of addition we have ∨
and instead of multiplication we have ∧.) This product can be clearly computed with
an NC1 circuit as each Ma is of constant size (i.e., |Q| × |Q|).

The output of this circuit is computed as the ∨ of all those entries which are in the
row corresponding to the initial state, and which also are in the columns corresponding
to the accepting states. �

Exercise 5.12. Prove by induction on n that the (i, j)-th entry of the product
of matrices Ma1Ma2 . . .Man is 1 iff—when started in state qi—machine M reaches
state qj after reading a1a2 . . . an.

Lemma 5.13. For uniform circuit classes, NC1 ⊆ L ⊆ NL ⊆ NC2.

Proof. The first containment follows from the fact that an NC1 circuit can
be evaluated by a depth-first manner using only logspace. On the other hand, the
circuits are uniform, so on an input x ∈ {0, 1}n, Cn can be computed in logspace.
However, |Cn| is polynomial in n, so it will not fit in logspace; we deal with that by
only generating the parts of the circuit we need at a particular step of the depth-first
evaluation.

The second containment is by definition.
The third follows from the fact that DirectReach is in NC2: matrix product is

in NC1, and therefore iterated matrix product is in NC2, and so transitive closure can
be computed in NC2. �

5.2. Shannon’s lower bound

In the 1960s, Shannon1 a showed that most Boolean functions require large cir-
cuits, but as of today, for concrete Boolean functions, the best lower bounds we have
are linear. Let Bn be the set of Boolean functions on n variables (|Bn| = 22n), and
in this section consider circuits with gates {∧,∨,¬, 0, 1} of fan-in exactly two except
for fan-in one negations at input level only. Let the size of a circuit be the number of
{∧,∨} gates (so the negation gates at the input level do not count for size).

Claim 5.14. The number of circuits with n variables and size s is bounded above
by (2 · (s+ 2n+ 2)2)s.

Exercise 5.15. Prove claim 5.14.

Claim 5.16. For s = 2n/(10n) the value of the expression (2 · (s+ 2n+ 2)2)s is
bounded above by 22n/5, and so “almost all” Boolean functions in Bn require circuits
of size Ω(2n/n).

1See [Weg87] for a complete presentation of this material.
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Proof. Setting s = 2n/(10n), and taking the log of (2 · (s+2n+2)2)s, we obtain

2n/(10n) · 2 log
(√

2 (2n/10n+ 2n+ 2)
)

︸ ︷︷ ︸
(∗)

, (13)

and for sufficiently large n, (∗) < n, so for sufficiently large n (13) is less than
2n/(10n) · 2n, which is 2n/5. �

We know that n2n many gates are sufficient to compute any Boolean function in
Bn, since n2n is the size of its CNF (or DNF) representation. It is also easy to give a
slightly better construction, from which it follows that every Boolean function can be
computed with O(2n) gates. We do this by induction on the number of inputs. Let

f = (¬xn ∧ f |xn=0) ∨ (xn ∧ f |xn=1),

where f ∈ Bn and f |xn=0, f |xn=1 ∈ Bn−1. Let s(f) be the size of the smallest circuit
computing the function f . Then

s(f) ≤ 2 ·max{s(f |xn=0), s(f |xn=1)}+ 3.

The claim follows from this.
In fact we can get an even tighter upper bound showing that the lower bound

Ω(2n/n) in claim 5.16 is very exact.

Claim 5.17. Every Boolean function f in Bn can be computed with circuits of
size O(2n/(n− log n)) ⊆ O(2n/(n− 1

2n)) ⊆ O(2n/n).

Proof. Observe that for any k there is a circuit with multiple outputs and size
O(22k) such that for every f in Bk there is an output computing f . This is just a
CNF-like circuit, with all the possible 2k different clauses at level 1, and at level 2 it
has Or gates connected to all the possible subsets of clauses at level 1.

For f ∈ Bn, and for any k ≤ n, we have that f(x1, . . . , xn) equals∨
a1,...,ak∈{0,1}

(xa11 ∧ · · · ∧ x
ak
k ) ∧ f(a1, . . . , ak, xk+1, . . . , xn),

where xa is x if a = 1, and ¬x if x = 0. Now construct a circuit with outputs for all
functions xa1∧. . .∧xak where a1, . . . , ak ∈ {0, 1}k. Building this circuit inductively on
k, layer by layer, results in a circuit of size O(2k). On the other hand, all the functions
f(a1, . . . , ak, xk+1, . . . , xn), for a1, . . . , ak ∈ {0, 1}k, can be computed with a circuit
of size O(22n−k). Putting it all together, we have a circuit of size O(2k) + O(22n−k)
computing f . Select k so that n− k = log(n− log n). �

As we know that most Boolean functions require Ω(2n/n) many gates, we can
“construct” a hard Boolean function by enumeration: for every n, examine all Boolean
functions in Bn, and for each such Boolean function examine all circuits of size up to
Ω(2n/n), and pick the first Boolean function not computable by such a circuit. This
way, we obtain a family f = {fn}. The trouble with this “construction” is that it
tells us very little about the nature of hard Boolean functions (not to mention the
infeasibility of the procedure, as it requires EXPSPACE).
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An open question is: can we give a natural Boolean function f = {fn} that
is provably hard? By “natural” we mean for example a function f = {fn} which
computes if a graph of a given size has a clique; i.e., a Boolean function related to a
natural combinatorial problem that requires large circuits.

So far, the best we can do for natural functions is the following linear lower bound.
Recall that Thk,n(x1, x2, . . . , xn) is true iff at least k of the n inputs are true.

Claim 5.18. Th2,n requires circuit size at least 2n− 4.

Proof. We do the proof by induction on n. For n = 2 and n = 3 it is easy.
Otherwise, let C be an optimal circuit for Th2,n, and suppose that the bottom most
gate acts on variables xi, xj , where i 6= j. Under the four possible settings to xi, xj ,
the function Th2,n has three possible sub-functions: Th0,n−2,Th1,n−2,Th2,n−2. It
follows that either xi or xj fans out to another gate in C, for otherwise C would have
only two inequivalent subcircuits under the settings of xi, xj . Suppose that it is xi
that fans-out to another gate. Setting xi to 0 will eliminate the need for at least two
gates from C. The resulting function is Th2,n−1, which by induction requires circuits
of size 2(n− 1)− 4. Adding the two eliminated gates to this bound shows that C has
at least 2n− 4 gates, which completes the induction. �

5.3. The probabilistic method

In this section we give two different proofs of a super-polynomial lower bound for
parity as computed by AC0 circuits.2

5.3.1. First proof of Parity not in AC0. We show Parity /∈ AC0, where
Parity is the language of strings over {0, 1} with an odd number of 1s, i.e., Parity =
{x ∈ {0, 1}∗|Par|x|(x) = 1}, where the function Par = {Parn} was defined on page 68.

All Boolean functions on n variables can be computed by circuits of depth 2
(CNF or DNF). And a CNF circuit (which we shall also call an And-Or circuit) can be
transformed directly into a DNF circuit (which we shall also call an Or-And circuit),
and vice-versa, with the distributive laws:

(x ∧ (y ∨ z))↔ (x ∧ y) ∨ (x ∧ z),
(x ∨ (y ∧ z))↔ (x ∨ y) ∧ (x ∨ z).

(14)

Suppose that we have an And-Or circuit in which all the Or gates have fan-in c and
the And-gate has fan-in d. We use the distributive laws (14) to transform our And-Or
circuit into an Or-And circuit, where now the Ands have fan-in d and the output Or

has fan-in cd (see figure 3).
Consider a polybounded family of circuits C = {Cn}, where each Cn is an And-Or

circuit. Suppose that for every Cn, the fan-in of the Or gates (in the middle layer) is
bounded by c, and the output And-gate depends on constantly many input variables,
meaning that if you collect all the literals connected to an output And-gate (by a path

2Two other prominent lower bounds for circuits are Razborov’s super-polynomial lower bound
for monotone circuits computing Clique (stated, but not proven, as theorem 6.28), and the Razborov-
Smolensky results showing that for p, q different primes AC0[p] 6= AC0[q].
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Figure 3. And-Or as Or-And.

from the input layer, passing through the layer of Ors) you get a set of variables whose
size is always bounded by some constant e.

The following claim holds for such a C (as described in the previous paragraph).

Claim 5.19. C can be converted to an Or-And family C ′, still of polynomial size,
of constant input fan-in. Also, the claim still holds if we change the definition of
“depends on constantly many input variables” to mean a semantic dependence. That
is, each output And-gate might be connected to an arbitrary number of literals, but
its value depends on the value of only constantly many input variables.

Proof. If the And gate is connected (through the Or gates) to no more than e
variables, then there are at most 3e different (in terms of input literals) Or gates (for
each variable x the Or gate either uses x, its negation, or none of them). Deleting
duplicate input connections we can lower the fan-in of the And gate to be at most 3e.
The fan-in of the Or gates is, of course, bounded by e. Thus, using distributive laws
to exchange the And and Or levels, we will create a single Or gate connected to no
more than e3e And gates, which is a constant number!

If we consider semantic dependence instead, then if we set all but the e variables
to, say, 0, the circuit would compute the same Boolean function, and the output And
would depend syntactically on no more than e variables. This finishes the proof. �
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Note that the last word on the type of results presented in claim 5.19 is the H̊astad
switching lemma; see [Bea94].

Claim 5.20. Suppose that we have a circuit for Parn of depth t and size g. Then
there is a circuit of same depth and size for Parn.

Proof. Just note that Parn(x1, x2, . . . , xn) = Parn(x1, x2, . . . , xn). �

Claim 5.21. Suppose that we have a circuit C for Parn, and we set a variable xi
to 0 (or 1) and simplify. Then the resulting circuit C ′ computes Parn−1 or Parn−1.
Consequently, the same applies if we set any number of variables.

Proof. This follows immediately from the observation that

Parn(0, x2, . . . , xn) = Parn−1(x2, . . . , xn),

Parn(1, x2, . . . , xn) = Parn−1(x2, . . . , xn).

We used x1, but obviously the same works for any xi. �

Claim 5.22. Parn can be computed with a circuit of polynomial size and depth
O(log n). Thus, Parity ∈ NC1.

Proof. This has already been shown in lemma 5.10. But this can also be checked
directly, as

Parn(x1, . . . , xn) = Parbn2 c(x1, . . . , xbn2 c)⊕ Par(n−bn2 c)(x(bn2 c+1), . . . , xn).

Using this fact we can compute Parn with a tree of Xor gates. Note that each ⊕ can
be replaced (locally) using x ⊕ y ↔ (x ∧ ȳ) ∨ (x̄ ∧ y), and note that all the gates in
this circuit have fan-in 2. �

Theorem 5.23. Parity /∈ AC0.

The rest of this section is a proof of this theorem. We start with a claim.

Claim 5.24. Parity cannot be decided with a polysize Or-And circuit.

Proof. Suppose that Parn has an Or-And circuit. If one of the And gates has as
inputs both xi and x̄i, then eliminate this And since its contribution to the output Or
is zero. If an And gate is missing a variable xi as input (that is, neither xi nor x̄i is an
input to this And) then by setting all the other literal inputs to this And to 1, we set
the circuit to 1, regardless of the value of this xi, which means that the circuit is not
computing the parity correctly. Summing up, this Or-And circuit is such that to each
And gate each variable comes in as an input (either as itself or negated). But this
means that each And corresponds to “one row” of the truth table for Parn, i.e., this
Or-And circuit is the conjunctive normal form of Parn. Since there are 2n−1 rows with
value 1, there must be 2n−1 And gates, and so Parn requires at least 2n−1 gates. �

Exercise 5.25. Show that Parity cannot be computed with a polysize And-Or
circuit.

Now, theorem 5.23 follows directly from the next claim.
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Claim 5.26. ∀t,∀c,∀p(n), Parity cannot be computed using a depth t circuit
family of size p(n) that has input-level fan-in ≤ c.

Note that theorem 5.23 follows from this claim because, in order to limit the
input-level fan-in, we can always insert a dummy layer of gates at the input level (all
of fan-in 1), and increase the depth to (t+ 1).

The case t = 2 was already done (from claim 5.24 and exercise 5.25 we know that
Parity cannot be computed with a polysize circuit of depth 2, let alone one where
there is a restriction on the input-level fan-in).

For t > 2 we are going to use the following strategy: let t be the least such
depth, and suppose that S1, S2, S3, . . . is a family of circuits of depth t and polysize
computing Parity. Then we are going to produce S′1, S

′
2, S
′
3, . . ., of depth (t−1) and

polysize, thereby getting a contradiction.
To produce S′n we are going to take S4n2 and set (4n2 − n) of its variables to 0

and 1 in such a way that we can use the distributive laws (14) on levels 1 and 2 to
exchange these two levels without increasing the size of the circuit exponentially. To
do this, it is enough to have a situation where each gate on level 2 depends on only
a constant number of variables (see claim 5.19 and the discussion leading up to it).
Then, levels 2 and 3 can be collapsed to a single layer leaving a circuit of depth (t−1).

How can we come up with the right restriction mapping S4n2 to S′n? We are going
to show one exists without explicitly constructing it: we use a random restriction and
show that the probability of getting an appropriate substitution is positive, so we can
conclude that one exists.

The kind of reasoning just described is a very powerful technique in combinatorics,
and it goes under the name of a probabilistic argument; “My thoughts and my discourse
as madmen’s are, at random from the truth vainly express’d”.3

We shall use a family of random restrictions r = {rn}, where

Pr[xrni = xi] =
1√
n

Pr[xrni = 0] = Pr[xrni = 1] =
1− 1√

n

2
.

Then, Srnn is the result of applying the random restriction rn to x1, x2, . . . , xn, and
simplifying Sn accordingly, so Srnn is Parm or Parm where m ≤ n.

Since it will be understood that we are applying rn to Sn, we are going to drop
the subscript of rn, and write r.

Exercise 5.27. As a warm up to the probability that we are going to be using
in this section (and in chapter 7) show the Markov inequality:

Pr[X ≥ a] ≤ E(X)

a
, (15)

and the Chebyshev inequality:

Pr[|X − E(X)| ≥ a] ≤ V (X)

a2
. (16)

3Shakespeare, Sonnet CXLVII.
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Claim 5.28. Pr[there are fewer than
√
n

2 vars in Srn] = O( 1√
n

).

Proof. Consider r acting on Sn. The probability of setting a variable to 0 or 1
is q = 1− 1√

n
, and the probability of leaving it unset is p = 1√

n
= 1− q. This is done

independently for each variable, and so it is a binomial distribution with probability
of having exactly k successes (i.e., of leaving exactly k variables unset) at

(
n
k

)
pkqn−k.

Let X be the random variable counting the number of successes (i.e., counting
the number of unset variables) in n trials. We want to compute E(X) and Var(X).
Let

Xi =

{
1 if i-th trial is a success, i.e., xri = xi

0 otherwise
,

then E(Xi) = 1 · p+ 0 · q = p, and E(X) = E(
∑n
i=1Xi) =

∑n
i=1E(Xi) = n · p and

Var(X) = E(X2)− E(X)2 = E((
n∑
i=1

Xi)
2)− (n · p)2

= E(

n∑
i=1

n∑
j=1

XiXj)− (n · p)2

= n(n− 1)p2 + n · p︸︷︷︸
(∗)

−(n · p)2 = np− np2 = np(1− p),

where (∗) is for when i = j, because E(XiXi) = p.
We are now ready to prove the claim.

Pr[fewer than
√
n

2
vars remain in Srn]

≤Pr[X ≤
√
n

2
] = Pr[

√
n−X ≥

√
n−
√
n

2
] = Pr[E(X)−X ≥

√
n

2
]

≤Pr[|X − E(X)| ≥
√
n

2
].

Using Chebyshev inequality, the last line can be bounded by

≤ Var(X)(√
n

2

)2 =

√
n− 1(
n
4

) ≤ 4 ·
√
n

n
= 4 · 1√

n
,

which finishes the proof of the claim. �

We are now going to show that after a random restriction r, the And gates on
the second level depend on a constant number of variables with high probability. In
other words, we prove by induction on c that the And gates depend on “too many
variables” with probability O(n−k).

The basis case is c = 1, where fan-in 1 into the Or gates (at level 1) means that
these Or gates can be disregarded, and the inputs connected directly to the And gates.

We now consider two possibilities:

(1) the And-gate has a large fan-in (f ≥ 4 · k · lnn),
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(2) the And-gate has a small fan-in (f < 4 · k · lnn).

Claim 5.29. In the first case (large fan-in), we have:

Pr[And-gate is not 0] = O
(
n−k

)
.

Proof. This is because it is very likely that a random r would have set one of
the And’s inputs to 0. So with high probability, the And-gate depends on no variables.
We now give the details.

Pr[And-gate not 0]

≤Pr[all inputs not 0] ≤ Pr[a fixed input not 0]4k lnn

≤

(
1 + 1√

n

2

)4k lnn

,

and for n ≥ 4,

≤
(

3

4

)4k lnn

= n4k ln( 3
4 ) ≤ n−k,

which proves the claim. �

Claim 5.30. In the second case (small fan-in), we have:

Pr[And-gate depends on more than 18k inputs] = O
(
n−k

)
.

Exercise 5.31. Show the following upper bound for the binomial distribution:

Pr[X ≥ a] =

n∑
i=a

(
n

i

)
pi(1− p)n−i ≤ pa2n. (17)

Proof. (of claim 5.30)

Pr[And-gate depends on more than a variables]

≤
4k lnn∑
i=a

(
4k lnn

i

)
(1/
√
n)i(1− 1/

√
n)4k lnn−i,

and using (17),

≤(1/
√
n)a24k lnn = n−a/2n8k = n8k−a/2.

Now letting a = 18k completes the proof. �

In the induction step assume the result holds for (c − 1). Again, there are two
cases:

(1) before the random restriction, the And-gate has many Or-gates below it with
disjoint input variables (at least d · lnn, where d = k · 4c),

(2) before the random restriction, the And-gate has few Or-gates below it with
disjoint input variables (less than d · lnn).
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In the first case (many Or-gates below And), it is very likely that after the random
restriction one of the Or-gates will have all of its inputs set to 0, and so the And-gate
is 0, and so it depends on no variables:

Pr[And-gate is not = 0]

≤Pr[none of the Or-gates is 0]

≤(Pr[a fixed Or-gate is not 0])d lnn

≤(1− 4−c)d·lnn for n ≥ 4

≤nd·ln(1−4−c)

≤n−d·4
−c

since ln(1− x) ≤ −x

=n−k.

In the second case (few Or-gates below And), choose a maximal set of Or-gates
with disjoint input variables. Let H be the set of the variables that occur in these Or

gates.
Since the Or-gates’ fan-in is c, we know that |H| ≤ c·d·lnn. Let {τ1, τ2, . . . , τl}, l =

2|H|, be all the truth assignments to variables in H. Let Ai = Cτi , after simplifying,
where C represents the whole And-Or circuit. Since each of the Or-gates has a variable
in H, each Or-gate in Ai either disappears or “loses” an input. So the input fan-in
in each Ai is at most (c − 1). By the induction hypothesis, the probability that Ari
depends on more than ec−1 variables is bounded above by O(n−k).

Consider the Boolean function fC ,

fC =

l∨
i=1

clauseH(τi) ∧Ai, (18)

where clauseH(τi) is a conjunction of literals over variables in H, in such a way that
if x ∈ H, and τi(x) = 0, then x appears as x̄, and if τi(x) = 1, then x appears as
x. Therefore, the probability that fC depends on more than l · ec−1 many variables
is bounded above by l ·O(n−k). So, if we can show that with high probability |H| is
constant, we will have that with high probability l is constant as well, and then the
claim follows.

Let h be the number of variables in H after a random restriction. We show that:

Pr[h > 4cd+ 2k] = O
(
n−k

)
.

To see this, note that |H| ≤ cd lnn, so once again using (17) we get that

Pr[h > a] ≤ 2cd lnn ·
(

1√
n

)a
≤ n2cd · n−a/2 = n2cd−a/2,

and solving for a in 2cd− a/2 = k we get that a = 4cd+ 2k.
Thus, with high probability (which always means O(1 − n−k)) 2h ≤ 24cd+2k.

Hence, with high probability, l ≤ 24cd+2k in (18), and so, with high probability,

ec = 24cd+2k · ec−1 + (4cd+ 2k),

where ec is the constant bounding the number of variables on which fC depends.
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5.3.2. Second proof of Parity not in AC0. We are going to give a different
proof of Parity /∈ AC0, which also uses the probabilistic argument, but with a dash
of linear algebra, and employing the idea of arithmetization that was introduced in
§3.3.2 (see page 44).

The gate And(x1, . . . , xn) can be represented by the multivariate polynomial
Πn
i=1xi = x1x2 . . . xn, over Z. Using (1−x) to represent Not, and de Morgan laws, we

give the polynomial representation of the Or function: 1−Πn
i=1(1−xi). Note that the

polynomials thus obtained have degree n; we are interested in lowering this degree,
and to that end we use the probabilistic method. We construct a random polynomial
as follows: let S0 = {1, . . . , n}. Let Si ⊇ Si+1, for i ∈ {0, . . . , log n + 1}, where Si+1

is chosen randomly so that for all j ∈ Si, Pr[j ∈ Si+1] = 1
2 .

Let qi =
∑
j∈Si xj be a random polynomial (of degree 1).4

Let p = Πlogn+2
i=0 (1− qi), so it is a polynomial of degree O(log n).

Claim 5.32. If Or(x1, . . . , xn) = 0, then 1− p = 0.

Proof. If Or(x1, . . . , xn) = 0, then x1 = · · · = xn = 0, so qi = 0 for all i, so
1− qi = 1 for all i, so their product p is 1, so 1− p = 0. �

Claim 5.33. If Or(x1, . . . , xn) = 1, then there is at least one xi = 1. In this case,
the probability is ≥ 1

2 that one of the polynomials qi has the value exactly 1, and so
Pr[1− p = 1] ≥ 1

2 .

Proof. Let T be a set of variables of an Or that are set to true; we need to argue
that for any choice of a non-empty T ⊆ S0, the probability is at least 1

2 that there
is at least one i ∈ {0, 1, . . . , log n + 2} such that the size of T ∩ Si is exactly 1. We
accomplish this by considering the probability of two cases.

Case 1. For all i ∈ {0, 1, . . . , log n+ 2}, we have that |T ∩ Si| > 1.
Since the Si form a non-ascending chain of subsets, it follows that for all i,

|T ∩ Si| > 1 iff |T ∩ Slogn+2| > 1, which is true if at least two variables “survive” all
the way from S0 to Slogn+2.

The probability of this happening is bounded by
(
n
2

)
4−(logn+2) < 1

16 , since there
are

(
n
2

)
ways to choose a pair of variables, and then there is a probability of 1

2logn+2

that each “survives” until the end. Note that we could have given a tighter bound,
since we are over counting (these pairs intersect). We could have accomplished that
with the Inclusion-Exclusion Principle, but we do not need such tight bounds in this
case.

In fact, the following (even coarser) bound will do just fine for us:

Pr[|T ∩ Slogn+2| > 1] ≤ Pr[|T ∩ Slogn+2 ≥ 1] ≤
(
n

1

)
2−(logn+2) =

1

4
.

Case 2. There is an i ∈ {0, 1, . . . , log n+ 2} with |T ∩ Si| ≤ 1.

4The degree of a multivariate polynomial is calculated by writing it out as a sum of monomials—
unique up to order of summation—and find the monomial with the highest degree, where the degree
of a monomial (xa1

1 · · ·x
al
l ) is a1 + · · ·+ al.
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Suppose that |T ∩ S0| = 1; then we are set. Otherwise, |T ∩ S0| = |T | > 1, and
let i be such that |T ∩Si−1| > 1 and |T ∩Si| ≤ 1. Let t = |T ∩Si−1|. The probability
that |T ∩ Si| = 1 under the assumption that t > 1 and |T ∩ Si| ≤ 1 is given by

t2−t

2−t + t2−t
=

t

t+ 1
≥ 2

3
,

since t2−t is the probability that one of the t variables “survives,” and 2−t is the
probability that none of the t variables “survive.”

We are now going to put case 1 and 2 together, to obtain a lower bound for
Pr[∃i s.t. |T ∩ Si| = 1]. Case 1 does not occur with probability 3

4 , and in case 2 we
get what we want with probability ≥ 2

3 , and multiplying the two values5 we obtain
≥ 1

2 . �

So the polynomial (1 − p) approximates the Or, but with a success rate of only
1
2 . But we can improve this by selecting independent polynomials p1, p2, . . . , pt, and
then using P = 1 − Πt

i=1pi, which has degree O(t log n). The error probability of P
is ≥ 1

2t . To get the error probability below a given constant ε, we want 1
2t < ε, so

t > log ε−1.
The polynomial for the And(x1, . . . , xn) is just the product of the pi’s with xj

replaced by (1− xj), so it is just the dual case of the analysis of the Or.
We want to simulate an AC0 circuit family of size s = s(n) and depth d using

our polynomials, so that the error probability is at most ε. We replace all the gates
with our polynomials, making sure that the error probability for each gate is ≤ ε

s .
The degree of the polynomial approximating the And and Or gates with error ≤ ε

s
is O(log( sε ) log n). So the degree of the polynomial approximating such a circuit of
depth d is O(logd( sε ) logd n) = O(log2d( sε )), since s = s(n) is a polynomial in n.

Thus, for every f ∈ AC0, we can generate a polynomial p of polylogarithmic
degree (in n), with the property that for any (a1, . . . , an) ∈ {0, 1}n the probability is
at least (1− ε) that f(a1, . . . , an) = p(a1, . . . , an).

Claim 5.34. There exists polynomial P s.t. f(a1, . . . , an) = P(a1, . . . , an) for all
(a1, . . . , an) in some S, where |S| ≥ (1− ε)2n.

Proof. For a random polynomial thus generated, the expectation of the number
of inputs for which it computes the circuit correctly is (1 − ε)2n. There has to be a
polynomial P that meets this expectation. �

5This is a little bit more subtle than that. You can apply the rule Pr[A ∧ B] = Pr[A] · Pr[B]

only if the events are independent. In case they are dependent, you can apply the rule (which is
always valid): Pr[A ∧ B] = Pr[A] · Pr[B|A] where Pr[B|A] is the conditional probability (i.e., what
is the probability of B taking place, given that A has taken place). Let A be the event: “not
for all i, |T ∩ Si| > 1,” and we know from Case 1. that Pr[A] > 3

4
. Let B be the event: “for

some i, |T ∩ Si| = 1,” and note that in case 2, we are doing our analysis of B taking place, under
the assumption that event A has taken place, i.e., we computed a lower bound for Pr[B|A], i.e.,
Pr[B|A] > 2

3
. In fact, our events A and B are not independent events; B is a “subset” of event A.

It follows that Pr[B] = Pr[A ∧B] = Pr[A] · Pr[B|A] > 3
4

2
3

= 1
2

.
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Identify true with −1 and false with +1. The linear function that maps 0 to 1
and 1 to −1 is x 7→ 1 − 2x; its inverse is x 7→ (1−x)

2 . Apply this linear function to
the polynomial P that correctly simulates f on (1 − ε)2n-many inputs to obtain a
polynomial Q of the same degree—which now correctly simulates f transformed to
use {−1,+1}n, again over (1− ε)2n-many inputs.

Suppose that the parity function is in AC0. Then there must be such a polynomial
Q for parity. For (1−ε)2n-many input strings (in {−1,+1}n), Q(y1, . . . , yn) = Πn

i=1yi,
i.e., Q corresponds exactly to multiplication: if the number of 1s is odd, Q is −1, and
if it is even, it is +1.

Claim 5.35. There is no polynomial Q of degree
√
n

2 that correctly represents the
function Πn

i=1yi for (1− ε)2n strings in {−1,+1}n.

Proof. We first give the proof outline, and then fill in the details. Let

S = {(y1, . . . , yn) ∈ {−1,+1}n|Πn
i=1yi = Q(y1, . . . , yn)},

where Q is a polynomial of degree
√
n

2 that correctly represents Πn
i=1yi on (1 − ε)2n

many strings in {−1,+1}n. Thus, |S| ≥ (1 − ε)2n. We can assume that Q is multi-
linear, that is, no variable has exponent larger than 1. Let L(S) be the vector space
(over R) of functions f : S −→ R. The dimension of L(S), dim(L(S)), is |S|. On
the other hand, let POL be the set of n-variable multilinear polynomials of degree
(n+
√
n)

2 . Then, POL is also a vector space (over R), with the usual polynomial addi-

tion and multiplication by scalars in R. Then, dim(POL) is
∑ (n+

√
n)

2
i=0

(
n
i

)
, and using

the Stirling approximation we can show that this is strictly smaller than |S|. On the
other hand, dim(L(S)) ≤ dim(POL); contradiction.

We now provide some details. The natural basis for L(S) is B given by the set of
functions fs : S −→ R where fs(s) = 1 and fs(s

′) = 0 for s′ 6= s. Now, any function
in L(S) can be written as a linear combination of functions in B.

Note that any fs can be represented by an n-degree multivariate multilinear
polynomial as follows:

f(s1,...,sn)(x1, x2, . . . , xn) 7→ 1

2n
(1− s1 · x1)(1− s2 · x2) · · · (1− sn · xn),

and the expression on the right-hand side can be written out as a sum of monomials.
Each such monomial (without the constant coefficient multiplying it in front) is of
the form xi1xi2 · · ·xik with k ≤ n.

Now consider such monomials in the representation of a given fs. If a monomial
has at most n/2 many variables, i.e., k ≤ n/2, then leave it as it is. Otherwise,
k > n/2, and replace this monomial by the polynomial

g = Q(x1, x2, . . . , xn)xj1xj2 · · ·xjn−k ,
where {xj1 , xj2 , . . . , xjn−k} = {xi1 , xi2 , . . . , xik}c. Two observations about the poly-
nomial g: first, it is of degree (

√
n + n)/2, and second, on S it takes on the same

values as the original monomial.
Thus, we just showed that any fs can be represented with a multivariate multi-

linear polynomial of degree at most (
√
n+ n)/2. We are not quite done yet; to show



5.4. COMPUTATION WITH ADVICE 81

that dim(L(S)) ≤ dim(POL), we need to show that this mapping (fs
h7→ p ∈ POL,

where we extend h from basis(L(S)) to all of L(S) in the natural way to obtain a
vector space homomorphism) is such that h(S) is linearly independent.

Suppose that h(S) is linearly dependent, so there are p1, p2, . . . , pk ∈ h(S) such
that c1p1 + c2p2 + · · · + ckpk = 0 (assume all ci 6= 0), i.e., it is the 0 polynomial.
We now examine the preimages of these pi’s in L(S), i.e., we look at fs1 , fs2 , . . . , fsk ,
where h(fsi) = pi (note that these preimages are unique, i.e., |S| = |h(S)|).

It follows that the function f = c1fs1 + c2fs2 + · · · + ckfsk is mapped by h to
the zero polynomial. It follows therefore that f = 0, i.e., f is the zero function. But
f(s1) = c1fs1(s1) = c1 6= 0; contradiction. �

We showed that the degree of a polynomial approximating a bounded depth
circuit is poly-logarithmic. On the other hand, we need degree higher than

√
n

2 to
approximate parity. Thus Parity /∈ AC0.

5.4. Computation with advice

In this section we consider a nonuniform version of TMs which capture the nonuni-
formity of circuits.

Suppose that our TMs have an extra read-only input tape called the advice tape,
and let A(n) be a function mapping integers to strings in Σ∗. We say that machine
M decides language L with advice A(n) if x ∈ L implies M(x,A(|x|)) = “yes,” and
x /∈ L implies M(x,A(|x|)) = “no.” That is, the advice A(n), specific to the length of
the input, helps M decide all strings of length n correctly.

Let f(n) be a function mapping nonnegative integers to nonnegative integers. We
say that L ∈ C/f(n) if there is an advice function A(n), where |A(n)| ≤ f(n) for all
n ≥ 0, and a TM M running in complexity C, such that M decides L with advice A.
We write C/poly to indicate TMs working in complexity C with an advice bounded
by some fixed polynomial.

Claim 5.36. L ∈ P/poly iff L has polysize circuits.

Proof. If L ∈ P/nk then it can be decided by a deterministic machine with
advice. But then for each length n the advice is fixed, so we can encode the whole
computation of this machine using a polynomial size circuit. If, on the other hand, L
has polynomial circuits, we can construct the following machine with advice to decide
it: treat the advice as a description of a circuit, simulate this circuit on your input,
and accept iff the result was 1. It is clear that this is a polytime machine which, when
given descriptions of circuits for L as the advice, decides L. �

Claim 5.37. If Sat ∈ P/ log n, then P = NP.

Exercise 5.38. Prove claim 5.37.

Let G = (V,E) be a connected undirected regular graph of degree exactly d, i.e.,
that for each u ∈ V , |{(u, v) : for some v ∈ V s.t. (u, v) ∈ E}| = d.

Assume that for any given u we have ordered the edges incident upon u in some
way. A string U = l1l2 . . . lm ∈ {1, 2, . . . , d}∗ and a node u induce a traversal of the
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graph as follows: we start at u, and we take edge l1 out of node u and arrive at node
u1. Then we take edge l2 out of node u1 and arrive at node u2, etc. (We may visit a
node more than once). We say that U traverses G if it visits every node of G.

Exercise 5.39. Use a probabilistic argument to show that for each n there is
a traversal sequence of length O(d · n4) that works for all graphs with n nodes and
degree d (i.e., a universal traversal sequence). What does this tell you about the
complexity of undirected reachability?

5.5. Answers to selected exercises

Exercise 5.15. Note that this number is a gross overestimate. We just count graphs
with s nodes labeled by a gate with two inputs, not being concerned about the fact
that many such graphs are not really circuits because they may contain cycles. Each
gate is a ∧ or a ∨, and its inputs are two other nodes. Each input can be either a
gate (s many choices), a literal (2n choices), or a constant (2 choices). Compounding
these choices for s gates gives us the result.

Exercise 5.27. The proof of (15) is:

E(X) =
∑
x

x · Pr[X = x] ≥
∑
x≥a

x · Pr[X = x] ≥ a
∑
x≥a

Pr[X = x] = aPr[X ≥ a].

Note that Var(X) = E((X − E(X))2) = E(X2) − (E(X))2 which is the average of
the square of the distance of each data point from the mean (the second expression
is more useful in practice). The proof of (16) is:

Pr[|X − E(X)| ≥ a] = Pr[(X − E(X))2 ≥ a2] ≤ E((X − E(X))2)

a2
=

Var(X)

a2
.

Exercise 5.39. Check in [Pap94] that the probability that a fixed node v is not
visited by a random walk of length dn2 starting at some node u is ≤ 1/2. If we repeat
this “experiment” m times, or, equivalently, increase the random walk to dn2m many
steps, the probability of not visiting v becomes ≤ 1/2m. So the probability of missing
some node during the random walk is ≤ n/2m. The number of d-regular graphs with
n nodes is (grossly) bounded above by ndn, so we want to choose an m such that
(n/2m)(ndn) < 1, assuring that there is a universal traversal sequence of all d-regular
graphs with n nodes. Choose m = n2. This tells us two things about undirected
reachability: (i) it is in RL (randomized logspace, with no false positives), and (ii) it
is in L/poly, i.e., logspace with polynomial advice.

5.6. Notes

The proof of lemma 5.2 is based on [Pap94, proposition 11.2]; §5.3.1 is based
on [SP95, chapter 11]; §5.3.2 is based on [SP95, chapter 12]; §5.4 is based on [Pap94,
exercise 11.5.24]. Originally, computation with advice was introduced in [KL80].
Claim 5.36 is [Pap94, exercise 11.5.24(a)]; Claim 5.37 is [Pap94, exercise 11.5.24(b)].
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In this chapter we used properties of the logarithm: (i) logc(a) = 1/ loga(c),
and (ii) loga(b)/ loga(c) = logc(b).

For (i), note that clogc(a) = a, so clogc(a)+1 = ac, so loga(clogc(a)+1) = loga(ac), so
(logc(a)+1) loga(c) = 1+loga(c), and so logc(a) loga(c) = 1. For (ii), note aloga(b) = b,
so logc(a

loga(b)) = logc b, so loga(b) logc(a) = logc(b), and so loga(b)/ loga(c) = logc(b),
where we used (i) to derive the last step.
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Proof Systems

6.1. Introduction

This chapter deals with propositional logic, from the point of view of complexity.
The beginnings of propositional logic can be traced to the syllogisms of Aristotle
(384–322 BC) and to to the Stoic philosopher Chrysippus (c.280–c.207 BC). A long
break of two thousand years followed, until George Boole in the 19th century.1 There
was much activity at the turn of the 20th century with Frege, Russell & Whitehead,
Post, and others who were spurred by the problem of laying down the foundations
of mathematics. After a break of half a century there was a revival of interest in
propositional logic due to Computer Science, and in particular due to the P versus
NP problem.

For a fuller history of propositional logic see for example [Chu96] and [HA99].
For an introduction to propositional proof complexity see [Urq95].

We have introduced proof systems briefly in chapter 2 (see page 25). A proof
system (PS) for a language L is a polytime relation V such that x ∈ L ⇐⇒ ∃pV (x, p).
Here V is called the verifier and p is the encoding of a proof that x is in L. Soundness
means that ∃pV (x, p)⇒ x ∈ L, and completeness means that x ∈ L⇒ ∃pV (x, p).

The complexity of V is fV : N −→ N, where

fV (n) = max
{x∈L,|x|=n}

min
{p,V (x,p)}

|p|,

and V is polynomially bounded (polybounded) iff fV is bounded by some polynomial,
i.e., there exists a polynomial q such that fV (n) ≤ q(n).

As was mentioned in chapter 2, the canonical example of a language with a
polybounded PS is Sat. However, the proof systems in which we are most interested
are those for Taut and UnSat, where UnSat is the complement of Sat. Thus, we
make the following definition: a propositional proof system (PPS) is a proof system
for Taut or UnSat.

Theorem 6.1 (Cook-Reckhow). A polybounded propositional proof system (PPS)
exists iff NP = co-NP.

Proof. (⇒) Suppose that NP = co-NP, and so Taut is in NP. Let M be
the nondeterministic polybounded TM that decides Taut. Let VM (φ, p) be true iff
p = 〈C1, C2, . . . , Cm〉 encodes an accepting computation of M on φ.

1Boole’s work seemed to have no practical application at the time of its invention, but seventy
years later, Claude Shannon (see §5.2) in his MIT masters thesis showed how Boolean algebra could
optimize the design of systems of electromechanical relays then used in telephone routing switches.
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(⇐) Suppose that there exists a polybounded PPS, V . Let M be the following
nondeterministic TM: on input φ, M guesses a p and verifies V (φ, p). Thus M decides
Taut, and so Taut is in NP. �

We say that a propositional proof system V is automatizable, if there exists an
algorithm A, such that given a φ in Taut as input, A outputs a proof p of φ in time
polynomial in the length of the shortest proof of φ. (If φ /∈ Taut, then A outputs
anything.)

Lemma 6.2. There exists a polybounded automatizable PPS iff P = NP.

Proof. (⇒) Suppose that there exists a polybounded automatizable PPS. Given
any φ in Taut we know that it has a proof of polynomial size, and that we can find a
proof of φ in time polynomial in its length. As Taut is co-NP-complete, we get that
P = co-NP and, what follows, P = NP.

(⇐) Let us now assume that P = NP. Then Sat can be decided by some de-
terministic polytime Turing machine M . Take any formula φ and notice, that it is a
tautology iff ¬φ is not satisfiable. Consider the computation of M on ¬φ. M finishes
its work in polynomial time, thus it can use only polynomial space. Therefore the
encoding of the computation has polynomial size. But this encoding is a proof that
φ ∈ Taut (we can verify it in polynomial time, simply checking that it is a correct
computation of M on φ), and it can be produced in polynomial time (as M produces
it). Thus we have found a polybounded automatizable PPS. �

Let BF be the class of languages recognizable by a family of polynomial size
Boolean Formulas. That is, L ∈ BF iff there exists a family of Boolean formulas
Φ = {φn} such that φn = φn(x1, x2, . . . , xn), i.e., φn has n variables, and there is a
fixed polynomial p such that |φn| ≤ p(n), and

a ∈ L ⇐⇒ φ|a|(a1, a2, . . . , a|a|) is true.

This is analogous to the definition of a language being recognizable by a family of
circuits given on page 65.

Theorem 6.3 (Spira). NC1 = BF.

Proof. Consider an NC1 circuit; it can be represented by a Boolean formula, by
transforming (efficiently) each circuit in the family to be tree-like (a tree-like circuit is
just a Boolean formula). To this end, we traverse the circuit from its output towards
the inputs, repeating sub-circuits that have been used multiple times. But as the
depth of the circuit is bounded by O(log n), and each gate had at most 2 inputs, the
total size of the resulting formula will be bounded by 2O(logn) = nO(1).

We now show by induction that any Boolean formula having no more than n
logical connectives (from among {∧,∨,¬}) can be represented by a (fan-in 2) circuit
of depth not greater than 4 log(n+ 1).

For n = 0 (a single variable) it is obviously true.
Fix any Boolean function φ with n connectives. The tree representing this formula

has n internal nodes. Denote by s(T ) the size (number of nodes) of subtree T .
Consider the subtree T of smallest size larger than n/3. It must be that n/3 <
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s(T ) ≤ 2n/3 (otherwise one of the subtrees of T would be smaller, while still larger
than n/3).

Let φ = (T ∧ φ(1/T )) ∨ (¬T ∧ φ(0/T )). The formula T has size less than 2n/3.
When we replace T in φ by 0 or 1, we will get a formula of size bounded by 2n/3
(because the size of T was at least n/3). Both these formulas can be represented
(according to inductive assumption) by circuits of depth bounded by

4 log(2n/3 + 1) ≤ 4(log 2/3 + log(n+ 1)) ≤ 4 log(n+ 1)− 2.

Thus, we can represent our original formula φ by a circuit of depth bounded by

4 log(n+ 1)− 2 + 2 = 4 log(n+ 1).

Our circuit has logarithmic depth and constant fan-in, so its size will be polynomial.
�

6.2. Resolution

We start with some definitions. A literal is a variable x, or its negation, x̄. A
clause is a set of literals, {l1, l2, . . . , lk}. A truth assignment τ satisfies a clause C,
written τ � C, if it makes at least one literal in C true. A (finite) set of clauses S is
satisfiable if there exists a truth assignment τ that satisfies all the clauses in S.

For example, S = {{x, ȳ, z̄}, {x̄}, {y, z}} is satisfiable, and the truth assign-
ment τ given by τ(x) = τ(y) = 0, τ(z) = 1 satisfies it. On the other hand, S =
{{x}, {x̄, y}, {ȳ, z}, {z̄}} is unsatisfiable.

The Pigeonhole Principle, PHPnn−1, n > 1, is the set of clauses given by:

(1) {Pi1, Pi2, . . . , Pi(n−1))}, 1 ≤ i ≤ n,

(2) {P̄ik, P̄jk}, 1 ≤ i < j ≤ n, 1 ≤ k ≤ (n− 1).

Note that PHPnn−1 is a set of n +
(
n
2

)
· (n − 1) = O(n3) clauses, and PHPnn−1 is

unsatisfiable for every n, because if it were satisfiable, a τ that satisfies it would
effectively give us an injective relation on [n]× [n− 1], which is not possible.

Resolution is a propositional proof system for the language of unsatisfiable set of
clauses. Given two clauses C∪{x}, D∪{x̄}, the resolution rule permits us to conclude
C ∪ D from them. Here C ∪ {x} indicates that there are no x’s in C; however, it
may be the case that x̄ ∈ C (and D ∪ {x̄} indicates that x̄ is not in D, but x may be
present in D). Note that the resolution rule is sound: if τ satisfies C ∪ {x}, D ∪ {x̄},
then τ must also satisfy C ∪D.

A resolution refutation (RR) of an unsatisfiable set of clauses S is a sequence of
clauses C1, C2, . . . , Cn, where:

(1) each Ci is either in S, or follows by the resolution rule from some Cj , Ck,
j, k < i,

(2) Cn = {}, i.e., it is the empty clause.

The size of a RR is the number of clauses in it.
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For example, consider the pigeonhole principle for n = 2, that is,

PHP2
1 = {{P11}, {P21}, {P̄11, P̄21}}.

Its RR is:
{P11}, {P21}, {P̄11, P̄21}, {P̄21}, {},

and its size is 5.
Resolution is both sound and complete. To see that it is sound, note that the

resolution rule is sound, so it can be shown inductively that if there is a τ that
satisfies S, then τ must also satisfy every Ci in the refutation, and in particular
Cn = {}, which is not possible (because to satisfy a clause, τ must make at least one
literal in the clause true, and the empty clause {} has no literals). So if we can derive
{} from S, we know that S cannot be satisfiable.2

To show completeness, we use the Davis-Putnam algorithm. The first version,
known as DPLL, gives us tree-like refutations; the second version, known as DP, gives
us dag-like refutations.

A tree-like refutation is one where each clause in the proof, except for the original
clauses, is used at most once as a premise of a rule. A dag-like refutation can be
transformed into a tree-like one by re-deriving a clause each time it is used as a
premise; of course, this may give rise to an exponential blow up in size.

6.2.1. DPLL and DP. The most prominent PPS for UNSat is DPLL (Davis-
Putnam-Logemann-Loveland).

Algorithm 6.4 (DPLL).
On input S (a set of clauses):
We pick an x ∈ var(S), and branch out on x = 0 and x = 1. On each branch we
continue selecting new variables, until one of two things happen:

(1) a leaf corresponds to a (partial) truth assignment falsifying a clause, in which
case we label it with such a clause, or

(2) on the path from that leaf to the root we examined all the variables, in which
case we get a (full) truth assignment satisfying the original set of clauses.

If at the end each leaf is labeled with a clause, we know S is unsatisfiable.

Lemma 6.5. DPLL is correct, that is, given any set of clauses S, it outputs a
refutation if S is unsatisfiable, and a truth assignment if it is satisfiable.

Proof. Observe that S is unsatisfiable iff both S|x=0 and S|x=1 are unsatisfiable,
for any x ∈ Var(S). S|x=t denotes S where each instance of x has been replaced by
the truth value t ∈ {0, 1}, and the result simplified. The simplification is obvious:
if a literal l is made true by setting x = t, any clause containing it is eliminated
altogether; if it is made false, the literal is eliminated from all the clauses containing
it. So, an inductive proof on the number of variables in S, shows the correctness of
DPLL. �

2On the other hand, the convention is to make an empty set of clauses satisfiable, in fact by
any assignment, because no assignment can falsify a clause in an empty set of clauses.
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We can now prove the completeness of Resolution.

Lemma 6.6. A DPLL refutation yields a RR of the same size (in terms of the
number of nodes).

Proof. We can transform a DPLL refutation into a RR. We imagine the tree
“upside-down,” with the leaves at top, and the root at the bottom, and the leaves
are already labeled with clauses (each leaf is labeled by some clause falsified by the
partial truth assignment implicit in the branch ending at the leaf—if several clauses
are falsified by this truth assignment, we pick any one of them).

If an internal node is labeled with variable x, the idea is to now label it with
the clause resulting from resolving on its two parents nodes (to which we already,
inductively, assigned clauses) on x. The resulting refutation is tree-like.

More formally, suppose that n is a node with parents n1, n2 above it that have
clauses Cn1 , Cn2 , respectively, attached to them. If n was labeled with variable x
(in the DPLL tree), it is now labeled with Cn, which is obtained as follows: (i) if
x ∈ Cn1

, x̄ ∈ Cn2
, then Cn is the result of resolving Cn1

, Cn2
on x. (ii) If neither

contains x or x̄, let Cn be Cn1
(we could have made it Cn2

; the point is, it does not
matter). It is not possible for both to contain x or for both to contain x̄, as the next
invariant shows.

The clause Cn is falsified by the (partial) truth assignment given by the path
from the root to node n. Thus, if Cn1

, Cn2
both had x, or both had x̄, then one of

them would be satisfied by the partial truth assignment. From the construction given
in the above paragraph it is easy to show this invariant by induction. �

For example, consider the set of clauses {{x}, {x̄, y}, {ȳ, z}, {z̄}}. In figure 1 we
show a DPLL to resolution transformation; in brackets we have the corresponding
resolution clauses.

x({})

|| $$
{x} y({x̄})

zz $$
{x̄, y} z({ȳ})

zz ##
{ȳ, z} {z̄}

Figure 1. From DPLL to resolution.

So Resolution completeness (in fact, completeness of tree-like Resolution) follows
from the correctness of DPLL. We can also go efficiently in the reverse direction; from
tree-like Resolution to DPLL. However, there is one technical difficulty: a variable in
a RR might be resolved on more than once on the same path!
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We say that a RR is regular if on every path from the leaves to the root ({}) each
variable is resolved on at most once.

Theorem 6.7. A tree-like RR can be transformed into a regular tree-like RR
efficiently.

Proof. Suppose that we have a path in the refutation labeled by the clauses
C1, C2, . . . , Ck, k > 2, and there is a literal l in C1 and in Ck, but l is not in any Cj ,
1 < j < k.

(Note that Ci is a premise for Ci+1; that’s what being a path means here; also
C1 is not necessarily a leaf and Ck is necessarily not {}!)

// l ∈ C4
// l /∈ C3

// l /∈ C2
// l ∈ C1

//

Figure 2. Tree-like Resolution to regular tree-like Resolution.

Simply discard the first resolution on l. We now have to modify all the Ci’s all the
way down to {}. Here is how to do this. In figure 2 discard the right-parent-subtree
of C2, and let C ′2 := C1. Since we discarded the right-parent-subtree of C2, some
literals will no longer be in the C ′i’s as we make our way to {}.

Say lD is such a literal, and in the original refutation we resolve on some Ci
(i > 2) and some E to get rid of it. Since lD is no longer there, we simply discard E,
and the subtree rooted at E, and let C ′i := C ′i−1. We follow through all the way to
{}, making such adjustments.

Claim 6.8. For all 2 ≤ i ≤ k, C ′i ⊆ Ci ∪ {l}, and for i > k, C ′i ⊆ Ci.
This finishes the proof. �

Corollary 6.9. A minimal tree-like RR is regular.

Algorithm 6.10 (DP).
On input S:

1. While (S 6= ∅ and {} 6∈ S)
2. Choose any x ∈ Var(S)
3. S ← S − {C ∈ S : {x, x̄} ⊆ C}
4. T ← {C ∪D : C ∪ {x}, D ∪ {x̄} ∈ S}
5. S ← T ∪ {C ∈ S : {x, x̄} ∩ C = ∅}
6. If S = ∅ then return “satisfiable”
7. else return “unsatisfiable”

Notice that the DP algorithm produces a dag-like RR, unlike DPLL which pro-
duces a tree-like RR.

Claim 6.11. DP is correct.

Proof. If the input S is an unsatisfiable set of clauses, then the set of clauses
resulting from each iteration remains unsatisfiable (this is the loop invariant).

Let S ′ be the result of one iteration on S. Suppose σ � S ′. Then, one of the
following two holds:
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(1) σ � C for all C such that C ∪ {x} ∈ S, or

(2) σ � D for all D such that D ∪ {x̄} ∈ S.

Otherwise, σ 2 C0 and σ 2 D0, so σ 2 C0 ∪D0, contradicting that σ � S ′.
Therefore, if 1., extend σ to σ̂ such that σ̂(x) = 0, and if 2., σ̂(x) = 1. Clearly,

σ̂ � S; we continue inductively, and show that the original set of clauses S must be
satisfiable. �

The following result indicates that resolution is a general PPS; that is, it can be
applied to any Boolean tautology (i.e., not only those in CNF).

Lemma 6.12. A general Boolean formula φ (not necessarily in CNF), can be
transformed in polynomial time into a formula in CNF φ′ such that, φ is satisfiable
iff φ′ is satisfiable.

Proof. Introduce a new variable qA for any subformula A of φ. Let C(A) be a
set of clauses with the property that C(A)∪{qA} is satisfiable iff A is satisfiable, and,
furthermore, C(A) holds iff the truth values associated with the variables representing
all the subformulas of A are computed correctly in terms of the input values. We define
C(A) inductively on A: if A = x, then C(A) := {{qA, x̄}, {q̄A, x}}.

If A = ¬B, then C(A) := {{qA, qB}, {q̄A, q̄B}} ∪ C(B).
If A = B1∨B2, then C(A) := {{q̄A, qB1 , qB2}, {qA, q̄B1}, {qA, q̄B2}}∪C(B1)∪C(B2).

Similarly for conjunction. Also need to show inductively that the correctness condition
holds. Finally, note that |C(A)| = O(|A|). �

Suppose that we managed to perform the above transformation without intro-
ducing any new variables; what would be the consequence of that for propositional
proof systems? If we could translate an arbitrary Boolean formula into an equivalent
CNF without adding new variables and with at most a polynomial increase in size,
we would effectively have a polybounded PPS (and consequently NP = co-NP). The
reason is that a formula in CNF is a tautology iff each clause contains some variable
x and its negation; this can be checked in linear time in the length of the formula.

Extended Resolution (ER) is defined as the usual Resolution PPS, together with
the extension rule which allows us to abbreviate formulas by new variable names.
That is, we allow the introduction of new variables vnew, and a definition vnew ↔ α;
now we can refer to α by the new name vnew.

A clausal form for vnew ↔ α can be obtained by translating the formula to the
equivalent formula (¬vnew ∨ α) ∧ (vnew ∨ ¬α).

Theorem 6.13 (Cook). ER proves PHPn+1
n in polynomial size.

Proof. This result was shown in [Coo76]. The idea is to argue by contradic-
tion: assume that PHPn+1

n holds, and then deduce PHPnn−1 from it. Repeating the
process arrive at PHP2

1, which is easy to refute. Each step of the induction requires
polynomially many formulas, so the whole refutation is polynomial in size.

Introduce variables, Bni,j and let Bni,j ↔ Pi,j for i = 1, . . . , n+ 1 and j = 1, . . . , n.
Then, for k = n− 1, . . . , 1, introduce variables Bki,j , defined as follows

Bki,j ↔ Bk+1
i,j ∨ (Bk+1

i,k+1 ∧B
k+1
k+2,j),
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for 1 ≤ i ≤ k + 1, 1 ≤ j ≤ k.

◦ ◦ ◦ ◦

i◦ // ◦j i◦

(k+1)  

◦j

◦ ◦ ◦ ◦

◦ ◦
(k+2)

FF

Figure 3. Definition of Bk∗,∗ from Bk+1
∗,∗ .

From clauses {Bk+1
i,1 , . . . , Bk+1

i,k+1}, for i = 1, . . . , k + 2, and {¬Bk+1
i,l ,¬Bk+1

j,l },
for l = 1, . . . , k + 1, deduce the clauses {Bki,1, . . . , Bki,k}, for i = 1, . . . , k + 1, and
{¬Bki,l,¬Bkj,l}}, for l = 1, . . . , k.

Exercise 6.14. Show how to do this.

At the end, refute the resulting set of clauses {{B1
1,1}, {B1

2,1}, {¬B1
1,1,¬B1

2,1}}, to
finish the proof. �

Lemma 6.15. Let 2Sat be the language of satisfiable formulas in CNF, where
each clause has exactly 2 literals. Then, 2Sat in in P.

Proof. When we resolve two clauses with at most 2 literals each, we obtain a
clause with at most two literals: therefore, there are

(
2n
2

)
= O(n2) possible clauses to

be obtained by resolving on the initial set of clause. Thus, we can decide 2Sat with
great alacrity by computing all the possible resolvents (stopping to accept when no
new clauses are being created), and rejecting if we ever produce the empty clause. �

6.3. A lower bound for resolution

This section consists in the proof of the following theorem.

Theorem 6.16 (Haken). Any RR of PHPnn−1 requires at least 2n/20 clauses.

A truth assignment (ta) σ is i-critical if σ leaves pigeon i out, and maps the
remaining (n− 1) pigeons to holes bijectively. See figure 4 for an example.

Two clauses C1, C2 are equivalent wrt critical ta’s if σ � C1 ⇐⇒ σ � C2, for all
critical σ. An inference C1, C2 ` C3 is sound wrt critical ta’s if whenever a critical σ
satisfies C1, C2, it also satisfies C3. Note that this “inference” is not necessarily an
application of the resolution rule; C1, C2, C3 are any three clauses with the property
that if a critical ta satisfies C1, C2 it also satisfies C3.
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◦ // ◦

◦ // ◦

◦

��

◦

◦

??

◦

◦

Figure 4. A 5-critical truth assignment.

Consider a resolution refutation R of PHPnn−1, and in every clause of R replace
P̄ik by the literals {Plk|l 6= i}, obtaining thus R̂. All clauses in R̂ are monotone,
equivalent to the corresponding original clauses wrt critical ta’s, and all “inferences”
in R̂ are sound wrt critical ta’s. But note that R̂ is not a resolution refutation per se.

Define a clause to be large if it contains at least n2/10-many variables, and let
S = the number of large clauses in R̂.

Claim 6.17. There is a Pij contained in at least S/10-many large clauses of R̂.

Proof. There are < n2 variables, and suppose that each of them is in less than
S/10 many large clauses. Now what is the largest collection of clauses we can form
where each clause is required to be large and we have < S/10 “copies” of each of the
n2 variables?

<
n2 · S/10

n2/10
= S.

Contradiction, since we do have S large clauses by assumption. �

We are now going to derive a contradiction from S < 2n/20. Choose such a Pij ,
set it to 1, and set to 0 all Pil and Pl′j , where l 6= j and l′ 6= i. Apply this restriction to
R̂, to obtain a monotone refutation R̂′ of PHPn−1

n−2. (Note the commutative diagram
in figure 5.)

R for PHPnn−1

P̄ik {Plk|l 6=i}−−−−−−−−−−→ R̂ for PHPnn−1y yPij=1,∀l 6=j,l′ 6=i,Pil=0,Pl′j=0

R′ for PHPn−1
n−2 −−−−→ R̂′ for PHPn−1

n−2

Figure 5. Commutative diagram.
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The number of large clauses in R̂′ for PHPn−1
n−2 is at most 9S/10. Repeat this

log10/9 S many times until we knock out all large clauses. So we end up with a

monotone RR of PHPn
′

n′−1 where

n′ ≥ n− log10/9 S > n(1− (log10/9 2)/20) > 0.671n, (19)

and where there are no large (i.e., of size ≥ n2/10) clauses.3

Lemma 6.18. Any R̂ for PHPnn−1 must have a clause with at least 2n2/9 literals
(which by definition are all positive variables!).

From lemma 6.18 we get a contradiction, since by (19) we have that n′ > 0.671n,
and so 2(n′)2/9 > n2/10.

Proof. (of lemma 6.18) For each C in R̂, let Complex(C) be the minimum
number of clauses in PHPnn−1 that imply C on all critical ta’s. Note that only “pigeon”
clauses {Pi1, Pi2, . . . , Pi(n−1)} are included in a minimal set implying C (as we restrict
ourselves to critical ta’s and clauses {P̄ik, P̄jk} are always satisfied by critical ta’s).
The complexity of “pigeon” clauses is 1, and of the empty clause {} it is n.

If C1, C2 ` C3, then Complex(C3) ≤ Complex(C1) + Complex(C2).

Claim 6.19. ∃C, n/3 < Complex(C) ≤ 2n/3.

Proof. Take C to be a clause of complexity greater than n/3. Complex({}) = n,
so such a clause exists. If both parent clauses are of complexity at most n/3, we are
done. Otherwise, pick the parent clause of complexity greater than n/3, and repeat.
This process must end, since the input clauses are of complexity 0 or 1. �

Let P be a minimal subset of “pigeon” clauses that implies C, and let m = |P | =
Complex(C).

Claim 6.20. |C| ≥ (n−m)m.

Note that (n−m)m ≥ 2n2/9, since for 0 < n/3 ≤ m ≤ 2n/3, as a function of m,
it takes its minimum when at the extremes, i.e., when m = n/3 or m = 2n/3.

Proof. (of claim 6.20) For any {Pi1, . . . , Pi(n−1)} ∈ P , consider an i-critical α
such that α 2 C. (If every i-critical α satisfied C, we would not need the clause
{Pi1, . . . , Pi(n−1)} in P .)

For each {Pj1, . . . , Pj(n−1)} /∈ P (remember Complex(C) ≤ 2n/3), let α′ be α ex-
cept α′(i) = α(j), and α′ is j-critical. We have that α′ � C: since {Pj1, . . . , Pj(n−1)} /∈
P , and α′ is j-critical, α′ satisfies P , so it must satisfy C. But α and α′ are the same
on all variables, except on Pjl and Pil. Since α 2 C but α′ � C, it follows that
Pil ∈ C.

3Actually, after log10/9 S many times you may still have one more large clause left, so really
n′ > 0.671n − 1. But the argument can still be made to work by taking n sufficiently large. More
precisely, we are interested in S · (9/10)i = 1, so taking logarithms of both sides we obtain that

i = log S
log 10/9

= log10/9 S. Now, 1 −
log10/9(2)

20
= 0.6710593 . . .. If we take this constant, we see that

for n sufficiently large (say more than a million), it is clear that 0.6710593n− 1 > 0.671n.
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Using the same α on all j /∈ P we get (n−m) distinct variables

Pil1 , Pil2 , . . . , Piln−m

in C. Now, repeating the whole argument for each i ∈ P , gives us that there must be
at least (n−m)m variables in C. �

This ends the proof of lemma 6.18. �

6.4. Automatizability and interpolation

If C is a clause, let the width of C, w(C) denote the number of literals in C.
Extend this definition to a set of clauses S in the obvious way: w(S) is the largest
width of all the clauses in S. Also, if P is a resolution refutation, let w(P ) be the
largest width of all the clauses in P . Finally, let sw(S) be the smallest width of any
resolution refutation of S.

Lemma 6.21. Any tree-like resolution refutation of S of size s can be converted
to one of width bounded above by (dlog se+ w(S)).

Proof. We prove it by induction on s. If s = 1, S = {{}}, so S is itself a
resolution refutation of width 0 = dlog 1e+ w(S).

Now consider a tree-like resolution refutation P of S of size s > 1. Suppose that
x is the last variable to be resolved, i.e., the last step of P is

...
{x}

...
{x̄}

{}
. (20)

The dots denote the left and right subtrees, respectively. We want to show that we
can transform P to have width w = dlog se+ w(S).

Note that one of the subtrees of (20) has to be of size < s/2. Assume that the
subtree rooted at {x̄} is of size < s/2, and the other subtree, the one rooted at {x}
is of size < s. (The opposite case is symmetric.)

Let S|x=t be the set of clauses S, with x set to t ∈ {0, 1}, and the natural
simplifications done (if the assignment makes a literal false, eliminate it from all the
clauses that have it, and if it makes a literal true, eliminate all the clauses that have
it).

Thus, S|x=1 has the refutation P |x=1 given by the right subtree of (20). By the
induction hypothesis, P |x=1 can be transformed to P ′ of width

dlog s/2e+ w(S|x=1) ≤

=(∗)︷ ︸︸ ︷
dlog se+ w(S)︸ ︷︷ ︸

=w

−1 . (21)

Now transform P ′ as follows: to every input clause that originally contained x̄, add
x̄ back in and propagate it down the proof. This way, we obtain a derivation of {x̄}
of width at most 1 + (∗) = w, from a subset of the original clauses (note that the
clauses that contained x were eliminated, and clauses that contain neither x̄ nor x
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have not changed). How do we know that adding x̄ to those input clauses ensures
that x̄ appears in the conclusion? Since x̄ did appear in the conclusion of the original
refutation P , there must have been a path from the conclusion of P (i.e., from {x̄})
to an input clause containing x̄; this path remains in P ′.

Using the left subtree of (20), we obtain a refutation P ′′ of {} from S|x=0 of width
at most w (by induction hypothesis; recall that the left subtree of (20) has size < s).
But we can obtain S|x=0 from S using P ′ to eliminate all the x’s from the clauses
of S which have x, and simply ignoring the clauses that have x̄. This way, we get a
refutation of S of width w. �

Corollary 6.22. Any tree-like resolution refutation of S requires size

Ω(2sw(S)−w(S)).

Proof. Follows directly from sw(S) ≤ dlog se+ w(S). �

Let f : N × N −→ N be a function. We say that a propositional refutation
system V is f(n, s)-automatizable iff there exists an algorithm AV which on input S,
|S| = n, outputs a refutation P of S in time at most f(n, s) where s is the size of the
shortest refutation of S. (Note that we use S, since we are thinking of clauses, but
this definition is more general.)

Lemma 6.23. For k-CNF tree resolution is sO(logn)-automatizable.

Exercise 6.24. Prove lemma 6.23.

Let α(~p, ~q) ∧ β(~p, ~r) be an unsatisfiable CNF formula. A Craig interpolant (just
interpolant from now on) is a function C such that given a value assignment ~p0 to ~p:

C(~p0) =

{
0 α(~p0, ~q) is unsatisfiable
1 β(~p0, ~r) is unsatisfiable

.

Lemma 6.25. If for every unsatisfiable formula α(~p, ~q) ∧ β(~p, ~r) there exists a
polytime interpolant (i.e., there is a polytime algorithm computing C), then NP ∩
co-NP ⊆ P/poly.4

Proof. Let L be a language in NP ∩ co-NP. For inputs of a given length n, let
α(~p, ~q) code the statement “~q is a witness that ~p is in L”, and let β(~p, ~r) code the
statement “~r is a witness that ~p is not in L”. (Such formulas exist since NP∩co-NP =
Σp1 ∩Πp

1.)
Since for any pair (α, β) we have a polytime interpolant C, we also have a polysize

circuit family S = {Si}, where Si implements C on inputs of length i, and S decides
L: on input w, |w| = n, compute Sn(w), and accept iff Sn(w) = 1, i.e., iff α(w, ~q) is
satisfiable. A different circuit interpolant exists for different input lengths; we do not
know how to generate the interpolants, but we know they are of polynomial size. �

Let f : N × N −→ N be a function. We say that a propositional refutation
system V has f(n, s)-interpolation iff given α(~p, ~q)∧β(~p, ~r) (of size n) with minimum
refutation size s, there exists a circuit of size at most f(n, s) computing the interpolant

4Note that the most prominent problem to be in NP ∩ co-NP is factoring; see [Pap94, §10.3.].
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C for α(~p, ~q) ∧ β(~p, ~r). We say that V has feasible interpolation if f is bounded by a
polynomial (in n, s), and monotone interpolation if whenever ~p occur only positively in
α (or, dually, only negatively in β) the circuit computing the interpolant is monotone
(i.e., it has only And and Or gates).

Lemma 6.26. If a polybounded refutation system V has feasible interpolation,
then NP ⊆ P/poly.

Exercise 6.27. Prove lemma 6.26.

Recall that a clique of size m is a subset of m vertices, which is fully connected
(i.e., there is an edge between every pair of vertices), and a co-clique of size m is a
partition of the vertices of the graph into m sets, so that all edges are between sets,
and no edges within any single set. In other words, there is a co-clique of size m iff
the chromatic number of the graph is less than m.

Theorem 6.28 (Razborov). There exists an ε such that for sufficiently large n,
and m = n

10 , any monotone circuit which outputs a 1 on all m-cliques, and a 0 on all
(m− 1)-co-cliques, requires size 2n

ε

.

Lemma 6.29. If V has monotone feasible interpolation, then V is not polynomially
bounded.

Proof. Consider the formula α(~p, ~q) ∧ β(~p, ~r), where ~p encodes an undirected
graph G over n vertices; let (pij) be the adjacency matrix of a graph, i, j ∈ [n]. We
show how to construct α(~p, ~q) which asserts that ~p has a clique of size m, and β(~p, ~r)
which asserts that ~p has a co-clique of size (m− 1).

We use ~q to describe a clique of size m. Let qij , for i ∈ [n], j ∈ [m] assert that
vertex i is the j-th vertex of the clique. We can state that ~p has an m-clique with the
following clauses:

(1) For each j ∈ [m], we have the clause {q1j , . . . , qnj} asserting that some
vertex is the j-th vertex of the clique.

(2) For each pair j 6= j′ in [m] × [m], and for each i ∈ [n], we have the clause
{q̄ij , q̄ij′} asserting that no vertex is placed in the clique twice.

(3) For each pair j 6= j′ in [m] × [m], and for each 1 ≤ i < i′ ≤ n, we have
{pii′ , q̄ij , q̄i′j′}, asserting that if two vertices are in the clique, they must be
connected by an edge.

All these clauses taken together (i.e., their conjunction) make up α. Note that ~p occur
in α only positively.

Now let rij state that vertex i ∈ [n] is in the j-th group of the partition, j ∈ [m−1].
The following clauses assert that we have a (m− 1)-co-clique:

(1) For i ∈ [n] we have clauses {ri1, . . . , ri(m−1)}, asserting that every vertex
belongs to some group.

(2) For each pair i 6= i′ in [n] × [n] and 1 ≤ j ≤ (m − 1) we have clauses
{r̄ij , r̄i′j , p̄ii′}, asserting that any two vertices in the same group are not
connected by an edge.
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The conjunction of these clauses makes up β, and ~p occur in β only negatively.
Finally, a feasible monotone interpolant for {α ∧ β}n, where m = n

10 , contradicts
Razborov’s theorem, unless V is not polynomially bounded. �

Lemma 6.30. Resolution has monotone feasible interpolation.

Proof. Suppose that P is a resolution refutation of α(~p, ~q) ∪ β(~p, ~r), where the
pi’s occur only positively in α (the dual case, only negatively in β, is analogous).

Let σ be a truth value assignment to ~p. We show how to transform P to obtain a
refutation P |σ and at the same time construct a feasible monotone interpolant I(σ).
If C was a clause in the original refutation, it will be denoted C ′ after applying the
procedure, and IC(σ) will be the interpolant associated with clause C.

We say that a clause C ′ is an α-clause if it contains variables from among ~p, ~q
only, and if it only contains variables from ~p, it is an α-clause if all its ancestors are
α-clauses. Similarly, we define a β-clause symmetrically, with ~r and negations of ~p.

We let IC(σ) be 0 if C ′ is an α-clause, and 1 if it is a β-clause. Initially, every
clause C in α and β stays the same, i.e., C ′ = C, all clauses in α are declared to be
α-clauses, and all clauses in β are declared to be β-clauses. We now describe the rest
of the procedure.

Suppose a clause C in P is obtained by:

C1 ∪ {x} C2 ∪ {x̄}
C

. (22)

Assume inductively that we have already transformed the premises, and we have
obtained (C1 ∪ {x})′, (C2 ∪ {x̄})′, and we have also declared their sides.

The task is to define C ′ and IC(σ). We do it separately for x being a variable in
one of the three groups: pi, qi, ri.

In the case when x = pi, let C ′ be (C1∪{pi})′ if pi = 0, and (C2∪{p̄i})′ otherwise.
One might be tempted to define

IC := (pi ∨ I(C1∪{pi})) ∧ (p̄i ∨ I(C2∪{p̄i})). (23)

But we have to be “Unmoved, cold, and to temptation slow”;5 (23) would work if we
were not constructing a monotone circuit for the interpolant, but we are, so p̄i is not
allowed. To fix this, keep in mind that one of the goals of the definition of C ′ is to
ensure that it is either an α-clause or a β-clause. Consider the truth table for IC ,
given in figure 6, when defined the wrong way as in (23).

Note the two “problem rows,” where IC goes from 1 to 0, despite the fact that pi
changes from 0 to 1. This is the only case where monotonicity is spoiled. But, using
the values of I on the premises, we can make this problem vanish. The point is that
we can turn the 1 in the box into a 0, while defining C ′ consistently. (Note that a
“symmetric” answer is possible: turn the 0 below the boxed 1 into a 1.)

Let IC := (pi∨I(C1∪{pi}))∧I(C2∪{p̄i}), and we let C ′ be (C1∪{pi})′ or (C2∪{p̄i})′
as defined the wrong way, except that if (C2∪{p̄i})′ is an α-clause, we let C ′ be equal
to it, regardless of the value of pi. This works, because if (C2 ∪ {p̄i})′ is an α-clause,
then by definition it cannot have p̄i in it (it must have disappeared along the way).

5Shakespeare, Sonnet XCIV.
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pi I(C1∪{pi}) I(C2∪{p̄i}) IC
0 0 0 0
1 0 0 0

0 1 0 1
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

Figure 6. Truth table for IC .

For x = qi, let C ′ be the result of resolving (C1 ∪ {qi})′ and (C2 ∪ {q̄i})′ on qi
if possible (meaning that one still has qi and the other q̄i), and taking C ′ to be the
β-clause, if one of them is (if they both are, say, the left one), and if neither is a
β-clause, take the one without the qi-literal (say, the left one, if they both miss the
qi-literal). Let IC := IC1∪{qi} ∨ IC2∪{q̄i}. The case of x = ri is the dual case to the
qi, and so the interpolant is defined with a conjunction.

We now show that if C ′ is an α-clause, then α|σ � C ′|σ, and same for β-clauses.
This can be done with an inductive argument on the depth of the clause.

Basis Case: the claim is clearly true for the input clauses. Suppose that we are
deriving as in (22), with x = qi. Suppose that σ̂ ⊇ σ is a truth assignment to all
the variables, extending the truth assignment σ to the ~p. Suppose both premises
are α-clauses, and σ̂ satisfies them. If C ′ is the result of resolution on qi, then by
soundness of the resolution rule it is satisfied by σ̂.

Exercise 6.31. Show what to do in the case when x is pi and ri.

Define the interpolant for P to be I{}, i.e., the value of the interpolant at the
final empty clause. It is monotone because we only use {∧,∨, 0, 1} and variables
(no negations). It is feasible since the number of connectives is linear in the size
of the proof P . It works correctly because it establishes that {}′ = {} is an α- or
β-clause, and so {} is logically implied by either α or β clauses, and so α or β must
be unsatisfiable. �

Lemmas 6.29 and 6.30 give us the following corollary, which is an alternative proof
of a lower bound for resolution. Note that our original lower bound, given in §6.3,
is much simpler; the lower bound just given requires the machinery of interpolation,
plus Razborov’s lower bound for monotone circuits computing Clique.

Corollary 6.32. Resolution is not polynomially bounded.

6.5. Answers to selected exercises

Exercise 6.24. If w(S) = k, i.e., it is constant, we know from lemma 6.21 that a
tree-like resolution refutation of size s can be transformed to be of width O(log s).
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Given input size n, there can be at most n-many variables, and hence we can form at
most 2O(log s)

(
n

O(log s)

)
= nO(log s) = sO(logn)-many clauses of width at most O(log s).

Now, starting with l = 1, being careless with space, we use breadth-first search to
generate all tree-like resolution refutations with leaves labeled by clauses in S and
with clauses of width at most l. When we can no longer generate new clauses, we
increase l by 1.

Exercise 6.27. Suppose that V has feasible interpolation and it is also polybounded.
Consider the following two formulas: α(~p, ~q) asserting “~q is a satisfying truth assign-
ment for the propositional formula encoded by ~p”, and β(~p, ~r) asserting “~r encodes
a V -refutation of ~p”. Obviously α ∧ β is not satisfiable. A polysize interpolant for
these formulas would give us a polysize circuit for satisfiability, and hence NP would
be contained in P/poly.

6.6. Notes

§6.3 is based on [BP96]. theorem 6.28 (i.e., Razborov’s Clique theorem) is
presented in [Pap94, §14.4] (albeit, with a slightly different statement). §6.4 is based
on [Pit02, lectures 6 and 7].
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Randomized Classes

7.1. Three examples of randomized algorithms

7.1.1. Perfect matching. Consider a bipartite graph G, and its adjacency ma-
trix defined as follows: (AG)ij = xij iff (ui, vj) ∈ EG. Then, G has a perfect matching

◦ // ◦

◦ // ◦

◦

��

◦

◦

??

◦


x11 0 0 0
0 x22 0 0
0 0 0 x34

0 0 x43 0



Figure 1. A bipartite graph and its adjacency matrix.

(i.e., each vertex on the left may be paired with a unique vertex on the right) iff
det(AG) = Σσsgn(σ)Πi(AG)iσ(i) 6= 0.

Computing the symbolic determinant is computationally very expensive, so in-
stead we randomly assign values to the xij ’s. Let AG(x1, . . . , xm), m = |EG|, be AG
with its variables renamed to x1, . . . , xm. Note that m ≤ n2 and each xl represents
some xij .

Choose m random integers i1, . . . , im between 0 and M = 2m, and compute the
integer determinant of AG(i1, . . . , im). If det(AG(i1, . . . , im)) 6= 0, then “yes,” G has
a perfect matching. If det(AG(i1, . . . , im)) = 0, then “no,” G probably has no perfect
matching. This is a polytime Monte Carlo algorithm where “yes” answers are reliable
and final, while “no” answers are in danger of a false negative. In this case G might
have a perfect matching, but unluckily (i1, . . . , im) may happen to be roots of the
polynomial det(AG(x1, . . . , xm)).

Formally, N is a Monte Carlo TM for L if whenever x ∈ L, then at least half
of the computations of N on x halt in “yes.” If x /∈ L, then all computations halt
in “no.” In other words, a Monte Carlo TM rejects “unanimously,” and accepts “by
majority.”
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Lemma 7.1 (Schwarz-Zippel). Consider only polynomials over the ring Z, and let
p(x1, . . . , xm) 6= 0 be a polynomial, where the degree of each variable is ≤ d (when
the polynomial is written out as a sum of monomials), and let M > 0. Then the
number of m-tuples (i1, . . . , im) ∈ {0, 1, . . . ,M − 1}m such that p(i1, . . . , im) = 0 is
≤ mdMm−1.

Proof. Induction on m (the number of variables). If m = 1, p(x1) can have at
most d ≤ dM0 many roots, by the Fundamental theorem of Algebra.

Suppose the lemma holds for (m− 1), and suppose that p(i1, . . . , im) = 0. There
are two cases to consider: express p(x1, . . . , xm) as ydxdm + · · · + y0x

0
m, where yi =

yi(x1, . . . , xm−1) ∈ Z[x1, . . . , xm−1]. The first case is the situation where yd = · · · =
y0 = 0, i.e., the “coefficients” of this polynomial are zero under some value assignment
to the xi’s, and so p is zero under that assignment. The probability of this situation
happening is certainly bounded above by the probability that yd = 0 (i.e., only the
first coefficient is zero under some value assignment). The second case is where yd 6= 0,
under some truth value assignment. Thus the probability that p = 0 is bounded above
by the sum of the probabilities of these two cases.

We now compute the probability of each case. Case (1), the coefficient of the
highest degree of xm (this coefficient is in Z[x1, . . . , xm−1]) is zero. By the induction
hypothesis, this coefficient is zero for at most (m − 1)dMm−2 many values, and xm
can take M values, and so the polynomial is zero for at most (m− 1)dMm−1 values.
Case (2), for each combination of Mm−1 values for x1, . . . , xm−1, there are at most
d roots of the resulting polynomial (again by the Fundamental theorem of Algebra),
i.e., dMm−1. Adding the two estimates gives us mdMm−1. �

We apply lemma 7.1 to the Monte Carlo algorithm for matching given above,
with M = 2m, and obtain that the probability of a false negative is less than or equal
to:

m · d ·Mm−1

Mm
=
m · 1 · (2m)m−1

(2m)m
=

m

2m
=

1

2
.

Now suppose we perform “many independent experiments,” meaning that we perform
the above algorithm k many times. Then, if the answer always comes zero we know
that the probability of error is ≤

(
1
2

)k
= 1

2k
. For k = 100, the error becomes negligible.

The integer determinant can be computed in NC2 with Berkowitz’s algorithm
(this is shown in the Appendix, in §8.5), so this means that perfect matching is in
co-RNC2 (see the definition of randomized circuit families on page 108). On the other
hand, matching is in P; this can be easily seen by using a “max flow algorithm”: add
two new nodes s, t, and connect s to all the nodes in the left-column of the matching
problem, and connect t to all the nodes in the right-column of the matching problem,
and give each edge a capacity of 1, and ask if there is a flow ≥ n (where n is the
number of nodes in each of the two components of the given bipartite graph) from s
to t (see figure 2).

Counting the number of perfect matchings is complete for #P, while the decision
problem itself is in P (it is usually the case, for problems which are complete for #P,
such as #Sat, that the related decision problem is NP-complete).
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◦ //

��

◦

��

◦

��

◦

  
s ◦

FF

==

//

��

◦

??

◦ // ◦ t

...
...

◦ // ◦

GG

Figure 2. Reduction of matching to flow.

The family of Boolean functions fpm computing the existence of a perfect match-
ing (where the input variables denote the presence or absence of edges) is monotone
(adding new edges can only improve the chances of the existence of a perfect match-
ing). On the other hand, as we noted before, perfect matching is in P, so we know that
we can compute fpm with polysize circuits. It was shown by Razborov, however, that
monotone circuits computing fpm are necessarily of exponential size (thus, removing
the negation gate increases dramatically the circuit size necessary to compute fpm).
This also shows that giving an exponential lower bound for a monotone circuit family
deciding a language in NP is not enough to show the separation of P and NP (see
theorem 6.28).

One final observation is that perfect matching is not known to be complete for
any natural complexity class.

7.1.2. Primality testing. We present the Rabin-Miller randomized algorithm
for primality testing. Although a polytime (deterministic) algorithm for primality is
now known (see [AKS04]), randomized algorithms1 are simpler and more efficient,
and therefore still used in practice. Note that (n)b denotes the binary encoding of n.

Algorithm 7.2 (Rabin-Miller).
On input (n)b:

1. If n = 2, accept; if n is even and n > 2, reject.
2. Choose at random a positive a in Zn.
3. If a(n−1) 6≡ 1 (mod n), reject.
4. Find s, h such that s is odd and n− 1 = s2h.
5. Compute the sequence as·2

0

, as·2
1

, as·2
2

, . . . , as·2
h

(mod n).

1In fact it was the randomized test for primality that stirred interest in randomized computation
in the late 1970’s. Historically, the first randomized algorithm for primality was given by [SS77];
a nice self-contained exposition of this algorithm can be found in [Pap94, §11.1], and another
in [vzGG99, §18.5].
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6. If all elements in the sequence are 1, accept.
7. If the last element different from 1 is −1, accept. Otherwise, reject.

Note that this is a polytime (randomized) algorithm: computing powers (mod n)
can be done efficiently with repeated squaring—for example, if (n− 1)b = cr . . . c1c0,
then compute

a0 ≡n a, a1 ≡n a2
0, a2 ≡n a2

1, . . . , ar ≡n a2
r−1,

and so an−1 ≡n ac00 a
c1
1 · · · acrr . Thus obtaining the powers in lines 3 and 5 is not a

problem. The highest power of 2 that divides n− 1 is evident from (n)b, so line 4 is
not a problem either. Finally, choosing a non-zero a ∈ Zn in a random way can be
done by “flipping a coin” to obtain a string of bits of length log n (to ensure that a
is not zero we choose at random the position of a 1 in the string, and then generate
the other bits).

Theorem 7.3. If n is a prime then the Rabin-Miller algorithm accepts it; if n is
composite, then the algorithm rejects it with probability ≥ 1

2 .

Proof. If n is prime, then by Fermat’s little theorem a(n−1) ≡ 1 (mod n), so
line 3 cannot reject n. Suppose that line 7 rejects n; then there exists a b in Zn such
that b 6≡ ±1 (mod n) and b2 ≡ 1 (mod n). Therefore, b2−1 ≡ 0 (mod n), and hence

(b− 1)(b+ 1) ≡ 0 (mod n).

Since b 6≡ ±1 (mod n), both (b− 1) and (b+ 1) are strictly between 0 and n, and so
a prime n cannot divide their product. This gives a contradiction, and therefore no
such b exists, and so line 7 cannot reject n.

If n is an odd composite number, then we say that a is a witness (of compositness)
for n if the algorithm rejects on a. We show that if n is an odd composite number,
then at least half of the a’s in Zn are witnesses. The distribution of those witnesses
in Zn appears to be very irregular, but if we choose our a at random, we hit a witness
with probability ≥ 1

2 .
Because n is composite, either n is the power of an odd prime, or n is the product

of two odd co-prime numbers. This yields two cases.
Case 1. Suppose that n = qe where q is an odd prime and e > 1. Set t := 1+qe−1.

From the binomial expansion of tn we obtain:

tn = (1 + qe−1)n = 1 + nqe−1 +

n∑
l=2

(
n

l

)
(qe−1)l, (24)

and therefore tn ≡ 1 (mod n). If tn−1 ≡ 1 (mod n), then tn ≡ t (mod n), which
from the observation about t and tn is not possible, hence t is a line 3 witness. But
the set of line 3 nonwitnesses, S1 := {a ∈ Zn|a(n−1) ≡ 1 (mod n)}, is a subgroup of
Z∗n, and since it is not equal to Z∗n (t is not in it), by Lagrange’s theorem S1 is at
most half of Z∗n, and so it is at most half of Zn.

Case 2. Suppose that n = qr, where q, r are co-prime. Among all line 7 non-
witnesses, find a nonwitness for which the −1 appears in the largest position in the
sequence in line 5 of the algorithm (note that −1 is a line 7 nonwitness, so the
set of these nonwitnesses is not empty). Let x be such a nonwitness and let j be
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the position of −1 in its sequence, where the positions are numbered starting at 0;
xs·2

j ≡ −1 (mod n) and xs·2
j+1 ≡ 1 (mod n). The line 7 nonwitnesses are a subset

of S2 := {a ∈ Z∗n|as·2
j ≡ ±1 (mod n)}, and S2 is a subgroup of Z∗n.

By the CRT there exists t ∈ Zn such that

t ≡ x (mod q)
t ≡ 1 (mod r)

⇒ ts·2
j ≡ −1 (mod q),

ts·2
j ≡ 1 (mod r).

Hence t is a witness because ts·2
j 6≡ ±1 (mod n) (see footnote2) but on the other

hand ts·2
j+1 ≡ 1 (mod n).

Therefore, just as in case 1, we have constructed a t ∈ Z∗n which is not in S2,
and so S2 can be at most half of Z∗n, and so at least half of the elements in Zn are
witnesses. �

Exercise 7.4. First show that the sets S1 and S2 (in the proof of theorem 7.3)
are indeed a subgroups of Z∗n, and that in case 2 all nonwitnesses are contained in S2.
Then show that at least half of the elements of Zn are witnesses when n is composite,
without using group theory.

Note that by running the algorithm k times on independently chosen a, we can
make sure that it rejects a composite with probability ≥ 1− 1

2k
(it will always accept

a prime with probability 1). So, for k = 100 the probability of error, i.e., of a false
positive, is negligible. Thus, we have a Monte Carlo algorithm for composites, and
therefore Primes = {(n)b|n is primes} ∈ co-RP; see §7.2 for a definition of co-RP.

7.1.3. Pattern matching. In this section we design a randomized algorithm
for pattern matching. Consider the set of strings over {0, 1}, and let M : {0, 1} −→
M2×2(Z), that is, M is a map from strings to 2 × 2 matrices over the integers (Z)
defined as follows:

M(ε) =

[
1 0
0 1

]
; M(0) =

[
1 0
1 1

]
; M(1) =

[
1 1
0 1

]
and for strings x, y ∈ {0, 1}∗, M(xy) = M(x)M(y), where the operation on the LHS is
concatenation of strings, and the operation on the RHS is multiplication of matrices.

First of all, M(x) is well defined because matrix multiplication is associative, and
second of all, M(x) = M(y) implies that x = y (i.e., the map M is 1-1). Given
M = M(x) we can “decode” x uniquely as follows: if the first column of M is greater
than the second (where the comparison is made component-wise), then the last bit of
x is zero, and otherwise it is 1. Let M ′ be M where we subtract the smaller column
from the larger, and repeat.

For x ∈ {0, 1}n, the entries of M(x) are bounded by Fibonacci number Fn. Let
F0 = F1 = 1, and Fn = Fn−1 + Fn−2 for n > 1. For a given string x, M(x1x2 . . . xn)
is such that the “smaller” column is bounded by Fn−1 and the “larger” column is

2To see why ts·2
j 6≡ ±1 (mod n) observe the following: suppose that a ≡ −1 (mod q) and

a ≡ 1 (mod r), where gcd(q, r) = 1. Suppose that n = qr|(a+ 1), then q|(a+ 1) and r|(a+ 1), and
since r|(a− 1) as well, it follows that r|[(a+ 1)− (a− 1)], so r|2, so r = 2, so n must be even, which
is not possible since we deal with even n’s in line 1 of the algorithm.
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bounded by Fn. We can show this inductively: the basis case, x = x1, is obvious.
For the inductive step, assume it holds for x ∈ {0, 1}n, and show it still holds for
x ∈ {0, 1}n+1: this is obvious as whether xn+1 is 0 or 1, one column is added to the
other, and the other column remains unchanged.

By considering the matrices M(x) modulo a suitable prime p, we perform efficient
randomized pattern matching. We wish to determine whether x is a substring of y,
where |x| = n, |y| = m, n ≤ m. Let y(i) = yiyi+1 . . . yn+i−1, for appropriate i’s.
Select a prime p ∈ {1, . . . , nm2}, and let A = M(x) (mod p) and A(i) ≡ M(y(i))
(mod p). Note that

A(i+ 1) ≡M−1(yi)A(i)M(yn+i) (mod p),

which makes the computation of subsequent A(i)’s efficient.
So for all appropriate i’s, we check whether A = A(i). If yes, we check whether we

did not get a false positive using a bit-by-bit comparison. If they match, we answer
“yes,” otherwise we change the prime p and continue.3

What is the probability of getting a false positive? It is the probability that A(i) ≡
M(y(i)) (mod p) even though A(i) 6= M(y(i)). This is less than the probability that
p ∈ {1, . . . , nm2} divides a (non-zero) entry in A(i) −M(y(i)). Since these entries
are bounded by Fn < 2n, less than n distinct primes can divide any of them. On
the other hand, there are π(nm2) ≈ (nm2)/(log nm2) primes in {1, . . . , nm2}. So the
probability of a false positive is O(1/m).

Note that this algorithm has no error; it is randomized, but all potential an-
swers are checked for false positives. Checking for these potential candidates is called
fingerprinting. The randomness lowers the average time complexity of the procedure.

7.2. Basic Randomized Classes

In this section we present four standard randomized classes: RP,ZPP,BPP, and
PP. We assume throughout that N is a nondeterministic polytime TM, where at each
step there are exactly two nondeterministic choices (i.e., the degree of nondeterminism
is always 2), and N is precise, i.e., all computations on x halt after the same number
of steps, p(|x|).

Let RP be the class of languages with polytime Monte Carlo TMs (see page 101).
Note that P ⊆ RP ⊆ NP.

RP is a semantic class, as opposed to a syntactic class. The intuition is that by
“examining” a TM, in general we cannot tell if it is a Monte Carlo machine. On
the other hand, syntactic classes are such that we can enumerate all the TMs which
decide the class; examples of syntactic classes are P and NP, since we can list all poly-
time deterministic (or nondeterministic) TMs (see page 54 where we list all (oracle)
polytime deterministic TMs). The problem with semantic classes is that usually no
known complete problems exist for them. On the other hand, every syntactic class

3For more details on this question, and in particular for an interesting discussion of why we
need to change the prime after a false positive, see [KR87].
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M (e.g., nondeterministic polytime) has the following hard problem

{〈M,x〉|M ∈M and M(x) =“yes”},

which for P and NP also turns out to be complete. For semantic classes, this language
is usually undecidable.

Is RP closed under complement? The class co-RP has false positives, but not false
negatives. In §7.1.2 we showed that Primes ∈ co-RP, although it is now known that
Primes ∈ P.

Consider RP∩ co-RP. Any problem in this class has two Monte Carlo algorithms,
one with no false positives, and the other with no false negatives. If we execute both
algorithms independently k times, the probability of not obtaining a definitive answer
falls down to 2−k, because it means that one of them is giving the wrong answer k
times in the row (see figure 3). Let ZPP = RP∩co-RP. The class ZPP is a randomized
class with zero probability of error and an expected polynomial running time. A ZPP
algorithm is called a Las Vegas algorithm. At the time of writing these notes, no
algorithm class has been named after Baden-Baden.

x ∈ L x /∈ L
RP ≥ 1/2 “yes” all “no”

co-RP all “no” ≥ 1/2 “yes”

Figure 3. ZPP.

The most comprehensive but still plausible notion of realistic computation is
the class BPP (Bounded Probability of error and Polynomial running time). This
class consists of languages L for which there is a polytime TM N with the following
properties: if x ∈ L, then at least 3

4 of the computations accept, and if x /∈ L, then
at least 3

4 of the computations reject. (In other words, acceptance and rejection by
clear majority.)

We say that a language is in PP if there is a nondeterministic polytime TM N
(precise—as always when considering randomized algorithms) such that ∀x, x ∈ L
iff more than half of the computations of N on input x end up accepting. We say
that N decides L “by majority” (as opposed to “by clear majority” as in the case of
BPP). PP is a syntactic class since every nondeterministic precise TM N can be used
to define a language in PP.

Note that we have:
RP ⊆ BPP = co-BPP ⊆ PP,

where the first inclusion follows from the fact that we can run an RP algorithm twice
to get the probability of false negatives down to ≤ 1

4 , and the second inclusion follows
from the fact that a “clear majority” implies a “slim majority.”

A fundamental open problem is whether BPP =? P or even BPP⊆?NP.

Exercise 7.5. Show that the classes RP,BPP, and PP are closed under ≤mL
(logspace many-one reductions).
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Exercise 7.6. Show that BPP and RP are closed under union and intersection.
Also show that PP is closed under complement and symmetric difference.

Exercise 7.7. Show that if NP ⊆ BPP then RP = NP.

Exercise 7.8. Show that MajSat (consisting of φ’s for which more than half of
the truth assignments to Var(φ) are satisfying) is PP-complete.

Lemma 7.9. NP ⊆ PP.

Proof. Suppose that L is in NP, decided by a precise N . Then the following N ′

decides L by majority: add a new initial state to N , and a nondeterministic choice
out of it, one to the old initial state which leads to the old computation (i.e., the
computation of the original N), and the other leads to a new precise computation of
the same length as the old one, where all leaves are accepting.4 �

A family of circuits {Cn} is a randomized circuit family for f if in addition to the
n inputs x1, x2, . . . , xn, it takes m (random) bits r1, r2, . . . , rm, and furthermore Cn
satisfies two properties:

• If fn(x1, . . . , xn) = 0, then Cn(x1, . . . , xn, r1, . . . , rm) = 0 regardless of the
value of the ri’s (i.e., no false positives).

• If fn(x1, . . . , xn) = 1, then Cn(x1, . . . , xn, r1, . . . , rm) = 1 with probability
at least 1/2.

This is the nonuniform version of a Monte Carlo algorithm, i.e., the nonuniform
version of RP. Let RNCi to be the class of languages recognizable by randomized NCi

circuit families (see page 102 where we claimed that perfect matching is in RNC2).
In fact we can derandomize Monte Carlo circuit families (at the cost of losing

uniformity—if our circuit family was uniform).

Theorem 7.10. If f has a randomized polysize circuit family, then it has a
polysize circuit family (i.e., it can be derandomized).

Proof. For each n we form a matrix M with 2n rows, corresponding to each
input, and 2m columns, corresponding to each random input. Let Mjk be 1 if the
random input corresponding to the k-th column is a witness to the input corresponding
to the j-th input (i.e., this choice of random bits sets the circuit on that input to be 1).
Eliminate all rows for which fn is zero. At least half of the entries in each surviving
row are 1, so there must be a column where at least half of the entries are 1.

Pick the witness ~r1 = r1, . . . , rm corresponding to this column; it is a witness
for at least half of the inputs, so delete the rows corresponding to those inputs, and
repeat.

At each stage, we find a witness to at least half of the remaining inputs, so after
log 2n = n many steps we will find witnesses ~r1, . . . ,~rn for all the inputs. Now let
C ′n(x1, . . . , xn) be the Or of the circuits Cn(x1, . . . , xn,~ri), i = 1, . . . , n. �

4When showing relationships between the different randomized classes one often has to modify
the number of accepting and rejecting paths. When doing this, it is important to remember that the
different nondeterministic branches are “not aware of each other.” So the changes can not be made
dependent of the contents of the individual branches.
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7.3. The Chernoff Bound and Amplification

Suppose that L is in RP, and A is the Monte Carlo algorithm that decides L. We
run A on x (independently) p(|x|)-many times. If the answer always come “no,” we
answer “no.” The first time a “yes” answer comes, we answer “yes” and stop running
A. If x /∈ L, the answer will always be “no,” and we answer correctly. If x ∈ L, then
the probability that we answer “no” at the end is less than or equal to

(
1
2

)p(|x|)
, i.e.,

exponentially small! This is called amplification or error reduction; at a polynomial
cost, it increases the probability of getting the right answer exponentially: “From
fairest creatures we desire increase”.5

Lemma 7.11 (Chernoff Bound). Suppose that X1, X2, . . . , Xn are independent
random variables, taking the value 1 and 0 with probability p and (1−p), respectively,
and consider X =

∑n
i=1Xi. Then, for 0 < θ ≤ 1,

Pr[X ≥ (1 + θ)pn] ≤ e− θ
2

3 pn.

Proof.

Pr[X ≥ (1 + θ)pn] = Pr[etX ≥ et(1+θ)pn] ≤ e−t(1+θ)pnE(etX)

where t ∈ R+, and where we applied a version of Markov’s inequality (which states
that Pr[X ≥ kE(X)] ≤ 1

k ; see the proof of claim 5.28, on page 75), with k =

et(1+θ)pnE(etX)−1.
Since X =

∑n
i=1Xi, where the Xi are independent random variables, we have

that
E(etX) = (E(etX1))n = (1 · (1− p) + et · p)n = (1 + p(et − 1))n.

Therefore,
Pr[X ≥ (1 + θ)pn] ≤ e−t(1+θ)pn(1 + p(et − 1))n.

Now note that (1 + y) ≤ ey, and so (1 + p(et− 1)) ≤ ep(et−1), and so we can conclude
that

Pr[X ≥ (1 + θ)pn] ≤ e−t(1+θ)pnepn(et−1),

and t = ln(1 + θ) minimizes the RHS of the above equation, which finally gives us:

Pr[X ≥ (1 + θ)pn] ≤ epn(θ−(1+θ) ln(1+θ))

and (θ − (1 + θ) ln(1 + θ)) ≤ −θ
2

3 . �

Corollary 7.12. If p = 1
2 + ε for some 0 < ε < 1

4 , then Pr[X ≤ n
2 ] ≤ e− ε

2n
6 .

Proof. X =
∑n
i=1Xi ≤ n

2 iff −
∑n
i=1Xi ≥ −n2 iff n −

∑n
i=1Xi ≥ n − n

2 iff∑n
i=1 (1−Xi)︸ ︷︷ ︸

X′i

≥ n
2 . Thus, X ′i is 1 with probability p′ = 1

2 − ε, and 0 with probability

(1− p′), and so now we apply the Chernoff bound (lemma 7.11) and obtain

Pr[X ′ ≥ (1 + θ)(
1

2
− ε)n] ≤ e− θ

2

3 ( 1
2−ε)n.

5Shakespeare, Sonnet I.
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To make (1 + θ)( 1
2 − ε) = 1

2 , we have to set θ = ε
1
2−ε

, and now

Pr[X ≤ n

2
] = Pr[X ′ ≥ n

2
] ≤ e−

(
ε

1
2
−ε

)2

3 ( 1
2−ε)n < e−

ε2n
6 ,

where the right-most inequality follows from basic algebra. �

Here are some consequences of this corollary.

• We can detect a bias ε in a coin with reasonable certainty by performing
about n = O( 1

ε2 ) many experiments. Say, we let n = 60 1
ε2 . Then e−

ε2n
6 <

0.00004, so the probability that the side with the bias 1
2 + ε does not show

up in the majority of trials is very small.
• PP is not a “good” randomized class because there the bias ε may be equal

to 2−p(n), where p is a polynomial (i.e., the majority may be very slim, so if
x ∈ L, only half plus 1 are “yes” computations, and half minus 1 are “no”
computations, and if x /∈ L vice-versa). If ε is so slim, the algorithm then
has to be run exponentially many times to get the correct answer with any
reasonable degree of confidence.

• We could define BPP to have 1
2 + ε as the probability of getting the right

answer, even for very small ε. Suppose 0 < ε < 1
4 . Suppose that N decides

L by majority 1
2 + ε. Run N n-many times and accept as outcome the

majority of outcomes. By choosing n suitably large we can bound the error
by 1

4 : by corollary 7.12 we have

Pr[error] = Pr[X ≤ n

2
] ≤ e− ε

2n
6 .

We want e−
ε2n
6 < 1

4 , so it is enough to have ε2n
6 > 2, i.e., ε2n > 12, i.e.,

n = d 12
ε2 e. Note that ε does not even have to be a constant—it could be any

inverse polynomial. We can do even better; say we want e−
ε2n
6 < 1

4m , then
just let n be greater than (8/ε2)m.

In other words, we can always assume that if we have a BPP algorithm
for deciding a language, we have a BPP algorithm for deciding the same
language where the probability of error is bounded by 1

2|x|
for any input x.

This negligible probability of error (2100 is the estimated number of atoms
in the observable universe) is what motivates the conjecture that P = BPP.

Also, in the absence of a proof that P = BPP, this small probability of
error suggest that perhaps BPP can replace P as the class of languages that
can be recognized feasibly.

7.4. More on BPP

The following theorems show that we can replace randomness with nonuniformity.

Theorem 7.13. All languages in BPP have polysize circuits, i.e., BPP ⊆ P/poly.
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Proof. L ∈ BPP, so it is decided by a nondeterministic N by clear majority,
say 1

4 probability of error. We show how to build C = 〈Cn〉 using the “probabilistic
method in combinatorics.”6 Let p(n) be the length of computation of N on inputs of
length n (as always, assume N is precise). Consider a sequence An = {a1, . . . , am} of
bit strings, each ai ∈ {0, 1}p(n), and let m = 12(n+1). Each ai represents a particular
branch of N on an input of length n.

Define Cn(x) to be the majority of outcomes of Na1(x), . . . , Nam(x), where Nai
is a polytime deterministic Turing machine obtained from N by taking the branch
specified by ai, so Nai(x) can be simulated with a polysize circuit. We argue that for
every n there exists an An so that Cn works correctly on all inputs x.

Claim 7.14. ∀n > 0, ∃An, |An| = m = 12(n + 1), such that for any given x
of length n, less than half of the strings in An are bad for x (ai is “bad for x” if
Nai(x) 6= L(x)).

Proof. Generate An randomly. We show that the probability that for each
x ∈ {0, 1}n more than half the strings in An are good is at least 1

2 . Thus, an An with
at least half the strings being good exists.

For each x ∈ {0, 1}n, at most 1
4 of the computations are bad. So the expected

number of bad ai’s is m
4 . We use the Chernoff bound (lemma 7.11) with the following

parameters:

X =

m∑
i=1

Xi, where Xi =

{
1 ai is bad
0 ai is good

θ = 1

p =
1

4
= probability of ai being bad

m = |An| = 12(n+ 1),

to obtain

Pr[X ≥ (1 + θ)pm] ≤ e
(
− θ23 pm

)
,

and hence Pr[ X ≥ m

2︸ ︷︷ ︸[
prob. m/2 or

more ai’s are bad

]
] ≤ e(−

m
12 ) < 1

2n+1 . Thus, the probability that for

some x ∈ {0, 1}n at least half of An are bad ai’s is at most 2n 1
2n+1 = 1

2 . �

This ends the proof of theorem 7.13. �

Note that we do not know an efficient way of constructing this An, for every n,
since otherwise we would have shown that BPP = P.

Theorem 7.15 (Sipser). BPP ⊆ Σp2.

Proof. Let L ∈ BPP. By amplification we know that we can make the proba-
bility of error less than 1

2n , so let N be the amplified BPP machine deciding L. Let
A(x) ⊆ {0, 1}p(n) be the set of accepting computations for a given x (i.e., strings

6Our first example of this method was the lower bound for parity, §5.3.1 (page 71).
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representing a sequence of choices that lead to an accepting configuration—remember
that our machines are always precise and of degree of nondeterminism exactly 2). We
know the following:

• If x ∈ L, then |A(x)| ≥ 2p(n)(1− 1
2n ), and

• if x /∈ L, then |A(x)| ≤ 2p(n) 1
2n .

Let U = {0, 1}p(n), i.e., U is the set of bit strings of length p(n). For a, b ∈ U , define
a ⊕ b to be the bit-wise Xor of a, b, i.e., the string (a1 ⊕ b1) · · · (ap(n) ⊕ bp(n)). Note
that a⊕ b = c ⇐⇒ c⊕ b = a. Thus, for a given fixed b, fb(a) = a⊕ b is a one-to-one
function, and fb is a convolution, i.e., f2

b = id. Further, if r ∈ {0, 1}p(n) is a random
string, then fb(r) = r⊕ a is also a random string (because fb is just a permutation of
U).

For any t ∈ U , let A(x)⊕ t := {a⊕ t|a ∈ A(x)}. Call this the translation of A(x)
by t, and note that |A(x)⊕ t| = |A(x)|.

Claim 7.16. If x ∈ L, we can find a small set of translations of A(x) that covers
all of U .

Proof. Suppose x ∈ L, and consider t1, . . . , tp(n) ∈ U , obtained uniformly at
random. Fix b ∈ U . These translations cover b if ∃j ≤ p(n) such that b ∈ A(x)⊕ tj .

Pr[b /∈ A(x)⊕ tj ] = Pr[b⊕ tj /∈ A(x)] ≤ 1

2n
,

since b ∈ A(x)⊕ tj ⇐⇒ b⊕ tj ∈ A(x), and since x ∈ L. So the probability that b is
not covered by any of the tj ’s is less than 2−n·p(n), and so the probability that some
b in U is not covered is at most 2p(n)2−n·p(n), and so with overwhelming probability
all of U is covered, and so there is a particular T = {t1, . . . , tp(n)} that covers U . �

On the other hand, if x /∈ L, then A(x) is an exponential fraction of U , so no
polysize set T that covers U can exist. Therefore, there is a sequence T of p(n)
translations that cover U iff x ∈ L. Thus, L is the set of strings x such that: ∃T ∈
{0, 1}p(n)2 , such that ∀b ∈ U , there is a j ≤ p(n) such that b ⊕ tj ∈ A(x). Since the
last “there is” can be expressed as an Or of polynomially many things, and so can be
made part of a polytime relation, we obtain a Σp2 predicate. �

Corollary 7.17. BPP ⊆ Σp2 ∩Πp
2.

Proof. Since BPP = co-BPP, the corollary follows directly from theorem 7.15.
�

Corollary 7.18. If P = NP then P = BPP.

Proof. If P = NP, then by theorem 4.18 the polytime hierarchy PH collapses
to P, so by theorem 7.15, BPP ⊆ Σp2 ⊆ P. Since trivially P ⊆ BPP, the corollary
follows. �
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7.5. Toda’s theorem

Toda’s theorem states that PH ⊆ PPP, which can actually be stated more tightly
as follows: PH ⊆ P#P[1]. (#P[1] means that we access the #P oracle only once; see
page 30 for a definition of #P.) What this theorem says is that counting is more
powerful than any constant number of alternations of quantifiers.

We introduce one more complexity class: ⊕P, Parity P, the class of languages
which are decidable by the parity of the number of accepting computations of a nonde-
terministic polytime TM. The class ⊕P contains, for example, the graph isomorphism
problem.

The proof of Toda’s result has two parts.
Part 1. ∀k, Σpk ⊆ BPP⊕P; the consequence of this is that PH ⊆ BPP⊕P.
Part 2. PP⊕P ⊆ P#P[1]; the consequence of this is that BPP⊕P ⊆ P#P[1].
Putting the two parts together, we obtain that PH ⊆ P#P[1] (since BPP ⊆ PP).

On the other hand, PPP = P#P (lemma 7.25), so the advertised result follows. We
make some observations:

• Since the permanent (over 0-1 matrices computed over Z) is complete for
#P (as is #Sat), we could have restated Toda’s theorem as claiming that PH
fits in P with a single access to an oracle for computing the permanent.

• The permanent can be used to compute the number of perfect matchings
in a bipartite graph, and it was already noted that the number of perfect
matchings is #P complete (see page 102), while the related decision problem
(i.e., is there a perfect matching in a given graph?) is in P. This is not
the case for the decision problem related to #Sat, i.e., Sat, which is NP-
complete.

To show Part 1, we use induction on k. The Basis Case is that Σp1 = NP ⊆ BPP⊕P

(which is lemma 7.19). Here is the plan for the proof of the induction hypothesis:

Σpk+1

(1)
= NPΣpk

(2)
⊆ NPBPP⊕P (3)

⊆ BPP⊕P
BPP⊕P (4)

⊆ BPPBPP⊕P⊕P (5)
⊆ BPP⊕P, (25)

where (1) is by definition, (2) is by the induction hypothesis, (3) is the relativized ver-
sion of the basis case, i.e., by lemma 7.19 (“Relativized Inclusion,” NPO ⊆ BPP⊕P

O

),
(4) is by lemma 7.23 (i.e., “Swapping,” ⊕PBPPO ⊆ BPP⊕P

O

), and (5) is by lemma 7.21
(i.e., “Collapsing,” BPPBPPO = BPPO and ⊕P⊕P = ⊕P).

Part 2 follows from the single lemma 7.24.

Lemma 7.19. For any oracle O, NPO ⊆ BPP⊕P
O

.

Proof. In fact we prove something stronger: NP ⊆ RP⊕P (or even stronger than
that: NP ⊆ RPUP).7 Suppose that L ∈ NP, so there exists a polytime language A
such that x ∈ L ⇐⇒ F(x) := {y|〈x, y〉 ∈ A} is non-empty. Consider the language

B = {〈x,W, j〉 : |{y ∈ F(x) : W (y) = j}| = 1}. (26)

7UP, Unambiguous Polytime, is the class of languages decidable by a nondeterministic polytime
TM where there are either no accepting paths or a single accepting path. Note that P 6= UP iff worst-
case one way functions exist.



114 7. RANDOMIZED CLASSES

Note that W (y) =
∑
i,y(i)=1W (i) is a weight function, which can be encoded effi-

ciently as a string which gives values (in an appropriate polysize range) to all the
elements in the set {1, 2, . . . , |y|}. In what follows, we are going to apply the Isolation
Lemma (see the Appendix, §8.4).

There exists a polynomial q(n) such that
• If x ∈ L, PrW,j [〈x,W, j〉 ∈ B] ≥ 1

q(|x|) , where W, j are bounded by an
appropriate polynomial. To see this, note that with a probability greater or
equal to 3

4 , a W is selected such that |{y ∈ F(x)|W (y) = j}| = 1, for some
j. Now a j is selected independently at random, among polynomially many
values, so we have 1

q(|x|) instead.
• If x /∈ L, then Pr = 0.

Exercise 7.20. Give precise bounds in the above outline, so that the analysis of
the probabilities works out (in particular, what is the size of the range of W?).

If we replace the “= 1” in (26) with “is an odd number,” then B ∈ ⊕P. Now on
input x, do q(|x|)-many independent trials of selecting W and j, and for each such
pair query 〈x,W, j〉 ∈ B, and accept iff at least one such trial is successful (in the
sense that 〈x,W, j〉∈?B returns a “yes”). If x /∈ L, clearly Pr[accept] = 0, and if
x ∈ L, then

Pr[reject] <
(

1− 1

q(|x|)

)q(|x|)
↑x→∞

1

e
<

1

2
.

The same argument can be repeated with an oracle O to obtain the result as advertised
in the statement of the lemma. �

Lemma 7.21. For any oracle O, BPPBPPO = BPPO, and ⊕P⊕P = ⊕P.

Proof. BPPBPP = BPP follows by amplification: if we make the error exponen-
tially small, and then directly simulate the oracle queries in the computation, then the
number of incorrect paths (i.e., the paths on which some of the polynomially many
oracle queries gave the wrong answer) is a small fraction of all the paths.

Exercise 7.22. Formalize the above paragraph with appropriate parameters and
show precise bounds.

To show ⊕P⊕P = ⊕P, observe first that ⊕P is closed under complementation (just
add one more choice from the initial state that lands immediately in an accepting
state; this way the total number of accepting states increases by 1 and the parity
flips).8

Now suppose that L ∈ ⊕P⊕P, so there is an oracle TM MB such that x ∈ L ⇐⇒
the number of accepting paths of MB on x is odd, where B ∈ ⊕P. Let N0 witness B
and N1 witness B. Let M ′ be a nondeterministic TM which on input x, simulates M ,
except when M is about to make a query on y, M ′ guesses the answer b ∈ {0, 1}, and
then simulates Nb on y. At the end, M ′ accepts on a path, if all the computations of
N0, N1, and M are accepting on that path.

8Another way to see it is using the fact that #P is closed under addition: if N0 is a polytime
nondeterministic machine, then let N1 be such that #acceptN1

= #acceptN0
+ 1.
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Now, for each accepting branch that ignores the computations of N0, N1 (i.e., we
only take into account the guess b and continue immediately simulating M ; call those
branches “trunks”), there was a sequence of queries y1, y2, . . . , yn on that path, and
hence it gets blown up by Πn

i=1#acceptNi(yi). Note that this number is odd iff all the
n guesses are correct. All the trunks that correspond to bad guesses contribute an
even factor. �

Lemma 7.23. For any oracle O, ⊕PBPPO ⊆ BPP⊕P
O

.

Proof. We show that ⊕PBPP ⊆ BPP⊕P, and since the argument relativizes, the
lemma follows. Suppose that L ∈ ⊕PBPP. Then, there exists a language A ∈ PBPP

such that
x ∈ L ⇐⇒ |{y : 〈x, y〉 ∈ A}| is odd.

By lemma 7.21 we know that PBPP ⊆ BPPBPP = BPP, so in fact PBPP = BPP, so we
can assume directly that A ∈ BPP. So we know that there exists a language B ∈ P
such that

〈x, y〉 ∈ A ⇐⇒ 〈x, y, z〉 ∈ B,
and this is true for, say, a (1−1/2p(|x|))-fraction of the z’s, where p is any polynomial.
We can make the polynomial p sufficiently large, so that in fact for a 3/4-fraction of
the z’s, we can make the following assertion:

∀y[〈x, y〉 ∈ A ⇐⇒ 〈x, y, z〉 ∈ B].

We can make this assertion since the number of y’s is itself bounded by 2q(|x|), where
q is a polynomial. It therefore follows that, for a given x, for a fraction of 3/4 of the
z’s, we have:

|{y : 〈x, y〉 ∈ A}| = |{y : 〈x, y, z〉 ∈ B}|
and in particular, the LHS is odd iff the RHS is odd. Thus, the following BPP⊕P

algorithm decides L: on input x0, generate a random z0, and then query the ⊕P
oracle if the set {y|〈x0, y, z0〉 ∈ B} is odd-sized. On 3/4 of the z’s we get the right
answer. �

Lemma 7.24. PP⊕P ⊆ P#P[1].

Proof. Suppose that L ∈ PP⊕P. Then, there exists a language A ∈ P⊕P, and
hence, by lemma 7.21 (part two), A ∈ ⊕P, such that:

x ∈ L ⇐⇒ |{y : 〈x, y〉 ∈ A}| > 2p(|x|)−1.

Let M be the polytime nondeterministic TM witnessing that A is in ⊕P. Using some
clever arithmetic, it is possible to design a #P function g, such that

g(〈x, y〉) =

{
m2p(|x|) + 1 if #acceptM (〈x, y〉) is odd
m2p(|x|) if #acceptM (〈x, y〉) is even,

and from g we can easily design the #P function h,

h(x) =
∑
y

g(〈x, y〉).
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The #P machine computing h simply guesses a y (in the appropriate range, of course),
and then simulates g(〈x, y〉).

The question is how to define g.
Let s0(z) = z, and let si+1(z) = 3si(z)

4 + 4si(z)
3. The function si has the

property that if z is odd, then si(z) − 1 is divisible by 22i , and if z is even, it is
divisible by m22i . On the other hand, we can evaluate a polynomial at a value in #P
as follows: suppose we want to compute a0 + a1z + a2z

2 + · · · + amz
m. For each i,

we branch out on all the values 1, 2, . . . , ai, and then we branch out on the value z
i-many times.

Let lx = dlog p(|x|) + 1e and rx(z) = (slx(z))2, and g(x) = rx(#acceptM (x)).
We now show how to put it all together to decide L in P#P[1]. On input x, we

use the #P oracle exactly once to compute h(x). Once we have h(x) on the oracle
tape, we check whether the value encoded in the first p(|x|) many bits is greater than
2p(|x|)−1, and accept iff it is. �

Lemma 7.25. PPP = P#P.

Proof. Showing PPP ⊆ P#P is easy, since a #P oracle gives more information
than a PP oracle (we not only know if the majority of computations are accepting;
we actually know how many).

To show that PPP ⊇ P#P, we show that for any polytime nondeterministic TM
N , the language L = {〈x, y〉|#acceptN (x) ≥ y} is in PP. This way, if we have a #P
function f as oracle, we can compute its value in polytime with a PP oracle using
binary search.

We can assume that N is precise, and all computational paths are of length
exactly p(|x|). Now define the machine D, which takes input 〈x, y〉, and which initially
branches on b = 0 and b = 1.

If b = 0, it guesses a string z ∈ {0, 1}p(|x|), and then accepts iff the rank of z is at
most 2p(|x|)− y. (The rank of a string is the number of strings, in lexicographic order
by lengths, after that string. In this case it means that there are more than y many
strings before z—of course, we work with the finite set {0, 1}p(|x|).)

If b = 1, then D just simulates N on x.
The proportion of accepting computations is:

2p(|x|) − y
2p(|x|)+1

+
#acceptN (x)

2p(|x|)+1
,

and it is > 1
2 iff #acceptN (x) ≥ y. �

7.6. Answers to selected exercises

Exercise 7.4. Showing that S1, S2 are subgroups of Z∗n is easy; it is obvious in both
cases that 1 is there, and closure and existence of inverse can be readily checked.

To give the same proof without group theory, we follow the cases in the proof of
theorem 7.3. Let t be the witness constructed in case 1. If d is a (stage 3) nonwitness,
we have dp−1 ≡ 1 (mod p), but then dt (mod p) is a witness. Moreover, if d1, d2 are
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distinct (stage 3) nonwitnesses, then d1t 6≡ d2t (mod p). Otherwise,

d1 ≡p d1 · t · tp−1 ≡p d2 · t · tp−1 ≡p d2.

Thus the number of (stage 3) witnesses must be at least as large as the number of
nonwitnesses.

We do the same for case 2; let d be a nonwitness. First, ds·2
j ≡ ±1 (mod p) and

ds·2
j+1 ≡ 1 (mod p) owing to the way that j was chosen. Therefore dt (mod p) is a

witness because (dt)s·2
j 6≡ ±1 (mod p) and (dt)s·2

j+1 ≡ 1 (mod p).
Second, if d1 and d2 are distinct nonwitnesses, d1t 6≡ d2t (mod p). The reason

is that ts·2
j+1 ≡ 1 (mod p). Hence t · ts·2j+1−1 ≡ 1 (mod p). Therefore, if d1t ≡ d2t

(mod p), then
d1 ≡p d1t · ts·2

j+1−1 ≡p d2t · ts·2
j+1−1 ≡p d2.

Thus in case 2, as well, the number of witnesses must be at least as large as the
number of nonwitnesses.

Exercise 7.6. To prove that PP is closed under complementation, we need to show
that it is possible to modify a nondeterministic TM in such a way, that the number
of accepting and rejecting computation paths will always differ (of course preserving
the inequality between them). To achieve this we first make sure that the left-most
computation path is always an accepting one (this can be done preserving the ac-
cept/reject relation by splitting the computation tree into 4: an always-accepting, an
always-rejecting and two identical to the original one). Then we add an additional bit
to the state of the machine to keep track whether the computation follows the left-
most path. If this is the case, we nondeterministically accept or reject. Otherwise we
do as before (of course we need to create two identical branches to make the machine
precise). Now if the original machine would accept on exactly half of the branches,
the new one will accept on one less than a half. Therefore we can get a machine for
the complement of the original language by reversing the accept and reject answers.

Knowing that PP is closed under complement it is easy to show that it is also
closed under symmetric difference. If 1

2 < p, q ≤ 1 then it is either the case that
p(1− q) + q(1−p) is greater than 1

2 or pq+ (1−p)(1− q) is greater than 1
2 . Therefore

for any two languages L1, L2 ∈ PP we can use one of the following to get their
symmetric difference:

L14L2 = (L1 ∩ L2) ∪ (L1 ∩ L2), L14L2 = (L1 ∩ L2) ∪ (L1 ∩ L2).

Exercise 7.7. We know that RP ⊆ NP. Assume that NP ⊆ BPP. Then Sat ∈ BPP.
Consider the following algorithm for Sat: given a formula φ we first use the BPP
algorithm to see if it is satisfiable. If the answer comes “no,” we reject. If the answer
comes “yes,” we set the first variable x1 to 0 and 1 and ask the BPP machine again.
If both answers are “no,” we reject. Otherwise we proceed with x1 set to the value
for which the answer was “yes.” We repeat this procedure until we get a total truth
assignment. Then we verify (deterministically!) that it really satisfies φ and accept if
and only if it does. From the last step it is clear, that our algorithm will not return
false positive answers. The probability of a false negative can be bounded from above
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by the sum of probabilities of errors on each steps (and there are n of them). And
as the probability of error of an BPP algorithm can be made exponentially small by
amplification, we can easily limit the resulting probability of false negatives by 1

2 .
Thus Sat ∈ RP, but as Sat is NP-complete, NP ⊆ RP and finally, NP = RP.

Exercise 7.8. Consider any language L ∈ PP. Having the machine solving it we
can create a Boolean formula encoding possible computations (as in the Cook’s theo-
rem 2.13). Let us consider two parts of this formula: φ, meaning “the computation is
correct (well-formed),” and ψ, meaning “the computation is accepting.” Let us intro-
duce a new variable x and consider the following formula: θ := (φ→ ψ) ∧ (¬φ→ x).
It is easy to see, that if a truth assignment does not satisfy φ, then to satisfy θ it
must satisfy x. It means that exactly half of these assignments satisfy θ. On the
other hand if a truth assignment satisfies φ then, to satisfy θ, it must satisfy ψ. It
means that more than half of all assignments satisfy θ if and only if more than a half
correct computations are accepting. And, as the size of θ is of course polynomial in
the size of the instance of L, the reduction works correctly. Thus any problem in PP
can be reduced do MajSat which means that MajSat is PP-complete.

7.7. Notes

The material in §7.1.2 is based on [Sip06, § 10.2]. The proof of lemma 8.21 is
from [Sip06, exercise 10.16]. §8.3 is based on [MR95, § 14.4, pg. 410]. §7.1.3 is based
on [KR87]. Exercise 7.5 is [Pap94, exercise 11.5.13], exercise 7.6 is [Pap94, exer-
cise 11.5.14 and 15], exercise 7.7 is [Pap94, exercise 11.5.18], exercise 7.8 is [Pap94,
exercise 11.5.16]. The proof of lemma 7.11 is based on [Pap94, lemma 11.9], and
corollary 7.12 is based on [Pap94] as well, but note that in [Pap94] the condition
ε < 1

4 is omitted but it is necessary to ensure that 0 < θ ≤ 1. §8.4 is based on [HO02,
chapter 4].

Credit for inventing the Monte Carlo method often goes to Stanisław Ulam, a
Polish born mathematician who worked for John von Neumann on the United States
Manhattan Project during World War II. Ulam is primarily known for designing the
hydrogen bomb with Edward Teller in 1951. He invented the Monte Carlo method in
1946 while pondering the probabilities of winning a card game of solitaire. Quoted
in [Eck87], Ulam describes the incident as follows: The first thoughts and attempts
I made to practice [the Monte Carlo Method] were suggested by a question which
occurred to me in 1946 as I was convalescing from an illness and playing solitaires.
The question was what are the chances that a Canfield solitaire laid out with 52 cards
will come out successfully? After spending a lot of time trying to estimate them by
pure combinatorial calculations, I wondered whether a more practical method than
abstract thinking might not be to lay it out say one hundred times and simply observe
and count the number of successful plays. This was already possible to envisage with
the beginning of the new era of fast computers, and I immediately thought of problems
of neutron diffusion and other questions of mathematical physics, and more generally
how to change processes described by certain differential equations into an equivalent
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form interpretable as a succession of random operations. Later [in 1946, I] described
the idea to John von Neumann, and we began to plan actual calculations.
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Appendix

8.1. NP-complete problems

If G = (V,E) is an (undirected) graph and V0 ⊆ V , then V0 is an independent set
if no two nodes in V0 are connected by an edge in E.
IndepSet:
Input: G = (V,E), B ∈ N, B ≤ |V |.
Question: Does G have an independent set of size B?

Lemma 8.1. IndepSet is NP-complete.

Proof. IndepSet ∈ NP: guess a set of vertices V0 ⊆ V , check that |V0| = B and
that no edge in E connects two vertices in V0. We show that 3Sat ≤mL IndepSet.

Given an input I = {C1, . . . , Cm} to 3Sat, we must find an input 〈GI , BI〉 to
IndepSet such that I ∈ 3Sat iff 〈GI , BI〉 ∈ IndepSet.

For each instance I = {C1, . . . , Cm} of 3Sat, where Ci = li1∨ li2∨ li3, 1 ≤ i ≤ m,
define an instance GI = (VI , EI), BI of IndepSet as follows: the set VI of vertices is
given by:

VI = {vij | 1 ≤ i ≤ m, 1 ≤ j ≤ 3 }
To construct EI , connect any two nodes in the same clause, and connect complemen-
tary literals (e.g. x and x̄). More precisely, (vij , vkl) ∈ E iff one of the following
holds: i = k, that is lij and lkl are literals in the same clause, or, lij and lkl are
complementary literals (one is the negation of the other).

Finally, let BI = m.
(⇒) If I has a satisfying truth assignment t, then GI has an independent set of size

m. To see this, select one literal from each clause made true by t. Two complementary
literals cannot both be made true by t, so the result is an independent set.

(⇐) Conversely, if GI has an independent set V0 of size m, then I has a satisfying
truth assignment t. To see this, observe that V0 selects one occurrence of a literal
from each clause. Define t to make all of these literals true. Note that for each l,
we cannot select both l and l̄ in different clauses because they are connected by an
edge. �

If G = (V,E) and V0 ⊆ V , then V0 is a vertex cover in G if every edge in E has
at least one end point in V0.
VertexCover:
Input: G = (V,E), B ∈ N, B ≤ |V |.
Question: Does G have a vertex cover of size B?
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Lemma 8.2. VertexCover is NP-complete.

Proof. We show that IndepSet ≤ VertexCover. Observe that if G = (V,E)
is a graph, V0 ⊆ V , then V0 is a vertex cover for G iff V − V0 is an independent set.

So we define the reduction from IndepSet to VertexCover as follows: given
I = 〈G,B〉, an input to IndepSet, let the corresponding input to VertexCover be
I ′ = 〈G,B′〉, where B′ = n−B, n = |V |. �

If G = (V,E) and V0 ⊆ V , then V0 is a clique in G iff every pair of distinct nodes
in V0 is connected by an edge in E.
Clique:
Input: G = (V,E), B ∈ N, B ≤ |V |.
Question: Does G have a clique of size B?

Lemma 8.3. Clique is NP-complete.

Proof. We show that IndepSet ≤ Clique.
Given an instance I = 〈G,B〉 of IndepSet, we have to find an instance I ′ =

〈GI , BI〉 of Clique such that I ∈ IndepSet iff I ′ ∈ Clique. Let GI = G, the
complement of G. Let BI = B.

If G = (V,E), then G = (V,E), where (u, v) ∈ E iff (u, v) /∈ E (i.e. E =
(V × V )− E).

Then G has an independent set of size B iff G has a clique of size B. �

SubsetSum:
Input: 〈a1, . . . , am, t〉 t, ai ∈ N.
Question: Is there a subset S ⊆ {1, . . . ,m} such that

∑
i∈S ai = t?

Lemma 8.4. SubsetSum is NP-complete.

Exercise 8.5. Prove lemma 8.4

Partition:
Input: 〈a1, . . . , am〉 ai ∈ N.
Question: Is there a subset S ⊆ {1, . . . ,m} such that

∑
i∈S ai =

∑
j∈S aj?

Lemma 8.6. Partition is NP-complete.

Proof. We show that SubsetSum ≤ Partition we consider two cases: 2t ≥ a
and 2t < a, where a = a1 + · · · + am. In the first case, given the input instance
〈a1, . . . , am, t〉 to SubsetSum, let 〈a1, . . . , am, am+1〉 where am+1 = 2t − a be the
corresponding input instance to Partition. For the second case let am+1 = a−2t. �

A k-coloring of a graph G = (V,E) assigns one of k colors to each vertex in G so
that adjacent vertices get different colors.
k-Color:
Input: G = (V,E).
Question: Can G be colored with k colors?

Lemma 8.7. 3Color is NP-complete.

Exercise 8.8. Prove lemma 8.7.
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A Hamiltonian cycle in a graph G is a cycle which includes every node of G
exactly once.
HamCycle:
Input: G = (V,E).
Question: Does G have a Hamiltonian cycle?

Lemma 8.9. HamCycle is NP-complete.

Proof. The reduction VertexCover ≤ HamCycle is tricky; see for exam-
ple [CLRS09, §34.5.3, pp. 1008–1012]. �

A tour is the same as a Hamiltonian cycle. The input graph G must be complete;
that is every pair of nodes must be connected by an edge. In this case, a Hamiltonian
cycle always exists (if |V | ≥ 3). The search problem is to find a tour of minimum
total cost.
TravelSalesman:
Input: G = (V,E), the complete graph with node set V , with positive integer weights
(costs) assigned to each edge, B ∈ N.
Question: Does G have a tour of total cost at most B?

Lemma 8.10. TravelSalesman is NP-complete.

Proof. We use a reduction from HamCycle as follows. Given an input I =
〈G = (V,E)〉 to HamCycle, find an input I ′ = 〈GI , CI , BI〉 to TravelSalesman
(CI is the cost function) such that G has a Hamiltonian cycle iff GI has a tour of
total cost at most BI . Let GI be the complete graph on V , CI(e) = 1 for each edge
e ∈ E, CI(e) = 2 for each edge e 6∈ E, BI = n, where n is the number of nodes in
G. �

A Hamiltonian path of a graph G is a path which includes every node of G exactly
once.
HamPath:
Input: G = (V,E).
Question: Does G have a Hamiltonian path?

Lemma 8.11. HamPath is NP-complete.

Proof. We use a reduction from HamCycle as follows. Given an input I = 〈G〉
to HamCycle, find an input I ′ = 〈GI〉 to HamPath such that G has a Hamiltonian
cycle iff GI has a Hamiltonian path.

Take any vertex v ∈ V and split it in two, v and v′, and add two new nodes a
and b.

Let VI = V ∪ {v′, a, b}, EI = E ∪ {(a, v), (b, v′)} ∪ {(v′, u)|(v, u) ∈ E}.
Then the original graph has a Hamiltonian cycle iff the new graph has a Hamil-

tonian path. Note that every Hamiltonian path in the new graph must connect a to
b (or b to a). �

Let α be a 3CNF formula. A nae-assignment (where nae stands for “not all
equal”) to the variables of α is an assignment where each clause contains two literals
with unequal truth values (i.e., one true and one false). Note that the negation of any
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nae-assignment is also a nae-assignment (“negation” here means that true and false
are interchanged for all variables). Let NAE3Sat be the language of 3CNF formulas
with nae-assignments.

Lemma 8.12. NAE3Sat is NP-complete.

Proof. ci = (l1 ∨ l2 ∨ l3)
f7→ c′i = (l1 ∨ l2 ∨ zi) ∧ (z̄i ∨ l3 ∨ b) where zi is a new

variable for each clause ci, and b is a single new variable for all the clauses. The
result of the (logspace) mapping f is the conjunction of two clauses c′i. Correctness:
suppose t satisfies

∧
i ci. Let t′ be defined as follows t′(b) = F , and if t(l1 ∨ l2) = T ,

then t′(z̄i) = T , and if t(l1 ∨ l2) = F , and t(l3) = T , then t′(zi) = T . Clearly, t′ is a
nae-assignment. Now we do a similar argument for the other direction. �

The problem Deg2Poly is given by m polynomials over Z of degree 2 in n
variables, and the question is: do they have a common zero?

Lemma 8.13. Deg2Poly is NP-complete.

Proof. 3Sat is NP-complete, and given a 3CNF formula we can convert it into a
system of polynomials as follows: for each variable xi that appears, add the polynomial
x2
i −xi, to ensure that only values {0, 1} are taken. Then, for each clause (l1∨ l2∨ l3)

add the polynomial m(l1) ·m(l2) ·m(l3), where m(l) = (1− x) if l = x and m(l) = x
if l = x̄. The resulting system has a common zero iff the original 3CNF formula is
satisfiable. However, the problem is that the polynomials may be of degree 3. We
modify this idea of “arithmetization” slightly, and use NAE3Sat instead, with true
mapping to 1 and false to −1. �

Exercise 8.14. Finish the proof of lemma 8.13.

8.2. A little number theory

We introduce some terminology. Two numbers x, y are congruent modulo a third
number p if they differ by a multiple of p. We write x ≡ y (mod p) (and sometimes
x ≡p y). Every number is congruent modulo p to some number in Zp = {0, 1, . . . , (p−
1)}. We let Z∗p be the subset of Zp of elements a such that gcd(a, p) = 1. Note that
(Zp,+) is a group (under addition) and (Z∗p, ·) is a group (under multiplication).

Note that

Z∗p = {a ∈ Zp| gcd(a, p) = 1}
= {a ∈ Zp|a has a (multiplicative) inverse in Zp}.

(27)

This is why (Z∗p, ·) is a group; the following lemma justifies this observation.

Lemma 8.15. gcd(a, p) = 1 ⇐⇒ ∃b ∈ Zp such that ab ≡ 1 (mod p).

Proof. gcd(a, p) = 1 iff there exist x, y such that ax + py = 1 (and x can be
chosen to be in Zp, by adding or subtracting appropriate multiples of p, and adjusting
y by the same amount), and this is the case iff ax ≡ 1 (mod p). �
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The function φ(n) is called the Euler totient function, and it is the number of
elements less than n that are co-prime to n, i.e., φ(n) = |Z∗n|. If we are able to factor,
we are also able to compute φ(n): suppose that n = pk11 p

k2
2 · · · p

kl
l , then it is not hard

to see that φ(n) =
∏l
i=1 p

ki−1
i (pi − 1).

Theorem 8.16 (Euler’s theorem). For every n and every a ∈ Z∗n, we have aφ(n) ≡
1 (mod n).

Proof. This is an immediate consequence of Lagrange’s theorem (which says
that the order of any subgroup, and hence the order of any element, divides the order
of the group). �

Theorem 8.17 (Fermat’s Little theorem). For every prime p and every a ∈ Zp,
we have a(p−1) ≡ 1 (mod p).

Proof. An immediate consequence of Euler’s theorem. Note that when p is a
prime, Zp − {0} = Z∗p, and φ(p) = (p− 1). �

One way to determine whether a number p is prime, is to try all possible numbers
n < p, and check if any are divisors (also called factors). This algorithm obviously has
exponential time complexity in the length of p. We have a good probabilistic algorithm
for primality testing (Rabin-Miller), but no probabilistic algorithm for factoring is
known.

Lemma 8.18. A number p > 1 is prime iff ∃1 < r < p such that rp−1 ≡ 1

(mod p), and furthermore r
p−1
q 6≡ 1 (mod p) for all prime divisors q of p− 1.

Theorem 8.19 (Pratt). Primes ∈ NP.

Proof. Using lemma 8.18 we can construct a short (recursive) certificate of pri-
mality: C(p) := (r; q1, C(q1), . . . , qk, C(qk)). �

Corollary 8.20. Primes ∈ NP ∩ co-NP.

Proof. It is obvious that Primes ∈ co-NP and Pratt’s theorem shows that
Primes ∈ NP as well. �

Fermat’s little theorem provides a “test” for primality, called the Fermat test;
the Rabin-Miller algorithm (algorithm 7.2) is based on this test. When we say that p
passes the Fermat test at a, we mean that a(p−1) ≡ 1 (mod p). Thus, all primes pass
the Fermat test for all a ∈ Zp − {0}.

Unfortunately, there are also composite numbers n that pass the Fermat tests
for every a ∈ Z∗n; these are the so called Carmichael numbers,1 for example, 561,

1R. D. Carmichael first noted the existence of such numbers in 1910, computed 15 examples, and
conjectured that though they are infrequent there were infinitely many. In 1956, Erdös sketched a
technique for constructing large Carmichael numbers ([Hof98]), and a proof was given by [AGP94]
in 1994.
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1105, 1729, . . . and the last number shown on this list is called the Hardy-Ramanujan
number.2

Lemma 8.21. If p is a composite non-Carmichael number, then it passes at most
half of the Fermat tests in Z∗p.

Proof. Call a a witness if it fails the Fermat test for p, that is, if a(p−1) 6≡ 1
(mod p).

Consider S ⊆ Z∗p consisting of those elements a ∈ Z∗p for which ap−1 ≡ 1 (mod p).
It is easy to check that S is in fact a subgroup of Z∗p. Therefore, using the Lagrange
theorem, |S| must divide |Z∗p|. Suppose now that there exists an element a ∈ Z∗p for
which ap−1 6≡ 1 (mod p). Then, S is not “everything” (i.e., not Z∗p), so the next best
thing it can be is “half” (of Z∗p), so |S| must be at most half of |Z∗p|. �

Exercise 8.22. Give an alternative proof of lemma 8.21 without using group
theory.

A number is pseudoprime if it is either prime or Carmichael. The last lemma
suggests an algorithm for pseudoprimes: on input p, check a(p−1) ≡ 1 (mod p) for
some random a ∈ Zp−{0}. If p fails this test (i.e., 6= 1), then p is composite for sure.
If p passes the test, then p is probably pseudoprime. We show that the probability of
error in this case is ≤ 1

2 . Suppose p is not pseudoprime. If gcd(a, p) 6= 1, then a(p−1) 6≡
1 (mod p)3, so assume that p passed the test, we know that gcd(a, p) = 1, so a ∈ Z∗p.
But then at least half of the elements of Z∗p are witnesses of nonpseudoprimeness
(what a great word!).

Theorem 8.23 (Chinese Remainder). Given two sets of numbers of equal size,
r0, r1, . . . , rn, and m0,m1, . . . ,mn, such that

0 ≤ ri < mi 0 ≤ i ≤ n, (28)

and gcd(mi,mj) = 1 for i 6= j, then there exists an r such that r ≡ ri (mod mi) for
0 ≤ i ≤ n.

Proof. The proof we give is by counting; the distinct values of r, 0 ≤ r < Πmi,
represent distinct sequences. To see that, note that if r ≡ r′ (mod mi) for all i, then
mi|(r − r′) for all i, and so (Πmi)|(r − r′) (since the mi’s are pairwise co-prime). So
r ≡ r′ (mod (Πmi)), and so r = r′ if both r, r′ ∈ {0, 1, . . . , (Πmi)− 1}.

21729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathe-
matician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan.
Hardy wrote: I remember once going to see him when he was ill at Putney. I had ridden in taxi
cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it
was not an unfavorable omen. “No,” he replied, “it is a very interesting number; it is the smallest
number expressible as the sum of two cubes in two different ways.”

3To see why this is true, assume that gcd(a, p) 6= 1. By the observation (27) we know that
if gcd(a, p) 6= 1, then a does not have an inverse in Zp. Thus, it is not possible for a(p−1) ≡ 1

(mod p) to be true, since then it would follow that a · a(p−2) ≡ 1 (mod p), and hence a would have
a (multiplicative) inverse.
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But the total number of sequences r0, . . . , rn such that (28) holds is precisely
Πmi. Hence every such sequence must be a sequence of remainders of some r, 0 ≤
r < Πmi. �

Note that the CRT can be stated in the language of group theory as follows:

Zm1·m2·...·mn
∼= Zm1

× Zm2
× · · · × Zmn ,

where the mi’s are pairwise co-prime.

Exercise 8.24. The proof of theorem 8.23 (CRT) is non-constructive. Show how
to obtain the r that meets the requirement of the theorem—efficiently, i.e., without
using brute force search.

8.3. RSA

It is well known that Adam and Eve no longer trust each other.4 Adam sets up
a mechanism whereby he can receive and decode encoded messages from an arbitrary
person—and no one else (Eve in particular) can read them. To this end, Adam
advertises a function f , and anyone can compute f(m) for any message m, but only
Adam can efficiently compute m from f(m) using the function g, where g(f(m)) = m.

Choose two odd primes p, q, and set n = pq. Choose k ∈ Z∗φ(n), k > 1. Advertise
f , where f(m) ≡ mk (mod n). Compute l = k−1 (inverse of k in Z∗φ(n)). Now 〈n, k〉
are public, and the key l is secret, and so is the function g, where g(C) ≡ Cl (mod n).
(Note that g(f(m)) ≡n mkl ≡n m.)

Note that computing the inverse of k in Z∗φ(n), that is l, can be done in poly-
time using the extended Euclidean algorithm. Just observe that if k ∈ Z∗φ(n), then
gcd(k, φ(n)) = 1, so ∃s, t such that sk + tφ(n) = 1, and further s, t can be chosen so
that s is in Z∗φ(n) (first obtain any s, t from the extended Euclidean algorithm, and
then just add to s the appropriate number of (positive or negative) multiples of φ(n)
to place it in the set Z∗φ(n), and adjust t by the same number of multiples (of opposite
sign)). Set l := s.

Obviously RSA relies on the hardness of factoring integers for its security; if we
were able to factor n, we would obtain p, q, and hence φ(n) = φ(pq) = (p− 1)(q− 1),
and so we would be able to compute l.

The first question is: why mkl ≡n m? Observe that kl = 1 + (−t)φ(n), where
(−t) > 0, and so mkl ≡n m1+(−t)φ(n) ≡n m · (mφ(n))(−t) ≡n m, because mφ(n) ≡n 1.
Note that this last statement does not follow directly from Euler’s theorem, because
m ∈ Zn, and not necessarily in Z∗n; in fact m must be in Zn−{0, p, q, pq}, so we could
insist that the messages m are small relative to n, so that 0 < m < min{p, q}—in
fact, we break a large message into those small pieces. By Fermat’s little theorem, we
know that m(p−1) ≡p 1 and m(q−1) ≡q 1, so m(p−1)(q−1) ≡p 1 and m(q−1)(p−1) ≡q 1,
thus mφ(n) ≡p 1 and mφ(n) ≡q 1. This means that p|(mφ(n) − 1) and q|(mφ(n) − 1),
so, since p, q are distinct primes, it follows that (pq)|(mφ(n) − 1), and so mφ(n) ≡n 1.

4See Genesis 3:15.
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The second questions is: how to select random primes? Two random primes are
needed to find the public key n = pq for the RSA5 encryption scheme. It is a non-
trivial problem, primarily because verifying the primality of a number is difficult. Here
is how we go about it: we know by the prime number theorem that there are about
π(n) = n/ log n many primes ≤ n. This means that there are 2n/n primes among
n-bit integers, roughly 1 in n, and these primes are fairly uniformly distributed. So we
pick an integer at random, in a given range, and apply a primality testing algorithm
to it, which in practice means the Rabin-Miller test6 (see §7.1.2, algorithm 7.2).

We now discuss very briefly two issues related to the security of RSA. The first
one is that the primes p, q cannot be chosen “close” to each other. Note that

n =

(
p+ q

2

)2

−
(
p− q

2

)2

.

Since p, q are close, we know that s :=
p− q

2
is small, and t :=

p+ q

2
is only slightly

larger than n
1
2 , and t2−n = s2 is a perfect square. So we try the following candidate

values for t:
dn 1

2 e, dn 1
2 e+ 1, dn 1

2 e+ 2, . . .

until t2 − n is a perfect square s2. Clearly, if s is small, we will quickly find such a t,
and then p = t+ s and q = t− s.

The second issue is the following: suppose that Eve can compute φ(n) from n.
Then she can easily compute the primes p, q (of course, if she can compute φ(n) she
can directly compute l, and she does not need p, q). To see this note that φ(n) =
φ(pq) = (p− 1)(q − 1). Then,

p+ q = n− φ(n) + 1

pq = n,
(29)

and from these two equations,

(x− p)(x− q) = x2 − (p+ q)x+ pq = x2 − (n− φ(n) + 1)x+ n.

Thus, we can compute p, q by computing the roots of this last polynomial, and using
the quadratic formula x = (−b±

√
b2 − 4ac)/2a, we obtain that p, q are

(n− φ(n) + 1)±
√

(n− φ(n) + 1)2 − 4n

2
.

Suppose that Eve is able to compute l from n and k. If Eve knows l, then she knows
that whatever φ(n) is, it divides kl − 1, so she has equations (29) but with φ(n) in
the first equation replaced by (kl− 1)/a, for some unknown a. There is a randomized
polytime procedure to find the appropriate a, and obtain p, q, but we do not describe
it here.

If Eve is able to factor she can obviously break RSA; on the other hand, if Eve can
break RSA (by computing l from n, k), then she would be able to factor in randomized

5RSA is named after the first letters of the last names of its inventors: Ron Rivest, Adi Shamir,
and Leonard Adleman.

6The fact that this method of selecting primes works is attested by the fact that encryption
packages such as GPG use it, and they work very well.
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polytime. Conceivably, Eve may be able to break RSA without computing l, so these
observation do not imply that breaking RSA is as hard as factoring.

8.4. The Isolation Lemma

A weight function over a finite set U is a mapping from U to the set of positive
integers. We naturally extend any weight function over U to one on the power set
P(U) as follows. For each S ⊆ U , the weight of S with respect to a weight function
W , denoted W (S), is Σx∈SW (x). Let F be a nonempty family of nonempty subsets
of U . Call a weight function W good for F if there is exactly one minimum-weight set
in F with respect to W . Call W bad for F otherwise.

Lemma 8.25 (Isolation). Let U be a finite set. Let F1, . . . , Fm be families of
nonempty subsets over U , and let D = |U |. Let R > mD, and let Z be the set of
all weight functions whose weights are at most R. Let α, 0 < α < 1, be such that
α > mD

R . Then, more than (1− α)|Z| functions in Z are good for all F1, . . . , Fm.

Proof. Let F be one family. For a weight function W ∈ Z, let MinWeightW de-
note the minimum weight of F with respect to W , i.e., MinWeightW = min{W (S)|S ∈
F}, and let MinWeightSetW denote the set of all minimum-weight sets of F with re-
spect to W , i.e., MinWeightSetW = {S ∈ F |W (S) = MinWeightW }. For x ∈ U , we
say that the minimum-weight sets of F with respect to W are ambiguous about inclu-
sion of x if there exist some S, S′ ∈ MinWeightSetW such that x ∈ (S−S′)∪ (S′−S),
i.e., x is in the symmetric difference of S, S′. This “ambiguity” refers to the situation
where there exist two different sets in MinWeightSetW , one with x, the other without.
To repeat in yet another way, it means that given x, we cannot say that any minimal
weight set must contain it, or any must not contain it.

We need two claims.

Claim 8.26. W is bad iff there is some x ∈ U such that the minimum-weight sets
of F with respect to W are ambiguous about inclusion of x.

Let x ∈ U be fixed. We count the number of weight functions W ∈ Z such that
the minimum-weight sets of F with respect to W are ambiguous about inclusion of
x. Let y1, . . . , yD−1 be an enumeration of U − {x} and v1, . . . , vD−1 ∈ [R]. Let A be
the set of all weight functions W such that for all i ∈ [D− 1], W (yi) = vi. (Note that
|A| = R, the reason being that for any given W ∈ A, all the values are fixed except
for x, which can take one of [R] values.) Suppose that there is a weight function W in
A such that the minimum-weight sets of F with respect to W are ambiguous about
inclusion of x.

Claim 8.27. Let W ′ be an arbitrary element of A− {W}. The minimum-weight
sets of F with respect to W ′ are unambiguous about inclusion of x.

This means that there is at most one weight function W ∈ A such that the
minimum-weight sets of F with respect to W are ambiguous about inclusion of x.

For each i ∈ [D−1] there are R choices for vi. So, there are at most RD−1 weight
functions W ∈ Z such that the minimum-weight sets of F with respect to W are
ambiguous about the inclusion of x.
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There are RD weight functions in Z, there are m choices for F , and there are D
choices for x. Thus the proportion of

{W ∈ Z|for some i ∈ [m], W is bad for Fi}

is at most
mDRD−1

RD
=
mD

R
< α.

Thus, the proportion of

{W ∈ Z|for all i ∈ [m], W is good for Fi}

is more than (1− α). �

8.5. Berkowitz’s algorithm

In this section we present a very slick algorithm for computing the characteristic
polynomial (char poly) of an n× n matrix A, defined as usual to be

pA(x) = det(xI −A) = c0 + c1x+ c2x
2 + · · ·+ cnx

n.

Berkowitz’s algorithm, on input A, outputs the coefficients c0, c1, c2, . . . , cn. It works
by computing iterated matrix products—an operation that can be done in the com-
plexity class NC2 (actually in the class POW, where POW is the class of problems
reducible to computing powers of an integer matrix, and NC1 ⊆ POW ⊆ NC2;
see [Coo85] for the background on POW, and related complexity classes).

Exercise 8.28. Show that matrix powering is in NC2.

We give two presentations of Berkowitz’s algorithm. The first uses Samuelson’s
identity, and it is algebraic in flavor. The second uses clow sequences, and it is
combinatorial in flavor.

8.5.1. Samuelson’s identity. The main idea in the original proof of correctness
of Berkowitz’s algorithm (see [Ber84]) is Samuelson’s identity, which relates the char
poly of a matrix to the char poly of its principal sub-matrix. Thus, the coefficients of
the char poly of an n × n matrix A below, are computed in terms of the coefficients
of the char poly of M :

A =

[
a11 R
S M

]
, (30)

where R,S and M are 1 × (n − 1), (n − 1) × 1 and (n − 1) × (n − 1) sub-matrices,
respectively. Recall that the adjoint of a matrix A is the transpose of the matrix of
cofactors of A; that is, the (i, j)-th entry of adj(A) is given by (−1)i+j det(A[j|i]).
Also recall that A[k|l] is the matrix obtained from A by deleting the k-th row and the
l-th column. We also introduce the following notation: A[−|l] denotes A with only
the l-th column deleted, and A[k|−] denotes A with only the k-th row deleted, and it
makes sense to let A[−|−] = A.
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Lemma 8.29 (Samuelson’s Identity). Let p(x) and q(x) be the char polys of A
and M , respectively. Then:

p(x) = (x− a11)q(x)−R · adj(xI −M) · S.

Proof.

p(x) = det(xI −A)

= det

[
x− a11 −R
−S xI −M

]
,

using the cofactor expansion along the first row:

= (x− a11) det(xI −M) +

n−1∑
j=1

(−1)j(−rj) det(−S(xI −M)[−|j]︸ ︷︷ ︸
(∗)

),

where R = (r1r2 . . . rn−1), and the matrix indicated by (∗) is given as follows: the
first column is S, and the remaining columns are given by (xI −M) with the j-th
column deleted. We expand det(−S(xI −M)[−|j]) along the first column, i.e., along
the column S = (s1s2 . . . sn−1)T to obtain:

= (x− a11)q(x) +

n−1∑
j=1

(−1)j(−rj)
n−1∑
i=1

(−1)i+1(−si) det(xI −M)[i|j]

and rearranging:

= (x− a11)q(x)−
n−1∑
i=1

n−1∑
j=1

rj(−1)i+j det(xI −M)[i|j]

 si

= (x− a11)q(x)−R · adj(xI −M) · S
and we are done. �

Lemma 8.30. Let q(x) = qn−1x
n−1 + · · · + q1x + q0 be the char poly of M , and

let:

B(x) =

n∑
k=2

(qn−1M
k−2 + · · ·+ qn−k+1I)xn−k. (31)

Then B(x) = adj(xI −M).

For example, if n = 4, then

B(x) = Iq3x
2 + (Mq3 + Iq2)x+ (M2q3 +Mq2 + Iq1).

Proof. First note that:

adj(xI −M) · (xI −M) = det(xI −M)I = q(x)I.

Now multiply B(x) by (xI −M), and using the Cayley-Hamilton theorem, we can
conclude that B(x) · (xI −M) = q(x)I. Thus, the result follows as q(x) is not the
zero polynomial; i.e., (xI −M) is not singular. �
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From lemma 8.29 and lemma 8.30 we have the following identity which is the
basis for Berkowitz’s algorithm:

p(x) = (x− a11)q(x)−R ·B(x) · S. (32)

Using (32), we can express the char poly of a matrix as iterated matrix product. We
say that an n×m matrix is Toeplitz if the values on each diagonal are the same. A
matrix is upper (lower) triangular if all the values below (above) the main diagonal
are zero.

If we express equation (32) in matrix form we obtain:

p = C1q, (33)

where C1 is an (n+ 1)× n Toeplitz lower triangular matrix, and where the entries in
the first column are defined as follows:

ci1 =


1 if i = 1

−a11 if i = 2

−(RM i−3S) if i ≥ 3

. (34)

For example, if A is a 4× 4 matrix, then p = C1q is given by:
p4

p3

p2

p1

p0

 =


1 0 0 0
−a11 1 0 0
−RS −a11 1 0
−RMS −RS −a11 1
−RM2S −RMS −RS −a11



q3

q2

q1

q0

 .
Berkowitz’s algorithm consists in repeating this for q (i.e., q itself can be computed

as q = C2r, where r is the char poly of M [1|1]), and so on, eventually expressing p as
a product of matrices:

p = C1C2 · · ·Cn.
More precisely, given an n × n matrix A, over any field K, Berkowitz’s algorithms
computes an (n+1)×1 column vector pA as follows: let Cj be an (n+2−j)×(n+1−j)
Toeplitz and lower-triangular matrix, where the entries in the first column are defined
as: 

1 if i = 1

−ajj if i = 2

−RjM i−3
j Sj if 3 ≤ i ≤ n+ 2− j

(35)

where Mj is the j-th principal sub-matrix, so M1 = A[1|1], M2 = M1[1|1], and in
general Mj+1 = Mj [1|1], and Rj and Sj are given by:(

aj(j+1) aj(j+2) . . . ajn
)

and
(
a(j+1)j a(j+2)j . . . anj

)t
respectively. Then:

pA = C1C2 · · ·Cn. (36)
Berkowitz’s algorithm works over any field, and in fact, as there are no divisions

in the algorithm (i.e., the inverses of field elements are not needed), the algorithm
works over any commutative ring. The same can be said of our proof of correctness—
it also works over commutative rings (in the proof of lemma 8.30 we argue about the
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inverse of (xI −M), which exists, but we need not argue about the inverses of the
ring elements). If the additions and multiplications in the commutative ring can be
carried out in NC1, then we have the following lemma.

Lemma 8.31. Berkowitz’s algorithm is an NC2 algorithm.

Proof. This follows from (36): pA equals the product of C1, C2, . . . , Cn, all
independently computed in NC2. The product of these matrices can be computed
as follows: construct a matrix B by placing the Ci’s above the main diagonal and
letting all other entries be zero. Then, Bn will contain the product of the Ci’s in its
upper-right corner. We know that Bn can be computed in NC2 from exercise 8.28.

Now the entries of each Ci can also be computed using matrix products, again
independently of each other. In fact, we can compute the (i, j)-th entry of the k-th
matrix very quickly as in (35).

Finally, we can compute additions, additive inverses, and products of the un-
derlying field elements (in fact, more generally, of the elements in the underlying
commutative ring, as we do not need divisions in this algorithm). We claim that
these operations can be done with small NC1 circuits (this is certainly true for the
standard examples: finite fields, rationals, integers, etc.).

Thus we have “three layers”: one layer of NC1 circuits, and two layers of NC2

circuits (one layer for computing the entries of the Cj ’s, and another layer for com-
puting the product of the Cj ’s), and so we have (uniform) NC2 circuits that compute
the column vector with the coefficients of the char poly of a given matrix. �

8.5.2. Clow Sequences. First of all, a “clow” is an acronym for “closed walk.”
Clow sequences (introduced in [MV97], based on ideas in [Str83]), can be thought
of as generalized permutations. They provide a combinatorial insight into what is
actually being computed in Berkowitz’s algorithm.

In section 8.5.1, we derived Berkowitz’s algorithm from Samuelson’s identity and
the Cayley-Hamilton theorem. However, both these principles are in turn proven
using Lagrange’s expansion for the determinant. Thus, this proof of correctness of
Berkowitz’s algorithm is indirect, and it does not really show what is being computed
in order to obtain the char poly efficiently.

To see what is being computed in Berkowitz’s algorithm, and to understand the
subtle cancellations of terms, it is useful to look at the coefficients of the char poly
of the determinant of a matrix A as given by determinants of minors of A. To
define this notion precisely, let A be an n× n matrix, and define A[i1, . . . , ik], where
1 ≤ i1 < i2 < · · · < ik ≤ n, to be the matrix obtained from A by deleting the rows
and columns numbered by i1, i2, . . . , ik. Thus, using this notation, A[1|1] = A[1], and
A[2, 3, 8] would be the matrix obtained from A by deleting rows and columns 2, 3, 8.

Now, it is easy to show from the Lagrange’s expansion of det(xI − A), that if
pn, pn−1, . . . , p0 are the coefficients of the char poly of A, then they are given by the
following formulas:

pk = (−1)n−k
∑

1≤i1<i2<···<ik≤n

det(A[i1, i2, . . . , ik]), (37)
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where the summation ranges over all subsets of [n] of k elements. If k = 0, then
pk = p0 = (−1)n det(A), and if k = n, then pk = pn = (−1)0 = 1. This is of course
consistent with det(xI − A) = pnx

n + pn−1x
n−1 + · · · + p0, since pn is 1, and p0 is

(−1)n times the determinant of A.
Since det(A[i1, i2, . . . , ik]) can be computed using the Lagrange’s expansion, it

follows from (37), that each coefficient of the char poly can be computed by summing
over permutations of minors of A:

pn−k =
∑

1≤i1<i2<···<in−k≤n

∑
σ∈Sk

sign(σ)aj1σ(j1)aj2σ(j2) · · · ajkσ(jk). (38)

The relation between the j-indices and the i-indices is as follows: {j1, j2, . . . , jk} =
[n] − {i1, i2, . . . , in−k}. When k = n we are simply computing the determinant,
since in that case {i1, i2, . . . , in−k} = ∅, and the other summation spans over all the
permutations in Sn:

det(A) =
∑
σ∈Sn

sign(σ)a1σ(1) · · · anσ(n).

Finally, note that if k = 0, then the result is 1 by convention.
We can interpret σ ∈ Sn as a directed graph Gσ on n vertices: if σ(i) = j, then

(i, j) is an edge in Gσ, and if σ(i) = i, then Gσ has the self-loop (i, i). In this context,
a permutation is called a cycle cover. For example, the permutation given by:

σ =

(
1 2 3 4 5 6
3 1 2 4 6 5

)
,

corresponds to the directed graph Gσ with 6 nodes and the following edges:

{(1, 3), (2, 1), (3, 2), (4, 4), (5, 6), (6, 5)},
where (4, 4) is a self-loop. Given a matrix A, define the weight of Gσ, w(Gσ), as the
product of aij ’s such that (i, j) ∈ Gσ. So Gσ in our running example has a weight
given by: w(Gσ) = a13a21a32a44a56a65. Using the new terminology, we can restate
equation (38) as follows:

pn−k =
∑

1≤i1<i2<···<in−k≤n

∑
σ∈Sk

sign(σ)w(Gσ). (39)

A problem with (39) is that there are lots of permutations (k!), and there is no
(known) way of grouping or factoring them, in such a way so that we can compute
the summation efficiently. The way to get around this problem is by generalizing the
notion of permutation. Instead of summing over cycle covers, we sum over clow se-
quences; the paradox is that there are many more clow sequences than cycle covers, but
we can efficiently compute the sums of clow sequences (with Berkowitz’s algorithm),
making a clever use of cancellations of terms as we go along. We now introduce all
the necessary definitions, following [MV97].

A clow is a walk (w1, . . . , wl) starting from vertex w1 and ending at the same
vertex, where any (wi, wi+1) is an edge in the graph. Vertex w1 is the least-numbered
vertex in the clow, and it is called the head of the clow. We also require that the
head occur only once in the clow. This means that there is exactly one incoming edge
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(wl, w1), and one outgoing edge (w1, w2) at w1, and wi 6= w1 for i 6= 1. The length
of a clow (w1, . . . , wl) is l. Note that clows are never empty since they must have a
head.

A clow sequence is a sequence of clows (C1, . . . , Ck), where

head(C1) < . . . < head(Ck).

The length of a clow sequence is the sum of the lengths of the clows (i.e., the total
number of edges, counting multiplicities). Note that a cycle cover is a special type of
a clow sequence. We define the sign of a clow sequence to be (−1)k where k is the
number of clows in the sequence.

Given a matrix A, we associate a weight with a clow sequence that is consistent
with the contribution of a cycle cover. Note that we can talk about clows and clow
sequences independently of a matrix, but once we associate weights with clows, we
have to specify the underlying matrix, in order to label the edges. Thus, to make
things more precise, we will sometimes say “clow sequences on A” to emphasize that
the weights come from A.

Given a matrix A, the weight of a clow C, denoted w(C), is the product of the
weights of the edges in the clow, where edge (i, j) has weight aij .

Consider the clow C given by (1, 2, 3, 2, 3) on four vertices. The head is vertex 1,
and the length is 6. The weight is given by: w((1, 2, 3, 2, 3)) = a12a

2
23a32a31.

Given a matrix A, the weight of a clow sequence C, denoted w(C), is the product
of the weights of the clows in C. Thus, if C = (C1, . . . , Ck), then:

w(C) =

k∏
i=1

w(Ci).

We make the convention that an empty clow sequence has weight 1. Since a clow
must consist of at least one vertex, a clow sequence is empty iff it has length zero.
Thus, equivalently, a clow sequence of length zero has weight 1. These statements
will be important when we link clow sequences with Berkowitz’s algorithm.

Theorem 8.32. Let A be an n× n matrix, and let pn, pn−1, . . . , p0 be the coef-
ficients of the char poly of A given by det(xI −A). Then:

pn−k =
∑
C∈Ck

sign(C)w(C), (40)

where Ck = {C|C is a clow sequence on A of length k}.

Proof. We generalize the proof given in [MV97, pp. 5–8] for the case k = n.
The main idea in the proof is that clow sequences which are not cycle covers cancel
out, so the contribution of clow sequences which are not cycles covers is zero.

Suppose that (C1, . . . , Cj) is a clow sequence in A of length k. Choose the smallest
i such that (Ci+1, . . . , Cj) is a set of disjoint cycles. If i = 0, (C1, . . . , Cj) is a cycle
cover. Otherwise, if i > 0, we have a clow sequence which is not a cycle cover, so we
show how to find another clow sequence (which is also not a cycle cover) of the same
weight and length, but opposite sign. The contribution of this pair to the summation
in (40) will be zero.
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So suppose that i > 0, and traverse Ci starting from the head until one of two
possibilities happens: (i) we hit a vertex that is in (Ci+1, . . . , Cj), or (ii) we hit a
vertex that completes a simple cycle in Ci. Denote this vertex by v. In case (i), let
Cp be the intersected clow (p ≥ i+ 1), join Ci and Cp at v (so we merge Ci and Cp).
In case (ii), let C be the simple cycle containing v: detach it from Ci to get a new
clow.

In either case, we created a new clow sequence, of opposite sign but same weight
and same length k. Furthermore, the new clow sequence is still not a cycle cover, and
if we would apply the above procedure to the new clow sequence, we would get back
the original clow sequence (hence our procedure defines an involution on the set of
clow sequences). �

In [Val92] Valiant points out that Berkowitz’s algorithm computes sums of what
he calls “loop covers.” We show that Berkowitz’s algorithm computes sums of slightly
restricted clow sequences, which are nevertheless equal to the sums of all clow se-
quences, and therefore, by theorem 8.32, Berkowitz’s algorithm computes the coeffi-
cients pn−k of the char poly of A correctly. We formalize this argument in the next
theorem.

Theorem 8.33. Let A be an n×n matrix, and let pA = (pnpn−1 . . . p0), as defined
by (36); that is, pA is the result of running Berkowitz’s algorithm on A. Then, for
0 ≤ k ≤ n, we have:

pn−k = (−1)n−k
∑
C∈Ck

sign(C)w(C), (41)

where Ck = {C|C is a clow sequence on A of length k}.

Before we prove this theorem, we give an example. Suppose that A is a 3 × 3
matrix, M = A[1|1] as usual, and p3, p2, p1, p0 are the coefficients of the char poly of
A and q2, q1, q0 are the coefficients of the char poly of M , computed by Berkowitz’s
algorithm. Thus: 

p3

p2

p1

p0

 =


1 0 0
−a11 1 0
−RS −a11 1
−RMS −RS −a11


 q2

q1

q0



=


q2

−a11q2 + q1

−RSq2 − a11q1 + q0

−RMSq2 −RSq1 − a11q0 (∗)


(42)

We assume that the coefficients q2, q1, q0 are given by sums of clow sequences on M ,
that is, by clow sequences on vertices {2, 3}. Using this assumption and equation (42),
we show that p3, p2, p1, p0 are given by clow sequences on A, just as in the statement
of theorem 8.33.

Since q2 = 1, p3 = 1 as well. Note that q2 = 1 is consistent with our statement
that it is the sum of restricted clow sequences of length zero, since there is only one
empty clow sequence, and by convention its weight is 1.
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Consider p2, which by definition is supposed to be the sum of clow sequences of
length one on all three vertices. This is the sum of clow sequences of length one on
vertices 2 and 3 (i.e., q1), plus the clow sequence consisting of a single self-loop on
vertex 1 with weight a11 and sign (−1)1 = −1. Hence, the sum is indeed −a11q2 + q1,
as in equation (42) (again, q2 = 1).

Consider p1. Since p1 = p3−2, p1 is the sum of clow sequences of length two.
We are going to show that the term −RSq2 − a11q1 + q0 is equal to the sum of clow
sequences of length 2 on A. First note that there is just one clow of length two on
vertices 2 and 3, and it is given by q0. There are two clows of length two which
include a self loop at vertex 1. These clows correspond to the term −a11q1. Note that
the negative sign comes from the fact that q1 has a negative value, but there are two
clows per sequence, so the parity is even. Finally, we consider the clow sequences of
length two, where there is no self loop at vertex 1. Since vertex 1 must be included,
there are only two possibilities; these clows correspond to the term −RSq2 which is

equal to: −
[
a12 a13

] [ a21

a31

]
= −a12a21 − a13a31 since q2 = 1.

For p0, note that the summation indicated by (∗) includes only those clow se-
quences which start at vertex 1. This is because, the bottom entry in (42), unlike the
other entries, does not have a 1 in the last column, and hence there is no coefficient
from the char poly of M appearing by itself. This is not a problem for the following
reason: if vertex 1 is not included in a clow sequence computing the last entry, then
that clow sequence will cancel out anyways, since a clow sequence of length 3 that
avoids the first vertex, cannot be a cycle cover! This observation will be made more
explicit in the proof below.

Exercise 8.34. Show that
∑
C∈Ck sign(C)w(C) =

∑
C∈C′k

sign(C)w(C) where C′k
is the set of clow sequences on A of length k such that head(C1) = 1.

Proof. (of theorem 8.33) We prove this theorem by induction on the size of
matrices. The Basis Case is easy, since if A is a 1 × 1 matrix, then A = (a), so
pA =

(
1 −a

)
, so p1 = 1, and p0 = −a which is (−1) times the sum of clow

sequences of length 1.
In the induction step, suppose that A is an (n+ 1)× (n+ 1) matrix and:

pn+1

pn
pn−1

pn−2

pn−3

...
p0


=



1 0 0 . . .
−a11 1 0 . . .
−RS −a11 1 . . .
−RMS −RS −a11 . . .
−RM2S −RMS −RS . . .

...
...

...
. . .

−RMn−1S −RMn−2S −RMn−3S . . .





qn
qn−1

qn−2

qn−3

...
q0


, (43)

By the induction hypothesis, qM =
(
qn qn−1 . . . q0

)
satisfies the statement of

the theorem for M = A[1|1], that is, qn−i is equal to the sum of clow sequences of
length i on M = A[1|1].
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Since pn+1 = qn, pn+1 = 1. Since pn = −a11qn+ qn−1 = −a11 + qn−1 (as qn = 1),
using the fact that qn−1 = the sum of clow sequences of length 1 on M , it follows
that pn = the sum of clow sequences of length 1 on A.

Now we prove this for general n+ 1 > i > 1, that is, we prove that pn+1−i is the
sum of clow sequences of length i on A. Note that:

pn+1−i = −RM i−2Sqn −RM i−3Sqn−1 − · · · −RSqn+2−i − a11qn+1−i + qn−i (44)

as can be seen by inspection from equation (43). Observe that the (i, j)-th entry of
Mk is the sum of walks in M that start at vertex i and end at vertex j of length k,
and therefore, RMkS is the sum of clows in A that start at vertex 1 (and of course
end at vertex 1, and vertex 1 is never visited otherwise), of length k + 2.

Therefore, RM i−2−jSqn−j , for j = 0, . . . , i−2, is the product of the sum of clows
of length i − j (that start and end at vertex 1) and the sum of clow sequences of
length j on M (by the induction hypothesis), which is just the sum of clow sequences
of length i where the first clow starts and ends at vertex 1, and has length i− j. Each
clow sequence of length i on A starts off with a clow anchored at the first vertex, and
the second to last term of equation (44), −a11qn+1−i, corresponds to the case where
the first clow is just a self loop. Finally, the last term given by qn−i contributes the
clow sequences of length i which do not include the first vertex.

The last case is when i = n + 1, so p0, which is the determinant of A, by the-
orem 8.32. As was mentioned at the end of example 8.5.2, this is a special sum of
clow sequences, because the head of the first clow is always vertex 1. Here is when we
invoke the proof of the theorem 8.32: the last entry, p0 can be shown to be the sum
of clow sequences, where the head of the first clow is always vertex 1, by following
an argument analogous to the one in the above paragraph. However, this sum is still
equal in value to the sum of all clow sequences (of length n + 1). This is because, if
we consider clow sequences of length n+ 1, and there are n+ 1 vertices, and we get
a clow sequence C which avoids the first vertex, then we know that C cannot be a
cycle cover, and therefore it will cancel out in the summation anyways, just as it was
shown to happen in the proof of theorem 8.32. �

8.6. Answers to selected exercises

Exercise 8.5. See [CLRS09, theorem 34.15, pg. 1014].

Exercise 8.8. See [CLRS09, problem 34-3, pg. 1019].

Exercise 8.22. Here is an alternative proof, without group theory (recall that we
are concerned with elements of Z∗p only!): show that if there is an a such that the
test fails for a (i.e., ap−1 6≡ 1 (mod p)), then for every b for which the test passes,
there is a c for which the test fails. Suppose the test passes for b. Then, let c ≡ ab
(mod p). It remains to show that if the test passes for b1, b2, then ab1 6≡ ab2 (mod p).
This follows from the fact that ab1 ≡ ab2 (mod p) implies a(b1 − b2) ≡ 0 (mod p),
so p must divide a(b1 − b2), so pk = a(b1 − b2), and since b1, b2 ∈ Zp, |b1 − b2| < p,
so lcm(a, p) < ap, so gcd(a, p) > 1, which is a contradiction, since we assume that
a ∈ Z∗p.
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Exercise 8.24. Construct the r in stages, so that at stage i it meets the first i
congruences, that is, at stage i we have that r ≡ rj (mod mj) for j ∈ {1, 2, . . . , i}.
Stage 1 is simple: just set r ←− r1. Suppose the first i stages have been completed; let
r ←− r + (Πi

j=1mj)x, where x satisfies x ≡ (Πi
j=1mj)

−1(ri+1 − r) (mod mi+1). We
know that the inverse of (Πi

j=1mj) exists (in Zmi+1
) since gcd(mi+1, (Π

i
j=1mi)) = 1,

and furthermore, this inverse can be obtained efficiently with the Extended Euclidean
algorithm.

Exercise 8.28. The product of two matrices can be computed with Boolean circuits
of polynomial size and logarithmic depth (i.e., in NC1), and the n-th power of a matrix
can be obtained by repeated squaring (squaring log n many times for a matrix of size
n× n).

8.7. Notes

An important application of the Isolation Lemma (lemma 8.25) was the proof
of Toda’s theorem (§7.5). Another is the proof of NL/poly = UL/poly; see [RA00].
It is an interesting open problem whether NL and UL are equal without the advice.
Lemma 8.12 is based on [Sip06, exercise 7.24]. §8.4 is based on [HO02, §4.1.1].
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[BM77] John Bell and Moshé Machover. A course in mathematical logic. North-Holland, 1977.
[BP96] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In

Proceedings, 37th IEEE Symposium on Foundations of Computer Science, pages 274–
282, 1996.

[CCG+94] Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan Hastad, Desh
Ranjan, and Pankaj Rohatgi. The random oracle hypothesis is false. Journal of Computer
and System Sciences, 49(1):24–39, 1994.

[Chu96] Alonzo Church. Introduction to Mathematical Logic. Princeton University Press, 1996.
[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms. McGraw-Hill Book Company, 2009. Third Edition.
[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cam-

bridge Univeristy Press, 2010.
[Coo71] Stephen A. Cook. The complexity of theorem proving procedures. In Proceedings, 3rd

ACM Symposium on Theory of Computing, pages 151–158, 1971.
[Coo76] Stephen A. Cook. A short proof of the pigeon hole principle using extended resolution.

SIGACT News, 1976.
[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information

and Computation, 64(13):2–22, 1985.
[Coo00] Stephen A. Cook. The P versus NP problem. Manuscript prepared for the Clay Mathe-

matics Institute for the Millennium Prize Problems and available from Clay Mathematics
Institute web site, 2000.

[Coo08] Stephen A. Cook. Computability and logic: Lecture notes. Available at the author’s web
site, 2008.

[Dev05] Keith Devlin. The Millennium Problems. Granta Books, 2005.
[Eck87] Roger Eckhardt. Stan Ulam, John von Neumann, and the Monte Carlo method. Los

Alamos Science, 15:131–137, 1987.
[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. Bell Telephone

Laboratories, 1979.



142 BIBLIOGRAPHY

[HA99] David Hilbert and Wilhelm Ackermann. Principles of Mathematical Logic. American
Mathematical Society, 1999.

[HO02] Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity Theory Companion.
Springer, 2002.

[Hof98] Paul Hoffman. The Man Who Loved Only Numbers: The Story of Paul Erdős and the
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— Ladner, 33
— Mahaney, 31
— Nepomnjascij, 61
— Pratt, 125
— Razborov, 97
— Savitch, 39
— Sipser, 111
— Space Hierarchy, 50
— Speed-Up, 15
— Spira, 86
— Tarski, 59
— Time Hierarchy, 51
time constructible, 51
TM, see Turing machine
Toeplitz matrix, 132
transducer, 27
transition function, 13
Turing machine, 13
— decider, 49

Ulam, Stan, 11, 118
union, 51
universal traversal sequence, 82
Universal Turing Machine, 14

verifier, 42
vertex cover, 121

weight function, 129

yields, 13


